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The Quantitative Isoperimetric Inequality for
Planar Convex Domains (*)

CARLO NITSCH

Abstract. — We prove that among all the convex bounded domains in R* having an as-
signed Fraenkel asymmetry index, there exists only one convex set (up to a simi-
larity) which minimizes the isoperimetric deficit. We show how to construct this set.
The result can be read as a sharp improvement of the isoperimetric inequality for
convex planar domains.

1. — Introduction.

The classical isoperimetric inequality in the plane states that, among all the
subsets of R? of prescribed measure, the disk has the smallest perimeter,
namely

PE) > 2(7z|E'|)%7 with equality if and only if ¥ is a disk.

Here |E| and P(E) denote, as usual, the measure and the perimeter of the
set K.

It is almost impossible to give exhaustive references concerning the iso-
perimetric inequality, therefore we refer the reader to some pioneering papers
[4, 7,19, 21, 22], to the original paper by De Giorgi [10] in the general framework
of finite perimeter sets in R”, to the reviews [15, 27] and to the books [8, 9].

If we define the isoperimetric deficit of a set £ by

PE)

AP(E) = -
2(n|E

the isoperimetric inequality becomes

AP(E) > 0, with equality if and only if £ is a disk.

(*) Comunicazione tenuta a Bari il 26 settembre 2007 in occasione del XVIII Congresso
dell’'Unione Matematica Italiana.
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There exists a special class of inequalities which have been first studied by
Bonnesen [5, 6] and imply the classical isoperimetric inequality. Nowadays they
are called Bonnesen—style isoperimetric inequalities (see [8, 23]) and in general
they can be represented in the form

AP(E) > F(B),

where the function F' is nonnegative, vanishes only on the disks, and it measures
how much £ is far from being a disk. In principle there are many different kinds
of functions F' that we may look for, but here we are interested in those functions
whose dependence on the set £ is only through the so—called Fraenkel asym-
metry index, i.e.

. |E\ Dp(x)|
1.1 a(F) =min ————
(1) weR? |E|
where Dg(x) is the disk centered at x and having the same measure as E.
In the framework of planar convex domains Hall and Hayman [17] proved a
Bonnesen-style inequality equivalent to
v

2(4 — )

(12) AP(E) > awBE)? — coa(E)?,
valid for some unknown nonnegative constant c.

For completeness we mention that, in the last two decades, Bonnesen—style
inequalities were found in higher dimensions and for more general sets, as well
as in the anisotropic case, for example in [11, 12, 13, 14, 16]. In particular, Hall
[16] proved that the isoperimeric deficit of any smooth open set is bounded from
below by a constant times a certain power of the Fraenkel asymmetry index. The
fact that the optimal power is 2 (regardeless the dimension) has been recently
proved in [14].

In the present paper we give the sharp Bonnesen—style inequality for planar
convex domains. Since there exists an optimal maximal function G such that it
holds

(13) APE) > G(a(E),

we show how, for any 0 < g < 1, it is possible to compute G(ay). In particular, we
work out the analytic expression of the optimal set: the unique (up to a simi-
larity) convex set E, with asymmetry index a(E) = ay, which achieves the
equality sign in (1.3). Our result is based on a symmetrization technique. More
precisely, we reshape a given planar convex set keeping, step by step, its mea-
sure and its asymmetry index fixed and shortening the perimeter. The proce-
dure finally supplies with the family of optimal sets.

This paper is part of a joint work with Angelo Alvino and Vincenzo Ferone;
some of the proofs are omitted and can be found in [1].
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2. — Main statement.

In order to formulate our main statement we begin by defining the family of
optimal sets. We say that a set S belongs to the family & if the following prop-
erties hold:

e S is 2-symmetric i.e.: symmetric with respect to two orthogonal axes;
e S has a smooth C* boundary made of four arcs {a;},;, of circle two of
which can eventually degenerate in parallel segments;
S\D . . .
o a(S) = %, D being the disk having the same measure of S and centered
at the intersection of the axes of symmetry of S;
e whenever a; is a proper arc of circle (for some 1 <17 < 4) then it does not

cross OD, namely either a; € D or a; C R? \D.

For the seek of completeness we give an explicit analytic expression of the
family &. If the symmetry axes are used as reference axes in (&, 7)-plane, up to a
similarity, such a family can be described as a one—parameter family {H s} s /1)
where |Hg| == and the parameter & denotes the angular variable of the
interserction of OHy with 0D in the first quadrant of (&,#)-plane. When
0 < & < arctan (n/4) the part of the set Hg which belongs to the first quadrant is
described as (see Figure 1)

H&:{(@’?)GH&ZfZO» ’720}

2
B 2 7 cos” &
“{emertioce<

+5ind,0 <5 < @},

Fig. 1. — The set Hy for 0 < J < arctan (r/4).
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where

sin 4 0<E<=

1=

2 g\ 2 2 2
\/sin219— <f_cos 'S) 7 Cos qﬂ<é<ncos 'S—i—sin&.

sin 9 4 sind ~ 4 sind

In this case we have:

~ (1-sind)?
APH) = =550 g
o(H) _n- 219—2nsim9 cosd

We observe explicitly that, when 4 — 0, Hy degenerates into a segment and we
have:

lim AP(H 5) = + oo
4—0
lim a(H ) =1.
9—0

When arctan (n/4) < d < /4 the part of the set Hgy which belongs to the first
quadrant is bounded by arcs of circumferences which meet at the point

Fig. 2. — The set Hy for arctan (n/4) < 4 < n/4.
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(cos 9, sin9) in such a way that OH is of class C'. This means that the radii of
such circumferences passing through the point ( cos 4, sin J) belong to the same
straight line which forms an angle « with #-axis (see Figure 2).

For this type of domains the isoperimetric deficit is given by:

2 ((sind /n cosd 7
(2.1) AP(H ) = 7 ((cosx (§ B ac) + sinx x) B §>’

while the Fraenkel asymmetry is given by:

4 (sin? 9 m . .
(2.2) a(Hyg) = - (cosz - (é — x — sinx cos oc) — 9+ sind cos z9> .
The condition |Hg| = = gives a relation between « and &

2. —
(23) cos2x

2

sin® & (n ) cos? 7990 (cosd — tanx sin 9’ oz
Sil’l2 P tanx T2

As a result of a straightforward but very tedious calculation both 4AP(H 4) and
a(H g) happen to be continuous decreasing functions of § and therefore the fol-
lowing property holds.

PROPOSITION 2.1. — For each 0 <t < 1, up to a similarity, there exists one
and only one set S; € & such that a(S;) = t. Moreover, whenever 0 < t; < ty < 1,
then AP(Stl) < AP(SQ)

Therefore we can parametrize the family © by the Fraenkel asymmetry in-
dex or the isoperimetric deficit.
The statement of our main result follows.

THEOREM 2.1. — Every convex set Q € R? satisfies
(2.4) AP(Q) > AP(Syq)),

where the equality holds if and only if Q € &.

By using the monotonicity of 4P(H ) and a(H 4) with respect to &4 we deduce
the monotonicity of the function G in (1.3) but, regretfully, it seems impossible to
write its expression in an elementary form. Nevertheless inequality (1.2) can be

carried out by an asymptotic expantion of a(H 4) and 4AP(H ) in the limit as § — E.
In particular it is quite easy to deduce from (2.1), (2.2) and (2.3) that

m AP(Hg) =

s-% a(Hg? 24 —m)’

and that the constant ¢, in (1.2) has to be positive.
Finally, a different understanding of Theorem (2.1) is
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COROLLARY 2.1. — For any given 0 < APy < + oo there exists 0 < t < 1 such
that, for all convex sets Q C RZ with AP(Q) = AP, we have

a(Q) < a(Sp)
when
AP(S;) = AP,

Therefore, taking into account the meaning of the asymmetry index, our
result provides a sharp way to control how much a convex set differs from the
disk having the same measure in terms of its isoperimetric deficit.

3. — Rearrangements and circular symmetrization.

Given a coordinate system (¢, ) in R%, as usual the polar coordinates will be
denoted by (r,0) with » > 0 and 60 € [0,2x], such that @ = 0 points in the po-
sitive direction of the ¢-axis. According to Kawohl [20], a compact domain
Q c R? in polar coordinates can be Steiner symmetrized with respect to the
angular coordinate 6 to obtain a set Q*, that is symmetric in 6 and that he calls
the circular symmetrized of Q. If we deal with a smooth and starshaped set
with respect to the origin O, then the circular symmetrization can be also
obtained by the Schwarz symmetrization of its radial function p(), namely the
function which represents in polar coordinates the boundary of such a set.
From well-known properties of the symmetrization we get |Q*| = |Q| and
|0Q7| <102

Our goal is to introduce a new kind of symmetrization which somehow gen-
eralizes the circular one. Let us consider a smooth and bounded set Q c R,
starshaped with respect to the origin O, and two directions v; and v,. We fix a
coordinate system such that in polar coordinates & = 0 points in the direction of
v; and let us denote by 0 € [0, 2x] the direction of vs. Thereafter we consider the
restriction p;(0) of p(6) to the set [0, 0] and the restriction po(0) of p(0) to the set
[6,2x], and we define
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Here by f* and f; we denote, respectively, the symmetric decreasing and
increasing rearragements of f (see [2, 3, 18, 26]). Roughly speaking, we are ac-
tually considering the rearragement of p obtained by the symmetric rearrage-
ments of its restrictions p; and ps.

Let ©"" and Q,,,, be the two open sets defined respectively by the interior
points of {(r,0): 0 <r <p@)} and {(r,0):0 <r <p(@}. Obviously |Q""%| =
|2,,,,] = |2| but in general p and p are discontinuous at both 0 and 6, a condition
which may increase the perimeter of the symmetrized set. The rest of the section
is devoted to establish sufficient conditions such that either |00""| < |0Q| or
102,,,,| < 1022,

We first introduce the following definition

DEFINITION 3.1 (The set A(a,b)). — We say that a function g belongs to
Ala, b) if
e ¢ 1is a nonnegative Lipschitz continuous function on [a, b];
o #{g =1t} > 2 whenever min g(x) <t < max g(x).
x€la,b] wela,b]

The main result of this section follows.

LEMMA 3.1. — Let Q be an open starshaped set with respect to O, having a
Lipschitz continuous radial f_unction /3(0). Let vy, v; and 0 be defined as be]_‘ore. If
the restriction of p(0) to (0,0) and (6,2n) belong, respectively, to A(0,0) and

AB,27), and min p= min p ( max pd) = max p(H)), then p(6) ( p(H))
0<(0.6) 0<(6.2m) 0<(0.0) 00

Lipschitz continuous, and [02""| < |02 (|8QV1‘,2\ < 10Q)).

Lemma 3.1 is a consequence of a well known result involving symmetric re-
arragements [25].

LeEMMA 3.2. — If a function g belongs to A(a,b) then

a+b a+b

f g(syds = f g(syds = f g:(s)°ds,

_ath
2

VG + g¥'(s)ds

_atb
2

fb V9GP +¢/(s)ds >

b

z

—

atb
2

va%w®%>f g5 + g,/ (9)ds.

n+b

and
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4. — Preliminary results.

Let 2 be an open, bounded, convex subset of IR2, and let D be a circle of radius

1
Q\2 .
R= <|_7z|) that achieves the index of asymmetry of 2, i.e.:
D 2\ D] = min |2\ D@
xeR

We refer to the last condition as the optimality condition for D with respect to Q.

From now on we shall use as the origin of the coordinate system in R? the center

O of D. Since Qis starshaped with respect to O (it is easy to check that O € @, and

a convex set is starshaped with respect to any internal point) there exists a one to
(0]

one correspondence @ : 0D — 0Q such that, for any x € 9D, we have é—l = %

Throughout the paper we shall use the following notation (see Figure 3):

A=0DNg;
B=0D\ &
G=0DNoR=0D\(AUB);
a; (1€ I={1,2,} CN) are the connected components of A4;
B (ke & ={1,2,} CN) are the connected components of B;
e L denotes the arclength of a curve in R%;
e T, is the line containing O and orthogonal to the direction v. As T, splits R
in two we denote by P, and P, the two open half planes (v belongs to P;);
e [1, is the projection operator over T, .

Fig. 3. — The set Q and the disk D. We split 0D in three subsets: A = 9D N,
B=0D\Qand G=0DNJR=09D\ (AU B)
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Let us now define h,, = max{|®(x)| : ¥ € a;} and dp, = min{|P(x)| : € f};
we shall assume without loss of generality that, for every ¢ € J and k € &,

(4.2.1) hy, = max hai,
) j>i

and

(4.2.ﬁ) Ol/g]C = 171121;1 d/;].;

somehow we assume that a; and f;, are ordered according to a “descending height
order” in the radial direction. The existence of a maximum and a minimum in
(4.2.i) and (4.2.ii) is a consequence of the fact that Q is convex. Indeed, for any
C > 0 there exists only a finite number of indexes j such that #,, > R + C and a
finite number of j such that dg, <R — C.
By using the convexity of £ and the optimality condition of D with respect to
Q it is possible to prove the following Lemma.
LEMMA 4.1. — Let v be any direction in R® then
LUT,(ANP))) < LUT(ANP;)) + LUT(GNP)),
and
LUI,(BNP)) < LUI(BNP,))+ LUI,(GnNP,)).
The previous relations between the lenght of the projections of A, B and G

over an arbitrary plane lead to a useful relation between the archlengths.

LEMMA 4.2. — Let

1
I= max{m/?xL(/?kLzzk:L(ﬂk)}

and

J = max{mlaxL(ai)é;L(ai)},

then I +J < nR.

5. — Proof of the main result.

We are ready to give a sketch of the proof of Theorem (2.1) by providing a
symmetrization algorithm. The characterization of the equality case in (2.4) is
omitted and we refer the interested reader to [1].
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For the reader convenience we divide the proof in three steps. At each step
the procedure preserves the Fraenkel asymmetry while it not increases the
isoperimetric deficit. In Step—1 we reduce a given bounded convex set to a new
set (not necessarly convex) having two orthogonal axes of symmetry. In Step—2
we reshape the set in order to have a set with the boundary made only of arcs of
circle but not necessarily convex neither smooth. Finally in Step—3 we show that
among all the sets of fixed asymmetry index given in Step—2, the optimal one (the
set having the smallest possible isoperimetric deficit) is the unique (up to a si-
milarity) smooth set.

5.1 — Step-1 (Reduction to a 2-symmetric set).

Let us show how to reduce any given convex set Q to one having two ortho-
gonal axes of symmetry, exactly the same measure and Fraenkel asymmetry
index of Q but a perimeter not greater than P(Q).

We consider now two directions v; and ve and the two half-lines originating
from O and containing them which split the plane in two angles that we denote by
A; and Az. We fix v; and vy according to the occurrence of one of the following
cases:

Al for all ¢ € J it holds L(a;) < > L(a));
J#
A2 there exists ¢ € 3 such that L(a;) > 3 L(a)).
J#

In the first case we fix v; and v such that a; C Ay, a2 C As and LA N A;) =
L(A N Ag). In the second case we choose v; and vz such that a; = AN A;.

In a similar way if x; and x, are two directions and the two half-lines ori-
ginating from the origin and containing them split the plane in two angles de-
noted by B; and Bg, we can always fix 4, and u, according to the occurrence of
one of the following cases:

B1 forall k € t it holds L(8,) < 3 L(B,);
) ik
B2 there exists k € § such that L(8;) > > L()).
J#k
In the first case we fix 14 and w, such that f; C By, s C Be and L(BN By) =
L(B N Bp). In the second case we choose x; and u, such that f; = BN B;.
Thereafter we consider Q" =DUQ and Q° =DNQ and their circular
symmetrizations that we denote respectively Q"* and Q,,, (see Figure 4(b) and
Figure 4(c)).

REMARK 5.1. — Let us use the same notation as in section 3, and suppose that
the coordinate axes are chosen in such a way that v; and v2 correspond in polar
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(a)
QNnD
H1
(b) "
()
l vy M2
QVWQ QMHQ
15}
(d) H 22
()
V2
" Al .

Fig. 4. — The symmetrizzation procedure carring Q to £;.
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coordinates respectively to = 0 and 0 = 0. The radial function of the set Q" is
max{p(0), R}, and from the definition of v; and vy we notice that max{p(9), R}
belongs to both A(0, 6) and A8, 27). Similarly, the radial function of the set Q™ is
min{p(0), R}. In such a case we assume that x; and u, correspond in polar co-
ordinates respectively to 0 and 0, then the definition of y; and u, implies that
min{p(0), R} belongs to both 4(0, #) and A(0, 2x).

By definition the set Q' is symmetric with respect to the axis which lays in
the direction v; + vo, while the set 12 is symmetric with respect to the axis
which lays in the direction z; + 1,. We can rotate the two sets around the point
O until their symmetry axes happen to be mutually orthogonal (see Figure 4(d)
and Figure 4(e)). From now on we use these orthogonal axes as a reference
system (&, ).

We merge together the sets Q"™ and Q,, by considering the set
Qy =@\ D)U Q,,,, (see Figure 4(f)). The following result holds.

142

LEMMA 5.1. — Qy has the following properties:

1. Qq is starshaped;
2. [Qo] = [Qf;

3. |20\ D| =12\ D},
4. |0Q| < 02|

After the above operation, the set € is such that the part of the boundary of
D given by 0D \ 09 consists at most of four arcs which we denote by a1, as, b1, by
such that L(a;) =LANA), L(ag) =LANA), L) =LMBNB;) and
L(bs) = L(B N Bz). Without loss of generality, we can assume that a; belongs to
the halfplane & > 0. If we are not considering the trivial case Q = D, then a; # 0
and b; # 0. One of the following occurrence certainly happens:

(01) Qa2 7’é @ and b2 75 @;
(02) az = 0 and by # 0;
(03) az = 0 and by = 0;
(04) ag # 0 and by = 0.

In any case
amUaz =0DNQy,  Llay) > L(ag)
biUby =08D\Q,  L(by) > L(by).

Each one of the arcs a1, ag is symmetric with respect to the & axis, while b; and by

are symmetric with respect to the 5 axis. Let d = R sin <L2(?;)> and let [; and l»
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be two lines orthogonal to # and having the same distance d from the origin O
(see Figure 4(f)). We denote by 2, the open subset of R? between these two lines
and by 2, the open set R? \ 2in. Moreover we denote by C the smallest angle
with vertex in the origin, containing a,, and by —C its symmetric with respect to
the #-axis. The following result holds.

LEMMA 5.2. — The lines I, and ly intersect OD in four points which belong
to 9Q. Moreover the sets Qy\ D and D\ Qy are respectively subset of X,
and Xy

We denote by € the Steiner symmetrization of Q, with respect to both axes &
and 7 (see Figure 4(g)). Lemma (5.1)—(5.2) are both fulfilled when replacing
by € with the same lines /; and l; defined above. The set £} is the desired 2-
symmetric set which concludes this Step.

REMARK 5.2. — We came out with the set Qf by making a lots of efforts since,
as we claimed in the beginning of the section, we were looking for an algorithm
which leaves the asymmetry index unchanged during the process of symme-
trization. Indeed, by using Lemma 5.1 and Lemma 5.2, it is possible to show that
the disk D is still the optimal one, namely

2\ D

W =g
0

The importance of the last condition is evident, nevertheless, in order to get to
the next Step, we do not need to prove it explicitly.

5.2 — Step-2. Reduction to a 2-symmetric set with the boundary made of arcs

DEFINITION 5.1 (The family 3). — We say that E belongs to the family 3(ag, m)
(for some m > 0 and 0 < ay < 1) if, up to a rototranslation;

(al) E is star shaped with respect to O;
(a2) K is 2-symmetric;

(a3) |E| =m;
(a41) |E\ D| = ao|E|, where D is the disk having center at O and radius
(B /7

(ab) using the same notation of the previous paragraph there exist two lines
Iy and lg, orthogonal to n axis and having the same distance from O, such that
they intersect OD in four points which also belong to OE. Moreover the sets E \ D
and D\ E are respectively subset of X, and Xyy;.



586 CARLO NITSCH

REMARK 5.3. — It is important to observe that conditions (al)—(a5) yield

\E\ D

a(l) = ;
1251

but it is not necessary to prove this assertion.

The set € obtained in Step—1 belongs to the family J(a(®), |2|) when the
lines /; and I, are defined as in the previous paragraph, and 0D \ 02 is made of
four ares dy, dg, e1, e2 such that:

L(dy) = L(dy),
L(e1) = L(ez),
dl ) d2 - fin»

erUes C foub

Let us consider the four points given by the intersection of {; and ly with dD.
They are placed on the vertex of a rectangle and we denote them by P;,
1 =1,...,4, assuming that starting from the upper left corner they are placed in
the clockwise ordered. It is trivial to check that P; € 9, for all 1 <7 < 4. We
look for a set belonging to 3(a(Q),|2|), having minimum perimeter, with the
further constraint that in (a5) of Definition 5.1 the lines /; and Iy are fixed. This
implies in particular that {P;, Py, P3, P4} belong to its boundary. Because of the
symmetry the problem can be solved by finding the optimal shape of the
boundary, namely by looking for two curves g; and gs having the smallest pos-
sible length and satisfying the following properties:

(b1) g1 connects P; and Ps;

(bZ) g C Zout ﬁD

(b3) the region between 0D N X,,,; and g; has measure equal to = a(.Q)\Q\
(b4) g2 connects Py and Ps;

(05) g2 C X3 \ D;

(b6) the region between 0D N X;, and g2 has measure equal to = a(Q)\Q\

The set Q" € 3(a(Q),]2]) having g1 and gs as part of the boundary (the rest
of the boundary can be deduced using its symmetry) has the desired prop-
erties. A simple variational argument says that g; has to be an arc of cir-
cumference. As regards g2, the same argument can be applied if a(Q) is small
enough, namely,

‘l
(5.1) a(@) < 1 (nd2 +2d 1l dz —2 <@>Z arcsin Q) .
|2 T T r
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If condition (5.1) is not satisfied, we can find g using an argument contained
in [24, Th 3.32]. Indeed Q" N X}, is the convex hull of two balls of radius g In

other words g is the only C' curve given by the union of an arc of circumference
with two segments k; and kg laying respectively on /; and ls.

5.3 — Step-3. Reduction to a smooth convex set.

In this paraagraph we give a sketch of the last Step of the symmetrization
procedure: among all the sets in 3(a(Q), |2|) the set S, achieves the minimum
perimeter.

We begin by proving that, for any m > 0 and 0 < gy < 1, there exists a set,
the optimal set, having minimum perimeter among all the sets belonging to
3(ag, m). If we denote by 3%(ag, m) the family {E € 3(ag, m) : E = E}, a trivial
consequence of the previous paragraphs is that we achieve our goal if we can
prove that there exists a set having minimum perimeter in 3“(ag, m).

The symmetry allows us to restrict our analysis to the part of the plane (&, #)
with &, > 0; we observe that any element in 3%(ag, m) is uniquely determined by

the point P = (50,,/2753) intersection of its boundary with 0D. A

straightforward calculation shows that 3%(ag,m) is a one parameter family of

1
sets. Indeed, if 0 < & < (%)2 is chosen such that

(5.2) ag = % (2 (%) %arcsin (E (%f) —2¢ % — 52 ),

1
for any given & < & < (@)2’ there exists only one set E;: € 3“(ag,m) whose

boundary passes through the point P = (50, \ /@ — ég) and vice versa. Since
T

the isoperimetric deficit A4P(E,) changes continuously with respect to &, and

lim AP(E¢,) = + oo,
G—(%)

we can conclude that, among the sets belonging to 3%(ag, m), there exists at least
one having minimum perimeter.

Now, it is not difficult to see that S,, belongs to 3"(ag,7) and that, up to a
similarity, it is the unique smooth set (with C! boundary) in 3%(ag, m). It is finally
possible to provide a simple variational argument to show that a non smooth set
in 3%ag, m) can not be the optimal set.
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