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On the Multivariate Robinson-Schensted Correspondence (*)

FABRIZ10 CASELLI

Abstract. — We show the existence of a multivariate extension of the Robinson-Schensted
correspondence. This is inspired by the interpretation of the classical two dimen-
stonal case in the tnvariant theory of (finite) reflection groups.

1. — Introduction.

The Robinson-Schensted correspondence (see [15, 16]) is a bijection between
the symmetric group on n elements and the set of ordered pairs of standard
tableaux with n boxes with the same shape. This is based on the row bumping
algorithm and was originally introduced by Robinson to study the Littlewood-
Richardson rule and by Schensted to study the lengths of increasing sub-
sequences of a word. This algorithm has found applications in the representation
theory of the symmetric group, in the theory of symmetric functions and the
theory of the plactic monoid. Moreover, it is certainly fascinating from a com-
binatorial point of view and has inspired a considerable number of papers in the
last decades. This correspondence has been generalized to other Weyl groups, by
defining ad hoc tableaux, or to semistandard tableaux in the so-called RSK-
correspondence, by considering permutations as special matrices with non-
negative integer entries.

The invariant theory of finite subgroups generated by reflections has at-
tracted many mathematicians in the last fifty years since their classification in
the works of Chevalley [8] and Shepard and Todd [17] with particular attention
on the combinatorial aspects of it. The main goal of this communication is to
explain the relationship between the Robinson-Schensted correspondence and
the theory of invariants of a reflection group. We are naturally carried to con-
sider the Hilbert series of multigraded algebras arising by considering invariant
and coinvariant algebra associated to a reflection group. By interpreting this
Hilbert series in terms of tableaux and in terms of permutations we deduce the
existence of a multivariate extension of the Robinson-Schensted correspondence.

(*) Comunicazione tenuta a Bari il 26 settembre 2007 in occasione del XVIII Congresso
dell’'Unione Matematica Italiana.
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2. — Multimahonian distributions.

Let V be a finite dimensional C-vector space and W be a finite subgroup of
the general linear group GL(V) generated by reflections, i.e. elements that fix a
hyperplane pointwise. We refer to such a group simply as a reflection group. The
most significant example of such a group is the symmetric group acting by
permuting a fixed linear basis of V. Other important examples are Weyl groups
acting on the corresponding root space. Though many of the results we are going
to discuss in this communication are valid in the generality of reflection groups,
for the sake of clearness we concentrate on the case of the symmetric group.
Despite this we preserve the symbol W to denote the symmetric group S,,.

Given a permutation ¢ € W we denote by

Des (0) & {i|o(i) > oi + 1)}

the (right) descent set of o and its major index by

maj(0) & 3"

1€Des (o)

For example if ¢ = 35241 we have Des (o) = {2,4} and maj (¢) = 6. We recall the
following equidistribution result due to MacMahon (see [13]).

THEOREM 2.1. — We have

W(q) déf Z qmaj (@) _ Z qinv(a)

oeW oW

n
=[[a+g+¢+ +d),
i=1
where inv(o) = |{(1,7) : 1 <j and a(t) > o(j)}| is the number of inversions of o.

If W is a generic reflection group we can consider the polynomial W(q) =
S ¢, where /(w) is the length function on W: in this case one obtains an

7“e(;)E(glicit expression for W(q) in terms of the degrees of W.

The dual action of W on V* can be extended to the symmetric algebra S(V*) of
polynomial functions on V. If we fix a basis of V, the symmetric algebra is
naturally identified with the algebra of polynomials C[X]. Here and in what
follows we use the symbol X to denote an n-tuple of variables X = (xy,...,%,).
The symmetric group acts on C[X] by permuting the variables. As customary we
denote by C[X]" the ring of invariant polynomials (fixed points of the action of
W). We also denote by I the ideal of C[X] generated by homogeneous poly-
nomials in C[X]V of strictly positive degree. The coinvariant algebra associated
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to W is defined as the corresponding quotient algebra
RV & crx/rv.

The coinvariant algebra has important applications in the theory of re-
presentation since it is isomorphic to the group algebra of W and in the topology
of the flag variety since it is isomorphic to the its cohomology ring.

We say that a C-algebra A is multigraded in N* if

A=PaA,

TeNk

where the A;’s are suitable finite dimensional vector subspaces of A such that
Ar-Ay CApy. If a € A; we say that a is homogeneous of (multi)degree 1. We
can extend this definition to the category of A-modules by saying that an A-
module R is multigraded in N* if

R=R,
I

eNk

where R; is a A-submodule which is a finite dimensional C-vector space and
Ar-Ry C Ry

If R is a multigraded A-module we can record the dimensions of its homo-
geneous components via its Hilbert series

Hilb (R)(q1, .., q1) € Y (dim Ry,...0)g8" -+ gL

We note that, since the ideal 1 Y is generated by homogeneous polynomials (by
total degree) the coinvariant algebra is graded in N. It turns out that the
polynomial W(q) appearing in Theorem 2.1 is the Hilbert series of the coinvariant
algebra RV:

W(g) = Hilb R")(g).

This is a crucial example of interplay between the invariant theory of W and the
combinatories of W (by Theorem 2.1). All the other cases considered in this paper
are algebraic and combinatorial variations and generalizations of this funda-
mental fact.

Given an irreducible representation A of W let f*(¢) be the polynomial in N[q]
whose coefficient of ¢’ is the multiplicity of the representation A in the homo-
geneous component of degree i in RY, i.e.

@ => 0 BRI

In this formula we denote by x(p) the character of a representation p and by (-, -)
the Hermitian form on the space of class functions on W with respect to which
the characters of the irreducible representations form an orthonormal basis. The
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polynomials f*(q) are known as the fake degree polynomials and have a very
simple combinatorial interpretation based on standard tableaux that we are
going to describe.

Given a partition 1 of n, the Ferrers diagram of shape / is a collection of boxes,
arranged in left-justified rows, with 1; boxes in row i. A standard tableau of shape
/.is a filling of the Ferrers diagram of shape 4 using the numbers from 1 to n, each
occurring once, in such way that rows are increasing from left to right and col-
umns are increasing from top to bottom. For example the following picture

315
6

1
2
4
7

represents a standard tableau of shape (3,2,1,1). We say that 7 is a descent of a
standard tableau T if 7 appears strictly above ¢ + 1 in 7. We denote by Des (T') the
set of descents of 7' and we let maj (T') be the sum of its descents. Finally we denote
by A(T) the shape of T'. In the previous example we have Des (T') = {1,3,5,6} and
so maj (T) = 15.

It is known that irreducible representations of the symmetric group W are
indexed by partitions of n. We therefore use the same symbol 4 to denote a
partition or the corresponding Specht module. The following theorem is attrib-
uted to Lusztig (unpublished) and to Kraskiewicz and Weyman ([12]).

THEOREM 2.2. — Let /. be a partition of n. We have
f@o= > ¢mo.
{Ti(T)=1}

An analogous result holds for Weyl groups of type B and D and is due to
Stembridge ([19]).

Since R" is isomorphic to the group algebra CW as a W-module we deduce
the following identity

W =Y FOf Q.
1
Considering the following natural generalization
Wig.t) © > Fiefio
1

we fall again on another Hilbert polynomial. In fact we consider W x W as a
finite reflection group in GL(V ¢ V) and we denote by AW the diagonal subgroup
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of W x W. The symmetric algebra on V &V can be identified with the poly-
nomial algebra C[X,Y] in the 2n variables x1,...,%y, %1, ., ¥s. The following
result is due to Barcelo, Reiner and Stanton ([4]).

THEOREM 2.3. — We have
W(g,t) = Hilb (C[X, Y)W /17T,

Following [4] we refer to the polynomial W(q,t) as the bimahonian dis-
tribution of W.

We recall that the algebra (C[X, Y])AW is a Cohen-Macauley algebra (being
the invariant algebra of a finite reflection group). In particular it is a free module
on the subalgebra C[X,Y1"*W. It follows another interpretation for the poly-
nomial W(q, ?):

_ Hilb(C[X, YY)
 Hilb (C[X, Y]V W)’

W(g.?)

From the study of the two Hilbert series appearing in the previous formula, by
means of the theory of bipartite partitions of Gordon [11] and the results of
Garsia and Gessel appearing in [10], one can prove the following combinatorial
interpretation for their quotient.

THEOREM 2.4. — We have

Wi(q,t) = Z ™l (@)gma @™
oeW

Also in this case, analogous results have been obtained for Weyl groups of
type B by Adin and Roichman [2] and for Weyl groups of type D by Biagioli and
the present author [6]. We can summarize the previous results in the following
way:

(1) W(g,t) = Z qmaj (8) maj ()
{S.T:AS)=/(T)}

(2) (Lusztig, Kraskiewicz and Weyman) = Z f *(q)fi(t)
pl
(3) (Barcelo, Reiner, Stanton) =Hilb (C[X YW /IKVXW)

Hilb (C[X, Y)7)
Hilb (C[X, YTV*7)

4) (Cohen — Macauleyness) =

(5) (Garsia — Gessel) = Z gmai (@)gmaj Gl

g€esS,
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The equality between the first and the last row of the previous sequence of
equalities follows also from the Robinson-Schensted correspondence. We do not
give an explicit description of such correspondence (and for this we refer the
reader to [18, § 7.11]) but we simply state its main properties.

THEOREM 2.5 (Robinson-Schensted correspondence). — There exists a (ex-
plicit) map o—(Q(a), P(6)) (where o € S,) with the following properties

1. Qo) and P(o) are standard tableaux with n boxes;

2. Qo) and P(o) have the same shape;

3. Des () = Des (Q(0)) and Des (¢71) = Des (P(o));

4. The map o — (Q(0), P(0)) is a bijection between S,, and the set of ordered
pairs of standard tableaux of the same shape of size n.

The main goal of this communication is to see the sequence of equalities (1)—
(5) as a 2-dimensional case of a more general result. To illustrate the proper
multivariate generalization we need a further ingredient coming from the re-
presentation theory. Given k irreducible representations 2O 2% of a finite
group W we let

det 1

d).“’,.”,i‘k’ = W Z ){;'m(w)- ) 'Xi(k) (w)

weW
)'(1) ;L(kfl) )'(k)

="t ).

J® in the (reducible) re-

presentation AV @ - -+ ® A%~V These numbers have been deeply studied in the
literature (see, i.e. [5, 9, 14]) though they do not have an explicit description such
as a combinatorial interpretation.

Some further notation is necessary. We let C[X3,...,X;] be the algebra of
polynomials in the nk variables x; ;, withi=1,...,kandj =1,...,n,ie. we use
the capital variable X; for the n-tuple of variables «;1, ... ,x;,. The group W* is
considered as a finite reflection subgroup of GL(V®*) and the group AW is the
diagonal subgroup of W*. We note that the algebra C[X7, ..., X}]is multigraded
in \*: a monomial is homogeneous of multidegree (a1, . . ., a;) if the total degree
in the variables x; 1,...,%;, is a; for alle = 1,. .. k. This multidegree is inherited
also by the algebra C[X;,..., X"V /I Y‘ since the multidegree is preserved by
the action of AW and the ideal 1 Yk is generated by homogeneous polynomials.
The following is a generalization of Theorem 2.3.

THEOREM 2.6. — We have
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Note that for k = 2 we obtain Theorem 2.3 since d; ;o = & A5, the latter
being the Kronecker symbol. By Theorem 2.6 and the appropriate general-
izations of the other results of the bidimensional case, we may write the following
multivariate extension of (1)-(5).

COROLLARY 2.1. — We have

(6) W0 S i@ g
(11, T4}

@ = > doef @) @)
(A0 o

(8) —Hilb (C[Xl, X /IKV’“)

~ Hilb (C[Xy, ..., X ]")
Hilb (C[Xq, ..., X:]")
(10) = g,

TY o0
010 =1

where the sum in (6) is on all k-tuples of standard tableaux of size n, the sum in
(7) is on all k-tuples of partitions of n, and the sum in (10) is on all k-tuples of
permutations in S, whose product is the identity element.

We refer to the polynomial W(q1,...,q;) appearing in Corollary 2.1 as the
multimahonian distribution. Considering the first and the last line of Corollary 2.1
we can deduce the existence of a multivariate Robinson-Schensted correspondence.

COROLLARY 2.2. — There exists a map @ that associates to any k-tuple of
permutations i Sy, (01, ..., o) whose ordered product is the identity, a k-tuple
of standard tableaux with n boxes satisfying the following two conditions

1. For every k-tuple of standard tableaux (Ty,...,Ty),
#Q T, ..., Tw) = dyry,..i1)-

In particular #Q YTy, . .., Ty) depends only on the shapes of the tableaus
Tl’ HR] Tk}
2. If Qoy,...,0p) = (Ty,...,Ty) then maj (T;) = maj(o;) forall i =1,... k.

3. — Refined multimahonian distributions.

From a combinatorial point of view the results appearing in the previous
section can be slightly refined. This is essentially due to a further decomposition
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of the homogeneous pieces of the coinvariant algebra that can be described in
terms of descents of permutations and descents of tableaux. This decomposition
has been originally obtained in a work of Adin, Brenti and Roichman [1] for Weyl
groups of type A and B (see also [7] for Weyl groups of type D and [3] for all
complex reflection groups).

If M is a monomial in C[X] we denote by A(M) its exponent partition, i.e. the
partition obtained by rearranging the exponents of M. We say that a polynomial is
homogeneous of degree Aifit is the sum of monomials whose exponent partitionis 4.
We note that the exponent partition is not well-defined in the coinvariant algebra.
For example, for n = 3 the monomials ac% and x93 are in the same class in the co-
invariant algebra (since x% — Xok3 = X1(X1 + X2 + X3) — (L1202 + X123 + L223)),
though they have distinct exponent partitions.

We recall the definition of the dominance order on the set of partitions of n.
We write A<y, and we say that A is smaller than x in the dominance order, if
i+ 44 <pp+ -+ foralli. We let RS}) be the subspace of RV consisting
of elements that can be represented as the sum of monomials with exponent
partition smaller than or equal to A in dominance order. We also denote by RS?)
the subspace of RV consisting of elements that can be represented as the sum of
monomials with exponent partition strictly smaller than 1 in dominance order.
The subspaces R and R? are also W-submodules of R and we denote their
quotient by

R, RO/,

The W-modules R, provide a further decomposition of the homogeneous com-
ponents of the coinvariant algebra RY.

THEOREM 3.1. — There exists an isomorphism of W-modules

~

9 R} — PR,
A=k

such that 9~ 1(R;) can be represented by homogeneous polynomials of degree J.

We can use this result to define a multidegree on the coinvariant algebra: we
simply say that an element in R}V is homogeneous of degree / if its image under
the isomorphism ¢ is in ;. We can therefore define the Hilbert polynomial of R
with respect to this degree by

Hilb R")(qs, ..., qu) = > _ (dmRy)q; - .
A

Putting ¢ = ¢1 = g2 = - - - ¢, we clearly obtain the Hilbert polynomial with re-
spect to the total degree.
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It turns out that if dim R, # 0 then 4;.; — 4; = 0,1 for all 7 and in this case
dimR, =|{cg €8S, :1 € Des (o) if and only if 7;,; — 2; = 1}|.

By means of this decomposition of the coinvariant algebra we can also de-
compose the algebra
ClXy, ..., Xl
e
and its subalgebra

AW
ClXy,..., X\ ClXy,. .., X"
I - e
in homogeneous components whose degrees are k-tuples of partitions with at

most n parts. This is because we have the canonical isomorphism
ClXy, .., Xkl pwek
T =~ (R™)™".

We can therefore consider its Hilbert polynomial

ClXy,..., X" ClXy, ..., X, W :
Hilb M © S dim M Q" ...q
I} I o)

,,,,,

In this formula the symbol @; stands for the n-tuple of variables g;1, ..., qiy-

We define the refined fake degree polynomial by f*(q1,...,qx) as the poly-
nomial whose coefficient of ¢ - - - ¢}* is the multiplicity of the representation 1 in
R,,. The following is the main result of this communication.

THEOREM 3.2. — We have

C e AW 5(1) (k)
Hilb (M><Ql,...,c2k>— S do @)@,

IKWC SO0
Given a tableau or a permutation S we define a partition «(S) by putting
u(S)); = |Des(S)N {i,...,n}.

The following result appearing in [1] describes explicitly the decomposition into
irreducibles of the W-modules R;.

THEOREM 3.3. — The multiplicity of the representation uin R is
{T tableaw : AT) = A and w(T) = 1}
and so

f;'((Il» cee 7%1) = Z Q/I(T).
{T:M(T=2}
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Thanks to this result we can deduce the following sequence of identities

S do et Q- Q0

SO
T T
= diry... oy @ - QY
Ty, Tk
- ClXy, ..., X"
=Hilb ’ @Q1,-..,Qr)

(CX1, .., X"

What happens from the point of view of permutations? The algebra of poly-
nomials in nk variables C[Xj ..., X}]is also multigraded by k-tuples of partitions
with at most » parts: we just say that a monomial is homogeneous of multidegree
GO APy if its exponent partition with respect to the variables ; 1, ... %;, is
2 for all . On this algebra we consider the actions of W* and its diagonal
subgroup AW, which are compatible with our multidegree. Using the results on
multipartite partitions in [10] we can prove the following formula for the quotient

of the Hilbert polynomials associated to the invariant algebras of AW and W*.

THEOREM 3.4. — We have

Hilb (C1X; ..., X, 1")@1, -, Qu) _
Hilb (C[X: .., X,")@1, - Q)

Z Q/lt(m) o Q;;(”k)

o op=1

Putting these results together we obtain the following sequence of (con-
jecturally) equivalent interpretations for what we call the refined multimahonian
distribution:

T1 ..... Tk
= Z d;.<1>wj</c>f;h(l>(Q1) . 'f'l(k)(Qk)
Wi
[ ClXy,... . X"
—Hilp [ ootk
1 ((C[Xh .. ,Xk]‘f)> Q- Qi)

2 Hilb (CLX; ... X", -, Q)
Hilb (C[X; ..., X ]V )Q1. ..., Q)

_ Z Q/lt(zn) . Q.Z(O'k)

opop=1

The equality marked by Zis still a conjecture since I do not have a complete
proof of it. The following conjecture is a straightforward consequence.



ON THE MULTIVARIATE ROBINSON-SCHENSTED CORRESPONDENCE 601

CONJECTURE 3.1 — There exists a map @ that associates to any k-tuple
(01, --.,01) of permutations in S, whose ordered product is the identity, a k-
tuple of standard tableaux with n boxes satisfying the following two conditions:

1. For every k-tuple of tableaux (T4, ..., Ty),
#Q NI, ..., Tw) = dyry..xrp-
In particular it depends only on the shapes of the tableauwax Ty, . .., Tk,
2. If Qoy,...,0p) = (T1,...,Ty) then Des (T;) =Des (0;) forall i=1,... k.

The classical Robinson-Schensted correspondence provides a bijective proof
of this Corollary in the case k = 2.

We also think that the correspondence @ of Conjecture 3.1 should be well-
behaved with respect to cyclic permutations of the arguments in the sense that if
Q(Gl, e ,Gk) = (Tl, ceey Tk) then Q(t‘)’z7 PN ,ak,al) = (Tg7 ceey Tk, Tl)
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