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On the Mathematical Modelling of
Complex Biological Systems.
A Kinetic Theory Approach (*)

M. DELITALA

Abstract. — This paper deals with the mathematical modelling, based on the kinetic
theory of active particles, of a complex biological living system constituted by dif-
ferent populations of cells. The modelling refers to the competition between immune
and tumor cells. Moreover, a qualitative and quantitative analysis is developed, to
show how the models can describe several interesting phenomena related to biological
applications. A final section highlights further research perspectives related to the
modelling of genetic mutations.

1. — Introduction.

Methods of the mathematical kinetic theory for active particles have been
recently developed to describe the collective behaviour of large systems of in-
teracting entities and has been finalized to model complex systems in applied
sciences, namely systems whose collective behaviour is not described only by the
knowledge of the dynamics of the individual entities [1]. The microscopic state
of the interacting entities, called active particles, includes not only mechanical
variables (typically position and velocity), but also an additional variable re-
lated to their self organized ability. The mathematical approach of the math-
ematical kinetic theory for active particles leads to the derivation of evolution
equations for the one-particle distribution function over the microscopic state,
called activity.

This is a new kinetic theory that can be applied to derive various models of
practical interest in life sciences, and which includes, as particular cases, the
classical models of the kinetic theory, namely the Boltzmann and Vlasov equa-
tions [1]. The main difference, with respect to the classical theory, is that in-
teractions follow stochastic rules, technically related to the strategy developed
by individuals that belong to living systems. This mathematical approach has

(*) Comunicazione tenuta a Bari il 26 settembre 2007 in occasione del XVIII Congresso
dell’'Unione Matematica Italiana.
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been focused also on the modelling of multicellular systems and, in particular, of
the immune competition as documented in several papers, among others [3], [4],
[5], [7], and [13].

Several models concerning the biological phenomena have been proposed in
the scientific literature, using different mathematical methods and tools; a large
bibliography on mathematical methods in cancer modelling is reported in the
recent review paper [2].

It is worth to point out that the approach proposed in this paper substantially
differs from the approach of population dynamics, e.g. [8], where the state of the
system is described by the number of cells expressing a certain biological
function, as well as from the approach of population dynamics with internal
structure, e.g. [15], expressed in terms of partial differential equations, where
the internal structures are regarded as additional independent variables.

This paper deals with the modelling of the evolution of cancer cells and their
competition with the immune system. The output may either be the growth of the
number of tumor cells, which subsequently aggregate into solid forms, or their
progressive destruction, due to the action of the immune system. A background
concept, to be kept in mind, is that the modelling of living systems needs tech-
nically complex mathematical methods, which may be substantially different
from those used to deal with inert matter. Therefore, models of multicellular
systems should include the expression of biological functions of the populations
of cells, as well as their role to organize the movement of cells, proliferating and
destructive events, the ability to select evolutionary mutations and organize
trend towards equilibrium configurations, which do not correspond to those
observe in the inert matter. Moreover, systems in biology cannot be simply
observed and interpreted at a macroscopic level, because a system constituted by
millions of cells shows at the macroscopic level only the output of the cooperative
and organized behaviours which may not, or are not, singularly observed.
Therefore, generally, all scales are needed to represent real biological systems,
and it is necessary a constructive effort to reduce complexity.

The theory of modules, proposed by Hartwell [12], provides useful hints to
deal with the above mentioned complexity problem. A constructive interpreta-
tion of such a theory suggest to consider as a single module the collective be-
haviour of systems of cells which have the ability of expressing certain biological
functions.

Accordingly, the modelling approach proposed in this paper deals with bio-
logical systems which can be regarded as an assembly of sub-systems, each
acting as a module with the ability of expressing a well defined biological func-
tion. A module is generally defined at one scale only. A biological system is a
network (i.e., a system of systems) of interacting sub-systems, each defined at a
different scale. Specifically, a subsystem is an entity which has to be defined with
reference to the specific analysis under consideration. Subsequently, equations
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of the mathematical kinetic theory for active particles are used to model large
systems of interacting cells; for instance, multicellular systems are constituted
by different populations, each identified by the expression of a different biolo-
gical function. Models are specifically focused on the description, by mathema-
tical equations, of the immune competition.

The contents of the paper, after this introductory section, are organized as
follows: Section 2 presents the general mathematical framework and derives
two specific models of tumor immune competition: Model C, corresponding to
the early dormant stage when no proliferation or destruction of cells occurs,
while interactions only modify the biological functions; and Model P corre-
sponding to the last stage, when the proliferating or destructive events are
predominant with respect to biological mutations. Section 3 deals with a
qualitative analysis of the initial value problem generated by the application of
the above models to the analysis of biological aspects of the competition.
Section 4 provides some simulations finalized to visualize phenomena of the
immune competition and complete the description offered by the qualitative
analysis. Section 5 proposes a critical analysis addressed to show how the
mathematical framework may be further developed towards relatively more
accurate models including the role of genetic mutations in the evolution of the
biological systems.

2. — Mathematical Framework and Modelling.

This section first derives the mathematical framework which can be used to
describe the tumor-immune system competition. Subsequently, two specific
models of tumor-immune cells competition are derived in view of their qualitative
and computational analysis.

2.1 — The Mathematical Framework.

Let us consider a large system of » interacting cells populations labelled by
the index i =1,...,n. Each population is characterized by a different way of
expressing its peculiar activities as well as the interactions with the other po-
pulations. Modelling by methods of the mathematical kinetic theory essentially
means defining the microscopic state of the cells and deriving an evolution
equation for the distribution function over the above state. The analysis is de-
veloped in the case of spatial homogeneity.

The variable charged to describe the biological state of each cell, called ac-
tivity, is assumed to be a scalar quantity, «# € R. The heterogeneous distribution
over the microscopic state is identified by the distribution function, and writes
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as follows:
1) fi=fit,u), i=1,...,m,

where f;(t, u) du denotes the number of cells whose state, at time ¢, is in the in-
terval [u,u + du].

The evolution equation is obtained equating, in the elementary volume of the
state space, the rate of increase of particles with microscopic state u to the net
flux of particles which attain such a state due to microscopic interactions that
include proliferative and destructive events. The following types of binary in-
teractions are considered:

Conservative interactions, between candidate or test cells and field cells,
which modify the microscopic activity of the interacting cells, but not the size of
the populations;

Proliferative or destructive interactions, between test and field cells, which
generate death or birth of test cells.

In the space homogeneous case, the corresponding balance equation writes as
follows:

2) O fit,w) = GiLf1¢¢,w) + Pl f1¢, u),
where:

e C;[f1(t,u) models the flow, at the time ¢, into the elementary volume of the
state space of the i population due to conservative interactions:

CLAGW =Y "ny [ [ Bytawe, w0 fit w it w) dc. dut
=1

®3) L
J=1 —00

where 7;; is the encounter rate, referred to encounters of a candidate cell, with
state u, in the i population and a field cell, with state «* in the j” population.
Bij(u.,u*;u) denotes the probability density (with respect to the variable u) that
the candidate particles fall into the state u of the test cell remaining in the same
populations. Conservative equations modify the microscopic state, but not the
number of cells.

e P;[f1(t,u) models the net flow, at the time ¢, into the elementary volume of the
state space of the i population due to proliferative and destructive interactions:

4) PiLfIt 0 =fit.0 > ny [ s un fituw)du,
J=1 —00
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where 1;(u,u*) models net flux within the same population due interactions,
which occur with rate #;;, of the test particle, with state u, of the i*" population
and the field particle, with state u*, of the ;% population.

Substituting the expressions (3) and (4) into (2), yields:

o0

afitw=>n; [ [ By wswfitudfitu)du. du
Jj=1

—00 —00

(5) it w> g [ fwdw
=1 —x

+fit,u) Z Mij f ﬂij(% u*)]g(t, w)du* .
Jj=1 —00

If f; is known, then macroscopic gross variables can be computed, under
suitable integrability properties, as moments weighted by the above distribution
function. For instance, the size of the " population is given by:

(6) m=Mﬂ®:fﬁmmw.

First order moments provide the linear biological macroscopic quantities which
will be called activation at the time ¢, and are computed as follows:

o0

(7) A; = ALF)) = f wfst ) du

—00

Specific models can be derived from the above structure (5), by a detailed
modelling of microscopic interactions, i.e. defining expressions of the terms 7, B,
and .

2.2 — Derivation of Mathematical Models.

Let us now consider, as an application, the modelling of the competition
among two cellular populations, # = 2. The first population is constituted by cells
of a specific biological system, or environmental cells (i.e. endothelial cells),
whose activity denotes how far cells are from the biological normality. The ac-
tivity of the environmental cells is called progression, and is defined by the scalar
variable # € R, where u < 0 identifies the state of the normal cells, and « > 0 the
state of abnormal cells. The level of malighancy increases with increasing pro-
gression: growth-autonomous, tissue-invasive, metastatically competent.

The second population is constituted by cells of the immune system, whose
activity denotes how immune cells contrast cells of the first population. The
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activity of the immune cells is called activation, and it is defined by the scalar
variable u € R, where % < 0 identifies the state of the inhibited immune cells,
and % > 0 the state of the active immune cells. The degree of ability to contrast
abnormal cells increases with increasing activation.

Referring to the momenta of the distribution function, we indicate in the
sequel with an the size of abnormal (tumor) cells, and with nf the size of normal
cells:

00 0
®) WI1AX) = [ Aitwde,  wFLAKD = [ At wdu,
0 -0

while the size of active immune cells, n‘z“, and the size of inhibited immune cells,
n} are:

00 0
©) a1 = [ ftwde,  wi£10 = [ ftwdu.
0 —c0

The first example, called Model C, is related to (prevalent) conservative in-
teractions. It corresponds to a competition where no proliferation or destruction
yet occur, while interactions only modify the biological functions of the cells of
the two populations. Model C can be applied to analyze latent immune compe-
titions, when cells degenerate before the onset of relevant proliferation phe-
nomena which give evidence of the presence of a pathological state.

The model is derived from the framework (5) by modelling interactions at the
cellular level according to the following assumptions:

H.C.1: The most probable output of conservative interactions between cells of
the first population is:

U, €ER: My = Uy +a11 .

H.C.2: The progression of an abnormal cell decreases due to encounters with
an active immune cell, and the most probable output of the microscopic state
after the interaction is given as follows:

u*vu*z(): mig = Usx — A12 -

H.C.3: The most probable output of the microscopic state of the immune cell
after the interaction with progressing cells, with state »*, is given as follows:

w,>0,u" >0 mo =u, —ag .

All the other interactions give a trivial output, i.e. do not lead to a modification
of the microscopic state of the candidate cell. Moreover, assuming that B;; is a
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delta function over the most probable output m2;;(u., "), which depends on the
microscopic states u, and u* of the interacting pairs.

(10) Bij (., w5 u) = 6(u — myj(u, u")),
and inserting all above assumptions into the framework (5) yields:
Ofit,w) = mAIOLAC w — an) — fiE,w)]

+ 15 [ 1) fit, u + a12)Ujg o) (@ + a12)
(11) — A, wns [ 10U oo (@)

A folt,uw) = nT[AIO[folt, u + a21)Upg o) + az1)
= fot, W) Upp oey(W)] .

This model is characterized by three phenomenological parameters related to
mass conservative encounters. All parameters are positive quantities (eventually
equal to zero) small with respect to unity. In details:

— ay; is related to the variation of the progression due to encounters between
environmental cells. It describes the tendency of a normal cell to degenerate and
to increase its progression.

— aj2 is related to the ability of the active immune cells to reduce the state of
abnormal (neoplastic) environmental cells.

— ag is related to the ability of abnormal cells to inhibit the active immune
cells.

The second example, called Model P, refers to the stage where the dis-
tribution over the biological functions reaches a slowly varying value, while the
proliferating or destructive events become predominant. This model can be used
to analyze the last stage of the competition, when both cell populations have
reached a fixed stage of the biological functions, and only proliferating or de-
structive phenomena are relevant. The model is derived according to the fol-
lowing assumptions:

H.P.1: The proliferation rate of cells of the first populations with u, > 0,
stimulated by encounters with non-progressing cells . < 0, is:
ﬂll(u*a M*) = ﬁll U[O,oo)(u*)U(—oo.O)(u*) .

H.P.2: The proliferation rate of non—progressing cells due to encounters with
immune cells, is equal to zero. On the other hand, when u.. > 0, cells are partially
destroyed due to encounters with active immune cells:

a2, ™) = — B1oUj0,00) (i) Upg o0y (") -
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H.P.3: The proliferation rate of inhibited immune cells due to encounters with
cells of the first population is equal to zero. On the other hand, when u* > 0, cells
proliferate due to encounters with progressing cells:

Ho1 (s, u") = Py Upg,o0) () Upg o) (7)) -
The evolution equation for the distribution function is as follow:

(12) {atfl(t,u) = fit,w) [Brnf L1 — Brond [£210)] Ug.co() ,
Afot,u) = Poy folt, wmT [ 1O Upg o)) .

This model is characterized by three phenomenological parameters related to
proliferative/destructive encounters. Also in this case parameters are positive
quantities (eventually equal to zero) small with respect to unity. In details:

— [ is related to the proliferation rate of abnormal cells due to their en-
counters with normal environmental cells;

— [1o is related to the ability of immune cells to destroy abnormal cells;

— P is related to the proliferation rate of immune cells due to their inter-
action with progressed cells.

3. — Qualitative Analysis.

The qualitative analysis is focused on the analysis of the well-posedness of the
mathematical problem related to the general model and on the study of the
asymptotic behaviour of the particular models to analyze the trend of the bio-
logical system towards the prevalence of one of the two populations over the
other.

Suitable Theorems, followed by interpretation from the biological point of
view, are reported in this section while for the proof, the reader is addressed to
the already cited book [4]. The analysis, as it can be seen, does not cover the
whole panorama of all possible outcomes of the competition. Therefore, the si-
mulations reported in the next section are necessary to complete the analysis.

3.1 — Local and large time existence.

Let us consider the initial value problem obtained by linking the initial con-
ditions fy = (fi(t, 0), f2(t, 0)) with f1(, 0) = f1p and f2(t, 0) = foo to Models C and P.
Local and large time existence of the solutions are proved by application of the
classical fixed point theorem. The following function spaces need to be defined:

— L1(R) is the Lebesgue space of measurable, real-valued functions which
are integrable on R. The norm is denoted by || - ||;.
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- X=LiR) x Li(R) = {f = (fi,fo) : i € L1(R),f> € L1(R)} is the Banach
space equipped with the norm

(13) A=Al + 1Rl

- X, ={f={1.p) € X:fi >0,f2 > 0} is the positive cone of X.

-Y=C(0,T],X) and Y, = C(0,T], X.) is the space of the functions con-
tinuous on [0, 7] with values, respectively, in a Banach space X and X', equipped
with the norm

(14) £ lly=sup [If] -
t€[0,T1
Local existence of the solutions is stated by the following:
THEOREM 1. — There exists a positive constants T and ay, such that the initial

value problem defined linking the models (11) and (12) with initial conditions
Jo € X1, has a unique solution f € C([0, T1, X ). The solution f satisfies

and
(16) [fll<aollfoll, Vtel0,T].

ProoF. — see [4], Chapter 4, pages 60-63.

Large time existence of the solutions, and the analysis of the asymptotic
behaviour are obtained analyzing the influence of the parameters of the model on
the qualitative behaviour of the solutions.

THEOREM 2 Model C. — There exists a unique, nonnegative, strong solution
f@) in (L1(R))? of the problem obtained linking (11) with the initial data fy € X o,
fort >0, and for every fy > 0 in (Ly(R))% Moreover, the equality || f || = || fo | is
satisfied.

PrOOF. — see [4], Chapter 4, pages 64.

THEOREM 3 Model P. — VT > 0 there exists a unique solution f € C([0,T], X)
of (12) with the initial data, fy € X . The solution satisfies

(17) fex,, Vtelo,T),
and, for some constant Cr depending on T and on the initial data,
(18) sup f(¢) < Cr.

t€[0,71

PrOOF. — see [4], Chapter 4, pages 63-64.
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3.2 — Asymptotic behaviour.

Let us now consider the analysis of the asymptotic behaviour of the solutions.
It is interesting analyzing the influence of the parameters of the model and of the
initial conditions on the bifurcation separating two different behaviours:

i) Growth of progressing cells, while the immune cells are inhibited;
ii) Destruction of progressing cells due to the action of the immune system,
which remains active.

The analysis of the asymptotic behaviour refers to the time evolution of the
densities %, n¥ and nf, while simulations visualize the evolution of the dis-
tribution function.

Consider first Model C. Detailed results can be given after a further spe-
cialization obtained by putting equal to zero a2 or a;1. Here we focus on the case
a1 = 0, which means that the progressing cells do not show a natural trend to
increase their progression. This means that either the cells do not show a trend
to degenerate at all, either the phenotypic changes occur so rarely that are
negligible with respect to the time scale of the model.

The study of the asymptotic behaviour gives the following result:
THEOREM 4. — Consider the initial value problem for Model C in the case
a1 = 0. The following properties:

Dt = nd,al |

i) nI'(®) and w4 () satisfy, in the limit t — + oo, the following estimates

1n4(0)
hm nl(t) < exp 2 ) fiowdu + | fowdu < nl0),
( SO) [ fotwrin s [ i

a12

tgmwné(t)smp( A(O)) [ oo+ f Fowdn < 0,

021

hold true.

ProoOF. — see [4], Chapter 4, pages 80-82.

Referring to the initial value problem corresponding to Model P, (12), it is
useful introducing the following parameter
(19) & = 117 (0) — from3 (0).

The following result holds:



ON THE MATHEMATICAL MODELLING OF COMPLEX BIOLOGICAL ETC. 613

THEOREM 5. — Consider the mnitial value problem for Model P, as defined by
Eqgs. (12):

o If By = 0, then ny = Cst,nE = Cst and n! satisfies the equality
n? () = nl(0) exp(ot),

thus, if 6 > 0 then n! increases and if § < 0 then n! decreases.
o If fo; # 0, then:
— If P1a = 0, then n! increases, n¥ = Cst and ng increases.
— If Bis # 0, then n¥ = Cst, ng increases and:
* If 6 < 0, then n! decreases and satisfies the following estimate

(20) nT () < nl(0)exp(dt).

x If 6 > 0: if nT(0) # 0, then Ity such that n! increases in [0,t] and n¥
decreases i [ty, T1 VT > 0.

PrOOF. — see [4], Chapter 4, pages 66-72.

The qualitative analysis, although it offers a variety of interesting results, still
needs the additional support of computational simulations, as analysis refers to
the evolution of the density of the cell populations, while computational simula-
tions can focus directly on the distribution functions, thus enlarging the picture
and showing the evolution of the heterogeneity of the distribution functions over
the microscopic variable.

4. — Simulations.

This section deals with the computational analysis of Models C and P,
showing how simulations complete and enlarge the asymptotic scenario depicted
by theorems of the previous section.

4.1 — Conservative Model.

The number of cells in Model C is constant in time since the observation time
is short and no proliferation phenomena occurs, while the distribution function
over the microscopic state shifts toward higher or lower values. The evolution is
ruled only by the evolution of the states, and the expected behaviour strongly
depends of the ability of the cells of a population to inhibit the competitor cells of
the other population, and thus on the ratio between ag; and a;2. An additional role
is played by the parameter ay; related to the tendency to degenerate of the cells
of the first population. Thus, it is expected a complex scenario, dependent on the
values of the conservative parameters.
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Fig. 1. — a1; =0, ay;p = 0.1, as; = 0.9. Model C. Evolution in time of the distribution
functions. Evolution of neoplastic cells (on the left) and immune suppression (on the right).

The qualitative scenario studied in Theorem 4 refers to the Model in which no
degeneration occurs, a;; = 0, and only the parameters adg; and a;2 are different
from zero. The Theorem states that:

ny | and nl | .

As it is expected, simulations show that both neoplastic and immune cells are
reduced during the competition (since no proliferation may occur). However,
simulations complete the results of the qualitative analysis showing that
asymptotically only one cell population survives and the other is completely
depleted. Moreover the survival or the defeat of each population depends on the
ratio between the values of ag; and a2, as well as on the initial conditions.

Let us now consider the same initial condition for neoplastic and immune
cells. If ap; > a2, the ability of neoplastic cells to inhibit immune cells is greater

Fig. 2. — a1; =0, a;p = 0.9, a1 = 0.1. Model C. Evolution in time of the distribution
functions. Reduction of neoplastic cells (on the left) and immune survival (on the right).
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than the ability of immune cells to reduce the state of neoplastic cells. The final
output is a complete inhibition of immune cells and a final survive of neoplastic
cells, as reported in Figure (1).

If ap; < ayg, the final scenario is a reduction of the state of the neoplastic cells,
until their complete depletion and the final survival of immune cells, as reported
in Figure (2).

Simulations may also investigate how this asymptotic behaviour is modified if
also the tendency of cells to degenerate, i.e. a;; # 0, is considered.

4.2 — Proliferative Model.

The Model P is such that proliferating/destructing events are predominant.
Simulations aim at completing the qualitative analysis proposed in the previous
section.

Let define a weighted critical immune density "2; = f* with

) =k,

12
product between the initial number of environmental cells and the ratio of the
proliferation rate of abnormal cells and the ability of immune cells to destroy
them. The results of Theorem 5 can be summarized as follows.

ng @) 1,

If n4(0)>ns = 0<0) :
0 2m =F 00 {an(t)l;35<O:n1T(t)<n1T(0)exp(5t).

A
ny) 1,
If 74(0) <nf, =B (>0) : Tty : ml' 1,Vt€[0,t] and
n |Vt e [t), T1,vT >0

Therefore, the immune system is stimulated to grow by the presence of ab-
normal (aggressive) cells, and its density increases, while the following two be-
haviours are predicted by the Model:

- If n‘24(0) > B, i.e. 0 <0, the number of abnormal cells decreases with the
rate of decreasing is given by Estimate (20).

— If 7%4(0) < *, i.e. > 0, at the beginning the number of abnormal cells
grows, since the number of immune cells is not sufficient to contrast them.
Nevertheless, since the immune cells are stimulated to proliferate, after a certain
critical time ¢, their number will be large enough to reduce the number of ab-
normal cells.

Some computational analysis may be useful to complete the above inter-
pretation. Indeed, simulations show the evolution of the distribution functions,



616 M. DELITALA

Fig. 3. — f,;, =0.1, 1, =0.9, f5; = 0.1, 6 <0. Model P. Evolution in time of the
distribution functions. Depletion of neoplastic cells (on the left) and immune cell
proliferation (on the right).

thus providing a deeper glance on the inner structure of the system, giving
additional information with respect to the theorems on the asymptotic behaviour
which refer to the evolution of the densities. Therefore, if n‘z“(O) <fie.d<0,a
decrease from the beginning of the number of neoplastic cells and an increase for
of the number of immune ones, see Figure (3), occurs.

The opposite behaviour is obtained if n‘z“(O) > 8, i.e. 0 > 0, where immune
cells are stimulated to proliferate, while neoplastic ones increase at the begin-
ning and after a certain critical time start to be depleted, see Figure (4).

Fig. 4. - ,, =09, f, =0.1, f5; =0.1, 6 > 0. Model P. Evolution in time of the
distribution functions. Initial increase and final depletion of neoplastic cells (on the left)
and immune proliferation (on the right).
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5. — Perspectives.

According to the biological literature, e.g. [11], the onset of cancer is caused
by genetic instability that generates low or over-expression of the genes which
are responsible of tumorigenesis. Such instability can occur during DNA re-
plication, or can be caused by interaction with other mutated genes, or with the
external environment. Therefore, the onset of cancer is a multistep, multipath
and multiscale process in which the accumulation of genetic mutations causes
increasing cell malignity. A deeper insight into the dynamics at the molecular
level seems to be necessary to capture the essence of the complexity of the
system which may be viewed as an evolutionary process, [14].

As documented in the review paper [2], different mathematical approaches
have been proposed to deal with this evolutionary perspective of gene mutations
and tumorigenesis. Among others, the paper [9] proposes a population model
where the competition of interacting cells is ruled by a Darwinian evolution.
Thus, “winner” cells proliferate, retaining the phenotypic properties which give
their competitive advantage, at the expense of “loser” cells.

The above models are described by deterministic interactions, while stochastic
events are typical in the phenomena under consideration, see for instance paper [10],
which is focused on the stochastic dynamics of gene interaction as the pattern in
cancer initiation and progression related to mutations. This observation encourages
tolook at the use of developments of the classical methods of statistical and quantum
mechanics.

A recent work, still in progress, [6], starting from the above suggestions,
attempts to describe, by methods of the kinetic theory for active particles, the
role of genetic mutations in the onset and progressive development of cancer.

The above paper focuses on the competition between tumor and immune cells,
with progressive genetic mutations from an initial normal state to a final neo-
plastic state. The mutations are assumed to cause the transition of populations,
which describes the proliferation of cells in a new population with a larger level of
malignancy, with respect to the mother cell. The jump of population is introduced
to model the mutations which will give a competitive advantage to the tumor
cells, like the acquisition of a specific hallmark, [11].

To describe these type of phenomena, the mathematical framework proposed
in Section 3, (2), should be generalized to include the proliferation with popu-
lation tramsition. The proliferating term (4) should be modified as follows:

n n

=1 k=1 o000

where ,u};k(u*,u*;u) models the net proliferation, into the i population, due

interactions, which occur with rate #,,,, of the candidate particle, with state u., of
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the k" population and the field particle, with state u*, of the k? population. It is
worth to point out that the above expression includes, as a particular case, the
proliferation without population transition, i.e. z;".

The above structure acts as a paradigm for derivation of specific models including
genetic mutations, to be obtained after a detailed modelling of the terms related to
the microscopicinteractions accordingly to the evolutionary dynamics of the system.
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