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Bollettino U. M. 1.
(9) I (2008), 525-538

Varieties of Algebras of Polynomial Growth (*)

DANIELA LA MATTINA

Abstract. — Let V be a proper variety of associative algebras over a field F of char-
acteristic zero. It is well-known that V can have polynomial or exponential growth
and here we present some classification results of varieties of polynomial growth. In
particular we classify all subvarieties of the varieties of almost polynomial growth,
i.e., the subvarieties of var(G) and var(UTy), where G is the Grassmann algebra and
UTs is the algebra of 2 x 2 upper triangular matrices.

1. — Introduction.

Let F be a field of characteristic zero and let F(X) be the free associative
algebra on a countable set X over F.

If Vis a variety of associative algebras over F', we denote by Id (V) the T-ideal
of F(X) associated to V. Recall that Id (V) is a two-sided ideal invariant under all
endomorphisms of F'(X) and consists of the polynomial identities satisfied by the
algebras of V. If A is a generating algebra for the variety, we write V = var (4)
and Id (V) = Id (4).

An important invariant of a variety is given by its growth which is defined as
follows. If B is the relatively free algebra of countable rank of the variety V, then
its n-th codimension ¢, (V) is defined as the dimension of its multilinear part in
standard generators. Then the growth of the variety V is the growth of the se-
quence ¢,(V),n =1,2,.... We write also ¢,(V) = ¢,(A) if A generates V.

It is well known (see [18]) that if A satisfies some non-trivial polynomial
identity and, so, V = var (4) is a proper variety, then the sequence of codimen-
sions of V is exponentially bounded, i.e., there exist constants a,a > 0 such that
cx(V) < aa” for all n. Kemer in [13, 14] characterized those varieties with a
polynomially bounded codimension sequence. From his description it follows
that there exists no variety with intermediate growth of the codimensions be-
tween polynomial and exponential, i.e, either ¢, (V) is polynomially bounded or
c,(V) grows exponentially.

(*) Comunicazione tenuta a Bari il 26 settembre 2007 in occasione del XVIII Congresso
dell’'Unione Matematica Italiana.
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Moreover, if ¢,(V) is polynomially bounded, i.e., there exist a,t such that
c.(V) < ant, then it was proved in [2] that c,(V) = qn* +O0W* 1) ~ gnt,
n — oo, q € Q.

For general PI-algebras the exponential rate of growth was computed in [7]
and [8] and it turns out to be a non-negative integer.

In case the codimensions are polynomially bounded, Kemer in [14] gave the
following characterization. Let G be the infinite dimensional Grassmann algebra
over F' and let UTs be the algebra of 2 x 2 upper triangular matrices. Then
V), m=1,2,..., is polynomially bounded if and only if G, UTo ¢ V.

Hence var (G) and var (UT:) are the only varieties of almost polynomial
growth, ie., they grow exponentially but any proper subvariety grows poly-
nomially.

Recently in [16] the author determined a complete list of finite dimensional
algebras generating the subvarieties of var (G) and var (UT5).

A classification of varieties of polynomial growth was started in [5] and in [6].
More precisely the authors gave a complete list of finite dimensional algebras
generating varieties of at most linear growth and, in the unitary case, of at most
cubic growth.

The purpose of this paper is to present in a complete fashion these results
regarding the classification of varieties of polynomially codimension growth.

2. — Codimensions and cocharacters.

Throughout we shall denote by F a field of characteristic zero and by
V = var (4) a variety of associative algebras over F' generated by A. Let F'(X)
denote the free associative algebra on a countable set X = {wx1,%2,...} over F.

Recall that a polynomial f(x1,...,x,) € F(X) is a polynomial identity for A
and we write f = 0 if f(a4,...,a,) =0for all a4,...,a, € A. Then

IdA) = {f e F(X)| f=00nA}

is a T-ideal of F(X), i.e., an ideal invariant under all endomorphisms of F'(X). It is
well known that in characteristic zero Id(A) is completely determined by its
multilinear polynomials and we denote by V,, = spanp{®;q) - - - €sm) | 0 € S, } the
vector space of multilinear polynomials in the variables x, ..., x,. The non-ne-
gative integer

. Vi
‘A) — _m
cn(A) dlmFVnﬂld(A)
is called the n-th codimension of A.
In case A is an algebra with 1, Id (A) is completely determined by its multi-
linear proper polynomials (see for instance [3]).
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Recall that f(xy,...,x,) € V,, is a proper polynomial if it is a linear combi-
nation of products of (long) Lie commutators [x;,, ..., ;]
We denote by I',, the subspace of V,, of proper polynomials in x1, ... ,,, we

put also Iy = span{1}. Then, the sequence of proper codimensions is defined as
h(A) = dim s, n =0,1,2, ...

For a unitary algebra A, the relation between ordinary codimensions and
proper codimensions (see for instance [4]), is given by the formula

n

(1) Cn@)ZZ(?)C’;(A)n:l,Z“..

=0

In particular, if A is a unitary algebra whose sequence of codimensions is
polynomially bounded, then ¢,(4) = gn* +--- is a polynomial with rational
coefficients ([2], [6]).

One of the main tool in the study of the T-ideals is provided by the re-
presentation theory of the symmetric group. Recall that the symmetric group S,
acts on the space V,, by permuting the variables; if ¢ € S, and f(x1,...,x,) € Vi,
af (@1, ...,%n) =f@sq), - - -, %) This action is Very useful since T-ideals are
1nvarlant under renaming of the variables. Hence d( - becomes an S,-module.
Similarly 3 Id( - is an S,-module under the 1nduced action. We denote by yx,,(4)
and yh(A) the characters of the S,-modules 8 nld( ) and ® mld( ok respectively.
They are called the n-th cocharacter and the n-th proper cocharacter of A.

By complete reducibility y,,(4) and x5(4) decompose into irreducibles and let

Xn(A) = Z M /ﬁ(A) = Z m;)()n

n n

where y; is the irreducible S, -character associated to the partition 1 and m,, m/,
are the corresponding multiplicities. We refer the reader to [1] for an account of
the relations between y,,(4) and 1h(A).

Another tool used in the study of the T-ideals is the representation theory of
the general linear group.

Let F,,(X) = F(x1,...,%y) denote the free associative algebra in m variables
andlet U = spang {1, ..., %y }. The group GL(U) = GL,, acts naturally on the left
on the space U and we can extend this action diagonally to get an action on F,,, (X).

The space F,,(X) N Id (A) is invariant under this action, hence

Fp(X)

Fuld) = Fo(X) N1d(A)

inherits a structure of left GL,,-module. If '}, denotes the space of homogeneous
polynomials of degree % in the variables x, ..., %y,

n

F
m m
Fu@) = Fr n1IdA)

m
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is a GL,,-submodule of F,,(A) whose character is denoted by v, (A). Write
l//n(A) = me/;.

An
where y is the irreducible GL,,-character associated to the partition A and m, is
the corresponding multiplicity.

The S,,-module structure of V,,/(V,, N 1d (4)) and the GL,,-module structure
of I (A) are related by the following: if y,(A) = > m;y; is the decomposition of
the n-th cocharacter of A then m,; = m,, for all 1+ n whose corresponding
diagram has height at most m (see for instance [3]).

It is also well known that any irreducible submodule of F7;,(A) corresponding
to / is generated by a non-zero polynomial f;, called highest weight vector, of the
form

A
= [ISthw @ @m0 > aso,
i-1

oesS,

where a, € F, the right action of S,, on F'.(A) is defined by place permutation,
hi(2) is the height of the i-th column of the diagram of 1 and
Str(xq,...,2.) = Zresr (SgN T)X+(1) - - - Ty 1S the standard polynomial of degree 7.

3. — Algebras with 1 of polynomial codimension growth.

Throughout this section we shall denote by A a unitary algebra whose se-
quence of codimensions ¢,(A), n = 1,2,..., is polynomially bounded. Hence,

k
@) ) =) (7;) H(A) ~ gn
=

is a polynomial of degree k, for some k& > 0, with rational coefficients.
In [4] it was proved that in case k > 1 the leading coefficient ¢ is a rational
number satisfying the inequality

k
) 2*1)7 L koo
=2 :

where e = 2.71.. .. In the non-unitary case, for any ¢ € Q there exists an algebra
A such that ¢, (A) = gn* for a suitable k.
For k odd the lowest bound was improved in [6]. The authors proved that if
cu(A) = qn*, for some odd integer k > 1 and rational number ¢, then ¢ > kk;,l
Moreover, they proved that for any & the highest and the lowest bound of ¢
are actually reached.
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In this section we exhibit PI-algebras realizing the smallest and the largest
value of q (see for instance [6]).

We start by constructing an algebra of triangular matrices realizing the
largest value of ¢q. Here the ¢;’s denote the usual matrix units.

DEFINITION 1. — Let

Up=UpF) = {aE+ Y ayey|a,a€F},

1<i<j<k

where E = Ky, denotes the identity k x k matrix.

Inwhat follows Lie commutators are left-normed, i.e., [[- - ‘[, 22], 23], .. .], 2] =
[%1,...,2;]). The next theorem shows that the algebra Uy has the largest possible
polynomial growth of degree k — 1, namely c,(U;) ~ gn*~! as n — oo, where

_ k-1 (-1y
=2 i

THEOREM 2 [6, Theorem 3.1]. — Let F' be an infinite field. Then
1) a basts of the identities of Uy, is given by all products of commutators of
total degree k

(4) [1, ... 795a1][90a1+17 cee ’xaz] T [xar,1+17 cee axar]

with a, = kin case k is even, and by the polynomials in (4) plus the polynomial of
degree k + 1

(1, 2] - - - [k, 1]

n case k is odd.
2)

k-1
n!
cn(Uk) = E m 0; ~ ek—lnk_l, n — 00,
j=0 ’

where 0; = 27‘:0(*7—,1)/ ,fori e IN.

The relevance of Uy, is shown in the following.

THEOREM 3. — Let A be a unitary algebra over an infinite field F' such that
cu(A) =~ qn¥, n — co. Then 1d(A) D 1d(Uj4).

PrOOF. — By (2) we have that c¢,(4) = (})cl(4)+--- and C£+i(A) =0,
1 > 1. This says that I'y; = [y N 1d(A), ie., I't; C Id(A), © > 0. Since by the
previous theorem Id(Ujy,;) is generated by [, and eventually by
[21, 2] - - [k, X1 1] € [ jae, we get that Id(Uy.1) C Id(A). O
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We now turn to the problem of constructing algebras with 1 realizing the
minimal pos51ble value for q.

Let E1 = Zl llel ir1 € Uy denote the diagonal just above the main dia-
gonal of Uy.

DEFINITION 4. — Fork > 2 let
Nk = Span{E7E17E%7 ce 7E11€_2; €12,€13, . - . aelk} g Uk

where E denotes the identity k x k matrix.

Let also Gg;, denote the Grassmann algebra with 1 on a 2k-dimensional vector
space over F'. Recall that

G2k = <1,61, co, 69 ‘ €6 = _e]el>

The following two results characterizing the polynomial identities and the co-
dimensions of N and Gy, will show that the smallest value of q is realized by
N1 in case k is odd and by Gy in case k is even.

THEOREM 5 [6, Theorem 3.4]. — Let k > 3 and let F' be an infinite field. Then
1) A basis of the identities of Ny, is given by the polynomials

[e1, ... 2], [, 22]les, 24].

2) (N =1+ 53 G- D(1) ~ =gl n— oo,

THEOREM 6 [6, Theorem 3.5]. — Let F' be an infinite field. Then
1) A basis of the identities of Gy s given by the polynomials

(1, 2, @3], [1, ] - - [Cop41, Tory2]-

2)
J

Cn(GZk) Z( ) (Zk)l 2k’ n — 00.

J=0

In the sequel we shall use the following notation.

DEFINITION 7. — Let A and B be algebras. We say that A is PI-equivalent to B
and we write A ~p; B if 1d (A) = Id (B).

We remark that
ifk:ZthenNk: Uk NPIF;
if k = 8 then N, = Uj, ~pr Gg;
if k =4 then Ny, ~p; Uy;

if k > 4 then var (Nk)gévar(Uk).
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Given polynomials fi, . ..,f, € F(X), let us denote by (fi,...,fu) the T-ideal
generated by fi,...,fu-

Recall that by [17], Id(UT2) = ([x1,x2][xs, 241}y and by [15], Id(G) =
([1, 22, 23])p. Hence, for any k > 1, Nj, € var (UT?) and Gy, € var (G).

4. — Characterizing N, and Gy;.

Recall that if V is a variety of algebras then ¢, (V) = ¢,,(A), where V = var (4)
and the growth of V is the growth of the codimensions of V. We start by making
the following.

DEFINITION 8. — A variety V is minimal of polynomial growth if ¢, (V) ~ qn*
for some k>1,q >0, and for any proper subvariety UGV we have that
) =~ gnt with t < k.

We shall prove that Gg. and N;, generate minimal subvarieties of the variety
generated by G or UTs.
We start with the following.

LEMMA 9 [16, Lemma 4.3]. — Let A € var(UTs) be an algebra with 1. If
ci(A) = 0, for some k > 2, then ch,(A) = 0 for all m > k.

Recall that if A = F + J is a finite dimensional algebra over F, where J is the
Jacobson radical of A, then J can be decomposed into the direct sum of F-bi-
modules (see for instance [10]), i.e.,J = Joo + Jo1 + J10 + J11 where for i € {0,1},
Jir is a left faithful module or a 0-left module according as i =1 or ¢ =0, re-
spectively. Similarly, J;; is a right faithful module or a 0-right module according
as k=1 or k = 0, respectively. Moreover, for ¢,k,l,m € {0,1}, JiJ i C Opidim

where dy; is the Kronecker delta and J1; = F'N for some nilpotent subalgebra N
of A commuting with F'.

LEMMA 10. — Let A = F + J be an algebra with J = J1g + Jo1 + J11 + Joo- If
A satisfies the identity [x1,...,x.] =0, for some v > 2, then J19 = Jo1 = 0 and
A=F+J1)®Jw, a direct sum of algebras.

Proor. — The proof is obvious since for instance Jo; = [Jo1, F,---, F1=10.0
———
r—1
Now we are going to prove that N;, and Gy, generate minimal varieties.

THEOREM 11. — For any k > 3, N;, generates a minimal variety.
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PRrOOF. — Suppose that the algebra A € var (V;,) generates a subvariety of
var (N;,) and c¢,(A) ~ gn*~1, for some ¢ > 0. We shall prove that in this case
A ~p; N}, and this will complete the proof.

By [11, Theorem 7.2.12] we may assume that

A:Al@"'@Anu

where 44, ..., A,, are finite dimensional algebras such that dimA;/J(4;) < 1 and
J(A;) denotes the Jacobson radical of 4;, 1 <7 < m. Notice that this says that
either A; = F + J(4;) or A; = J(4;) is a nilpotent algebra. Since

@) <c,( A+ -+ Cn(Am)>

then there exists A; such that ¢, (4;) ~ bn*~1, for some b > 0. Hence
var (Nj) D var(4) D var (F + J(4;)) D var (F' + J11(4;))

and ¢, (F + J(4,)) ~ br*1, for some b > 0. By Lemma 10, since F + J(4;) sa-
tisfies the identity [x1,...,2,]1=0, F+J(A4;) = (F +J11(A) © Joo(4;) and
cn(F' + J(A)) = ¢,,(F + J11(4;)), for n large enough. Hence, in order to prove
that A ~p; Ny, it is enough to show that F' + J11(4;) ~p;r Nj.. Hence, without loss
of generality, we may assume that A is a unitary algebra.

By (2) and Theorem 5

cu(Np) = ki(“;)cfwk) = ki(?) (i—1)+1.
=0 1=2

Fori1=2,...,k—1, let f =[x2,%1,...,%1 ] be an highest weight vector corre-
i1
i

sponding to the partition 2 = (¢ — 1,1) 2.

It is clear that f is not an identity of Ny, so, for 2 <i <k —1, y;_1 1, parti-
cipates in the i-th proper cocharacter !(N) of N with non-zero multiplicity.
Hence for 2<i<k-—1, since by Theorem 5 cf(Nk) =1—1, we have
1 (Np) = Xi-1,)-

Now, since ¢,(4) ~ qn*~! then

k-1
n
)= (7))
i=0
and by Lemma 9, ¢/(4) #0 forall 2 <i <k —1.

Recall that since Id (4) D Id (Ny), I';/(I"; N 1d (A)) is isomorphic to a quotient
module of I';/(I'; N Id (Ny)). Hence if 7 (A) = >, m;x; and 7/ (Ny) =3, mly;
we must have m, < m/, for all A - . Since by the above forall2 <¢ <k — 1,1+ 1,
7' (Ni) = xi—1.p) and ¢!(A) # 0 we obtain that also ¥/(4) = y,_; ). Hence

k-1

a@ =Y (7w =1+ ]i;(’f) (i — 1) = e,(Np).

=0
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Thus A and N; have the same sequence of codimensions and, since
Id (NVy) C Id (A) we get the equality Id (4) = Id (V). O

THEOREM 12. — For any k > 1, Gy, generates a minimal variety.

PRrROOF. — Let A € var (Go,) and suppose that ¢, (4) ~ gn®*, for some ¢ > 0.
We shall prove that A ~p; Ggj;.. As in the proof of the previous theorem we may
assume that A is unitary and, since A € var (Gg;), by Theorem 6

cu(4) = ikj(?) (A) = Zkoj(;) &(A)

where, by Lemma 9, c,(A) # 0 for all i = 0,...,k, and c5,(A) < cb,(Ga) = 1. It
follows that ¢, (A4) = ¢,(Go;) for all n and so, A ~p; Gy O

5. — Algebras without 1 of polynomial codimension growth.

Let UT), = UTy(F) be the algebra of k x k upper triangular matrices over F'.
Given A C UT}, we shall denote by A* the subalgebra of UT}, obtained by flip-
ping A along its secondary diagonal.

Notice that given a polynomial f € F(X) if we denote by f* the polynomial
obtained by reversing the order of the variables in each monomial of f, then f is a
polynomial identity of A if and only if f* is a polynomial identity of A*.

Fori=1,...,k,let Ag) denote the subalgebra of UT), having zero entries on
the main diagonal except eventually the (¢, 7)-position, i.e.,

A;f) = span{e;,epq | 1 <p < q < k}.
The polynomial identities and the codimensions of the above algebras have been
determined in [12].
We shall denote by ¥, z variables of X.
THEOREM 13. — Foralln > 1,
1) the T-ideal I d(A;f’) 1s generated by the polynomial
oy wialy, 2l - apa
2) ;AN =nmn—1)---(n—k+2) ~nt.
Moreover, if A = A;Cl) @ @A;ck) then c,(A) ~ kn1.

This says that for every g >1 there exists an algebra A such that
cu(A) ~ qni1.



534 DANIELA LA MATTINA

DEFINITION 14. — For k > 2 let

gy 1
Apy = Apa(F) = span{en, E1, B2, ... E¥ % ez, e13,. .. e} CAD.

Clearly Ap; =AY, A= AP and by the previous theorem,
1d(Az1) = ([@1, @2las)y, 1d(A3 ) = (xslar, 22])7 and ¢,(A21) = ¢ (43,) = n.
Next we describe explicitly the identities of Ay; and A, for any k£ > 3.

LEMMA 15 [16, Lemma 3.1]. — If k > 3, then
1) Id(Ak1) = ([, x2lles, x4, [, @213 . . . @pg1) -
2) cu(Ary) = Y02 (N —1—1)+ 1~ qn*1, where ¢ € Q is a non-zero
constant.
Hence 1d(Aj; ;) = ([, w23, 24], 23 . . . g1 (201, 22]) p and ¢, (45 1) = cu(A).

SKETCH OF PrOOF. — Let Q={[x1,x2llxs,xql, [21, X203 ... ¥x11)p. Since
A1 C A;CD and Id (A;CD):<[.%‘1,902]963 ... ®11)p it follows that [xq,a2lws ... Xpp1 €
Id (Ay1). Moreover, since [Ay1,Ax1] C spanf{eiz, eis,... e}, we have that

[1, x2]lxs, 24] € 1d (A1) and so, @ C Id (Ay ).
The following polynomials

(5) Xy Ty gy -, [00, x5]wg, -,

where t+l=n—-2 I<k—-1 i>j<i1<---<% j1<---<J;, span V,
(mod V,, N Q) and are linearly independent (mod V,, N 1d (A1)).
Hence, since
Vunlddr1) 2V, NQ

it follows that Id(4;;) =@, and the elements in (5) are a basis of
(mod V,, N 1d (A41)). Thus by counting we obtain

. Va 2 0m 1 b1
cn(Ay1) = dlm4vn A ) = ;(l)(n —I-1+1= —(k _2)!7@ .

Notice that Id(A4; ;)= ([x1, w2llas, @4l w5 .. gl 22l)p and cu(Af,) =
C?L(AkJ)' O
We remark that Ay 5, Alt,l € var (UTy).

THEOREM 16 [16, Theorem 4.3]. For any k > 2, Ay1 and Alt,l generate mini-
mal varieties.
6. — Classifying varieties of slow growth.

In this section we classify, up to PI-equivalence, all algebras generating
varieties of at most linear growth and, in the unitary case, of at most cubic
growth. Throughout this section F is a field of characteristic zero.
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THEOREM 17 [6, Theorem 3.6]. — Let A be an F-algebra with 1. If ¢, (A) ~ qnF,
for some q > 1,k < 3, then either A ~p; F or A ~p; N3 or A ~p; Ny.

REMARK 18. — If A satisfies the hypotheses of the above theorem then
A e var (UTy).

The following corollary follows easily.

COROLLARY 19. — Let A be an F-algebra with 1. If c,(A) ~ qn*, for some
q>1, k<3, then ceither c,(A)=1 or cA)="2D+1 or
Cn(4) = Mo=n=2)  wel) 4 1 Hence either q=10rq=1orq=1.

Notice that if A is an algebra with 1 then A cannot have linear growth of the
codimensions.

In [5] the authors gave a complete list of finite dimensional algebras gen-
erating varieties of at most linear growth. In what follows we state their results
in our notation. We denote by M = F(ey1 + es3) + F(e1z) + Fleis) + Flezs) C UTs
an algebra of upper triangular matrixes.

THEOREM 20 [5, Theorem 22]. — Let A be an F-algebra. Then the following
conditions are equivalent:

1) ¢, (A) < kn for all n > 1, for some constant k.

2) A is Pl-equivalent to either N or C&N or A1 &N or A;; ® N or
A1 ®A;; ® N where N is a nilpotent algebra and C is a commutative non-
nilpotent algebra.

3) N37A3,1,A§,1,A(32)7M ¢ var(A).

Notice that the previous theorem allows us to classify all possible linearly
bounded codimension sequences.

COROLLARY 21. — Let A be an F-algebra such that c¢,(A) < kn for all n > 0.
Then there exists ny such that for all n > ny we must have either c,(A) =0 or
cnA)=1orc,(A) =norc,(4) =2n— 1.

Since for any k > 2, Ay 1, A, ¢ var (G), we immediately obtain the following
consequence.

COROLLARY 22. — Let A € var (G) and c,(A) < kn for all n > 1, for some
constant k. Then A is PI-equivalent to either N or C & N, where N is a nilpotent
algebra and C is a commutative non-nilpotent algebra.
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7. — Classifying the subvarieties of var(G) and var(UTs).

In this section we classify, up to PI-equivalence, all the algebras contained in
the variety generated by the Grassmann algebra G or the algebra UTs.

As a consequence we shall see that Gy, Ni,Ar; and A, generate the only
minimal subvarieties of the variety generated by G or UTs .

We start by classifying the subvarieties of G.

THEOREM 23. — Let A € var (G). Then either A ~p; G or A ~p; Go, ® N, for
somek >1,0rA ~pf NorA ~p; C® N,where N is a nilpotent algebra and C is
a commutative non-nilpotent algebra.

Proor. — If A ~p; G there is nothing to prove. Now let A generate a proper
subvariety of var (G). Since var (G) has almost polynomial growth, var (A) has
polynomial growth and let ¢,,(A) =~ gn” for some » > 0. If » < 1 then by the pre-
vious corollary, either A ~p; N or A ~p; C & N and we are done. Therefore we
may assume that » > 1. Since [x1, 2, #3] = 0 is an identity of A, as in the proof of
Theorem 11, we may assume that

A:A1®"'@AWL7

where Aj,...,A, are finite dimensional algebras such that either A; =
(F 4 J11) @ Joo or A; is a nilpotent algebra. Hence

A:Al@@An:B@Na

where B is a unitary algebra, N is a nilpotent algebra and, for » large enough,

" m

) =B =Y (7)dB).
i=0
Since [x1, %2, 23] € Id (B) then CQHI(B) =0, for all j > 1. Hence r = 2k, for some
k>1,and '

k

n
cu(B) = ;(21) & (B).

In particular we get that oo C Id (B). This implies that B € var (Gg;) and, since

Goy, generates a minimal variety and c,(Go,) ~ ¢'n?* we obtain that B ~p; Go,

and, so, A ~p; Go, ® N. O

Notice that the previous theorem allows us to classify all codimension se-
quences of the algebras lying in the variety generated by G. We can also classify
all algebras generating minimal varieties.

COROLLARY 24. — Let A € var (G) be such that var (A) ?Cévar (@G). Then there
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exists ng such that for all n > ny we must have either c,(A) = 0 or ¢,(A) =1 or
k
) = S o (5) ~ gy v =12,

COROLLARY 25. — An algebra A € var (G) generates a minimal variety if and
only if A ~p; Gy, for some k > 1.

ProoF. — The proof follows from Theorem 12 and the previous theorem. [

THEOREM 26 [16, Theorem 5.4 ]. — If A € var (UTs) then A is PI-equivalent to
one of the following algebras:

UT2,N, Nt &N, N, © A1 ©N, Ny ©A;; ON,N A1 ©A;; &N,

where N is a nilpotent algebra and k,r,t > 2.

It is worth noticing that the previous theorem allows us to classify all algebras
generating minimal varieties.

COROLLARY 27. — Let A € var (UTy). Then A generates a minimal variety if
and only if either A ~p; Nyor A ~p; Ap10r A ~pr A;;’l,for some k> 2,t > 2.

Proor. — If A is Pl-equivalent to one of the algebras N;, Ay, A},
t > 2,k > 2 then by Lemma 11 and Lemma 16, A generates a minimal variety.
The converse follows immediately by the previous theorem. O

The previous theorem allows to classify all codimension sequences of the al-
gebras belonging to the variety generated by UTs.
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