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Decomposition Results for Functions
with Bounded Variation.

GIANNI DAL MASo - RopicA TOADER

Dedicated to the memory of Guido Stampacchia

Abstract. — Some decomposition results for functions with bounded variation are ob-
tained by using Gagliardo’s Theorem on the surjectivity of the trace operator from
WLL(Q) into LY(0Q). More precisely, we prove that every BV function can be written as
the sum of a BV function without jumps and a BV function without Cantor part.
Alternatively, it can be written as the sum of a BV function without jumps and a
purely ingular BV function (i.e., a function whose gradient is singular with respect to
the Lebesgue measure). It can also be decomposed as the sum of a purely singular BV
Sfunction and a BV function without Cantor part. We also prove similar results for the
space BD of functions with bounded deformation. In particular, we show that every
BD function can be written as the sum of a BD function without jumps and a BV
Sfunction without Cantor part. Therefore, every BD function without Cantor part is
the sum of a function whose symmetrized gradient belongs to L' and a BV function
without Cantor part.

1. — Introduction.

Throughout the paper £" and H" ! denote the Lebesgue measure in R" and
the n — 1 dimensional Hausdorff measure, respectively. Unless otherwise spe-
cified, the expression almost everywhere (abbreviated as a.e.) always refers
to £*. If 1 < r < oo and £ is a set, we use the notation | - ||, or | - ||, z for the L"
norm on E with respect to £" or H"! (or to some other measure which is clear
from the context), while || - ||; denotes the norm in L, as well as in the space M,
of bounded Radon measures.

For every measure u, the symbols %, ° will denote the absolutely continuous
and singular part of u with respect to £". The former will always be identified
with its density.

Throughout the paper Qis a bounded open set in R" and BV (Q) is the space of
functions with bounded variation on @, i.e., the space of functions u € L(Q)
whose distributional partial derivatives D;u, i =1,...,n, are bounded Radon
measures on Q. The following decomposition holds:

(1.1) Du = D + D'u + Du,
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where D% is the absolutely continuous part of Du with respect to £", D/u is the
jump part of Du (defined as the restriction of Du to the jump set J,,), and D% is
the Cantor part of Du. We refer to [3] for the precise definitions of these mea-
sures and of J,,, as well as for other fine properties of the functions in BV (Q) or in
its subspace SBV(Q) of special functions of bounded variation.

We consider the following subspaces of BV (Q):

BVI(Q) := {u € BV(Q) : Du = D'u},
BVY(Q) := {u € BV(Q) : Du = Du},
BVYQ) := {u € BV(Q) : Du = D*u} = W'(Q).

If n = 1 a classical result states that any function v € BV(Q2) can be written as
(1.2) Uu=v+w+z,

with v € BVY(Q), w € BV/(Q), and z € BV(Q) (see, e.g., [3, Corollary 3.33]). The
same result cannot hold true for » > 1. Indeed, given a function f € L1(Q; R")
with curlf # 0, Alberti [1] proved that there exists u € BV (Q2) such that D%u = f.
It is clear that this function « cannot be decomposed as in (1.2), since in this case
we would have v € W(Q) and Dv = £, hence curl(Dv) # 0. For another example
see [3, Example 4.1].

We therefore introduce the following subspaces of BV(Q2):

BVY(Q) := {u € BV(Q) : Du = D"u + D'u} = SBV(Q),
(1.3) BV™(Q) := {u € BV(Q) : Du = D" + D‘u},
BV*(Q) := {u € BV(Q) : Du = D'u, + Du}

The argument mentioned after (1.2) shows that in dimension % > 1 we cannot
decompose BV (Q2) as BV*(Q) + BVi¢(Q). Moreover, we cannot decompose BV (Q2)
as BVI(Q) + BV™(Q), see [3, Example 4.1], nor as BV*(Q) + BV%Y(Q), as the
following example shows. Let Q =10, 1[" ' x] — 1, 1[, let w:[0,1] — [0, 1] be the
Cantor-Vitali function (see, e.g., [3, Example 1.67]), and let u(x) = w(x;) for
x, > 0, and u(x) = 0 for x, < 0. If w = v 4+ w with v € BV¢(Q) and w € BVY(Q),
we would have Dv = D, hence D;v = 0 for ¢ > 1 and Dv = 0 for x,, < 0. These
properties imply that v is constant, hence D« = Dv = 0, which contradicts the
fact that |Du|(Q) = 1.

The main result of the paper is that any function v € BV(Q) can be written as
the sum of two functions which belong to two of the three subspaces introduced
in (1.3), namely

U=vV+w,
with v € BV9(Q) and w e BV*(Q) (Theorem 3.1), or v e BV%(Q) and

w € BVI¢(Q) (Theorem 3.2), or v € BV(Q) and w € BV*(Q) (Theorem 3.3).
To this end, we first prove in Section 2 some extension results analogue to
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Gagliardo’s theorem, showing that, if Q has a C'-boundary 0%, then any function
in L'(0Q) can be obtained as the trace of a function in any of the three subspaces
BVYQ), BVY(Q), or BVI(Q).

We conclude the paper by proving a similar decomposition result
(Theorem 4.1) for the space BD(Q) of functions with bounded deformation.

2. — Extension results.

Let Q,_1:=10,1[""'x{0}, @ :=10,1[""'x10,1[, and let x:= (%,x,), with
Z€10,1[" ! denote the coordinates of a generic point in Q. Let us recall
Gagliardo’s extension theorem ([4], see also, e.g., [5, Proposition 2.15]).

THEOREM 2.1. — Let ¢ € LY (Q,_1; R™) with compact support in Q,_1. Then for
every ¢ > 0 there exists u € BVYQ; R™) = W(Q; R™) with trace ¢ on Qu_1 such
that

(2.1) supp(u) N 9Q C Qu-1,

2.2) f | de < ¢ f ol dH™ !
Q Qu1

2.3) f \Dulde < (1 +¢) f lp| dH" 1.
Q Qu1

We prove now the analogue of Gagliardo’s result for purely Cantorian func-
tions.

THEOREM 2.2. — Let ¢ € LY (Q,_1; R™) with compact support in Q,_1. Then for
every & > 0 there exists u € BV(Q; R™) with trace ¢ on Q,_1 such that

(24) Supp(u) N aQ C anl 3
2.5) f|u\dx < sf ol dH" L,
Q Qn—l
(2.6) IDu|@) < (1 +¢) f lp| dH" 1 .
Qn—l

PrOOF. — We begin by observing that, if A and B are open subsets of
Q-1 and 10,1[, v € BVYA;R™), w € BVYB), and u(%,x,) = v(T)w(x,), then
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u € BV(AxB; R™) and
2.7 Du=Dpyeow i1=1,....n—1, Dyu =v® Dw,

where v and w are interpreted as measures on A and B, respectively.

Following the proof of Gagliardo’s extension theorem, we approximate ¢ with
purely Cantorian functions ¢,. More precisely, given ¢ € 10, 1[ we may choose a
compact set K C @,_1 and a sequence of functions ¢, € BV¢(Q,_1; R™), such that
supp(p,) C K and ¢;, converges to ¢ strongly in L(Q,,_1; R™). Moreover, we may
assume that gy =0, [lgx[l; < 2[|¢];, and

- &
(28) > loe =il < (14 ) loll -
k=1

Given a decreasing sequence t; converging to 0, we consider the stripes
t, < xn < t,_; and we interpolate between ¢, and ¢,_; using the Cantor-Vitali
funetion y:[0,1] — [0,1] instead of the linear interpolation. For ¢, < x, <t
we define

U, ) = 9 (@) + (@1 (T) — 9(T)) (),

where

Ln — tk
Wi (y,) = W( ) )
tp—1 — T

and we set u(x, x,,) = 0 for x,, > t,.
By @.7) u € BV(Qy_1x1tg, tr_1[; R™) and D,u = (¢;,_; — ¢;,) ® Dy, so that

1D, |10, 10" Tty -1 D) = Dy | Qe tie1Dllog — 91 1ll1 »
and, for © < n, Diu = D;ip,_1 @y, + Dy, @ (1 — ), so that, as 0 <y, <1,

IDu|0, 1" Ty, te 1D < (i1 — t)(IDige_ 1) @u1) + |1Dip|(@Qu-1)) -

Since there is no jump at x,, = t, we have also |Du/|(]0, 1t x{t}) = 0.
As in the proof of Gagliardo’s extension theorem, it suffices now to choose the
decreasing sequence (f;) so that

byt < KB min{1, ||€9||1}
~n2% 1+ ||Doll; + 1|1 Dor_1ll4

Under these assumptions we get not only that u € BV(Q; R™), but also that
(2.4), (2.5), and (2.6) hold.

Since, by construction, u(-,x,) — ¢ in L1(Q,_1; R™), as x, — 0, the trace of u
on @,_1 coincides with ¢. O

The analogue extension result to a purely jump function holds.
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THEOREM 2.3. — Let ¢ € LY (Q,_1; R™) with compact support in Q,_1. Then for
every ¢ > 0 there exists w € BVI(Q; R™) with trace ¢ on Q,_1 such that

(2.9) supp(u) N 9Q C Q-1
(2.10) [z < [ 1glart,
Q Qn—l
(211) D@ < (1 +4) [ loldr".
Qs

ProOF. — We approximate now the boundary datum ¢ with piecewise constant
functions ¢, € BVi(Q,_1; R™) such that their support is contained in the same
compact subset of @,,_1, ¢, converges to ¢ in L(Q,_1; R™), 9y = 0, |¢sll; < 2[|oll;,
and (2.8) holds. Let t; be as in the previous proof, and set u(x,x,) = ¢,(@) if
b < 2y < ti_1, and (@, x,) = 0 if 2, > to. Then u € BV/(Q; R™) and (2.9), (2.10),
and (2.11) hold. O

By a partition of unity argument we can extend the previous results from @ to
a bounded open set Q with C'-boundary, preserving the constant 1 in the esti-
mates.

THEOREM 2.4. — Assume that Q has a C*-boundary and let ¢ € LY(0Q; R™).
For every & > 0 there exists a function w € BV*(Q; R™) = W(Q; R™) with trace
@ on 0Q and such that

2.12) f|u|dx < gf|(p|dH”’1,
Q (o]0}
2.13) IDu|(@) < (1 +¢) f lpldH" L.
IR

The same result holds for BV(2; R™) and BVI(Q; R™).

PRrOOF. — The result for BVY(Q; R™) = Wh(Q; R™) is already known, see,
e.g., [5, Theorem 2.16, Remark 2.17]. We give an outline of the proof only in the
case BVI(Q; R™).

We begin by observing that the construction of the extension theorems above
can be repeated in any cube and that the estimates do not depend on the size of
the cube. For every xy € 02, let Rs(xy) be an open parallelepiped centred in x,
whose base is an n—1-dimensional cube of size ¢ parallel to the tangent hyper-
plane to 9 at xy, and having height 26. As 9Q is of class C1, if J is small enough
there exists a diffeomorphism, close to an isometry in a C'-sense, which maps



502 GIANNI DAL MASO - RODICA TOADER

Rs(x0) N Q2 onto 10, 6[" and Rs(we) N L onto 10, o[ x {0}. By using this change
of variables we obtain from Theorem 2.3 that for every ¢ > 0 there exists 6 > 0
such that, if p € L1(0Q; R™) has compact support in Q2 N Rs(xo), then there
exists a function u € BV/(Q; R™), with trace ¢ on Q2 and supp(u) C Rs(x) N 2,
satisfying (2.12) and (2.13).

Given ¢ > 0, by compactness we can cover 92 with a finite number of such
parallelepipeds. Let a; be a partition of unity associated to this covering. By the
previous step of the proof for every i there exists a function u; € BV/(Q; R™),
with trace a; ¢ on 0Q, satisfying (2.12) and (2.13) with ¢ replaced by a; ¢. Then the
function u = Y u; belongs to BVI(Q; R™), has trace ¢ on 02, and satisfies (2.12)
and (2.13). ¢

3. — Decomposition results.

For every u € BV(Q;R™) the set J, is countably (K", n — 1)-rectifiable.
Therefore we can define a Borel function v, : J,, — R” such that v, (x) is the
approximate unit normal to J, at x. The approximate limits »*(x) and ™ (x)
associated with v, (x) are defined according to [3, Definition 3.67].

We apply now Gagliardo’s extension Theorem to prove the following de-
composition result, see also [3, Theorem 4.6].

THEOREM 3.1. — Let u € BV}, (2; R™) with |Du|(Q) < +oo. For every & > 0
there exists v € BVY(Q; R™) = SBV(Q; R™) such that J, = J, and vt —v~ =
ut —u” H" l-ae onJ, and

f|v| de <e| jut —u |dH" !,
(3.1) ? T

[1pvlde <@+ f - jdre .
Q Jbl

In particular, u — v € BV(Q2; R™).

loc

PrOOF. — As J,, is countably (H”’l, n — 1)-rectifiable, we may write

Ju=NoU|J Ni,
i=1
with H" (W) = 0 and with each N; contained in an (% — 1)-dimensional C!-
manifold M; for ¢ > 0. We may assume without loss of generality that the sets NV;
are pairwise disjoint and that each manifold M; is the boundary of an open set U;
which lies on one side of M;. We may choose v,, so that v, (x) points towards U, for
each x € N;.
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Let us fix ¢ > 0 and define ¢; = u* —u~ on N; and ¢; = 0 on OU; \ N;. By
Gagliardo’s extension theorem for sets with C'-boundary (Theorem 2.4) there
exists v; € WH(U;; R™) such that

[ilde <[ 1pjare,
U; oU;

[1pvijde <@+ [ jpjarn.

Ui an
We set v; = 0on Q\ U;. In this way v; € SBV(2; R™), J,, = Nj, vf = ¢;,v; =0,
so that v; —v; =u* —u” H" 1-a.e. on N;. Moreover,

[wilde <ot —umjanet,

(3.2) @ i
[10milde < @+a [t —ulant.
Ie) N;

Since |Du|(2) < +o00, we have

i f et — o |dH ! = f ot — u”|dH" < oo,

i=1 N; Ju

hence the sequence wy, = v1 + ... + v}, converges strongly in L'(Q; R™) to some
function v, while D%, converges strongly in L'(Q; R™"") to some function .
Moreover, w;, € SBV(Q; R™) and, since the sets N; are pairwise disjoint, we have
Juw, =N1U...UN}, and wzr —w, =ut —u~ on NyU...UNy, hence Diwy, =

k .
(ut —u”)@v,H" 'L |J N;. This shows that Diwj, converges to (u* —u")®

v H" 1L J, strongly Zi;ll the space of bounded Radon measures on 2 and thus
Duwy, converges to the measure g := y + (u* —u~) @ v,H" 'L J,. We conclude
that Dv = u, hence v € SBV(Q; R™), D =y, Div = (w™ — w " YH" 'L J,, which
implies J, = J,, and vt — v~ = ut —u~ H" l-a.e. onJ,, and thus DV(u —v) = 0.
This gives u — v € BV}/o(Q). Inequalities (3.1) follow from (3.2). O

THEOREM 3.2. — Let u € BV, (2; R™) with |Du|(Q) < +oc. For every ¢ >0
there exists v € BVI¢(Q; R™) such that J, = J,, and vt — v~ = ut —u~ H" l-q.e.
on J,, and

fmdx < sf\m —u|dH T,
(3.3) @ &
D@ < A +2) [t —u|dH"
JU

In particular, u — v € BV(Q; R™).

loc
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PRrOOF. — In the previous proof it is enough to replace the extension to
WLL(U;; R™) by the extension to BV(U;; R™), also provided by Theorem 2.4. [

The last decomposition result of this type is just Alberti’s Theorem [1] for BV
functions.

THEOREM 3.3. — For every u € BV,.(Q2; R™) with |Du|(Q) < + oo there exists
v € BVY(Q; R™) such that D®v = D% a.e. in Q, and hence w — v € BVIE (Q; R™).

loc

4. — Other decomposition results.

Let us consider now the space BD(R2) of functions of bounded deformation
(see [6]), i.e., the functions u € L'(©2; R") such that the symmetric part of the
gradient Eu := 1 (Du + (Du)T) is a matrix-valued bounded Radon measure. As
for functions in BV(Q) we have the decomposition Eu = E%u + E‘u + E'u. We
refer to [2] for the precise definition of E%, E°u, E'u, as well as for other fine
properties of the functions in BD(L2) and in its subspace SBD(Q). As for BV ()
we introduce the following subspaces of BD(Q2):

BDY(Q) := {u € BD(Q) : Eu = E®u + E'u} = SBD(Q),
BD*(Q) .= {u € BD(Q) : Eu = E°u + E‘u},
BD*(Q) := {u € BD(Q) : Eu = F'u + E‘u}.

The following result can be obtained by adapting the proof of Theorem 3.1.

THEOREM 4.1. — Let u € BD,,(Q) with |Eu|(Q) < +oo. For every ¢ > 0 there
exists v € BVY(Q; R™) = SBV(Q; R™) such that J,=J, vt —v =ut —u"
H" La.e. on J,, and (3.1) holds. In particular, uw — v € BD (Q).

loc

PRrOOF. — Since J,, is countably ("1, n — 1)-rectifiable and u* — u~ is H"!-
integrable on J, (see [2]), as in the proof of Theorem 3.1, we find a function
v € BVY(Q; R") such that J, = J,,, v" —v~ =u™ —u~ H" '-ae.onJ,, and (3.1)
holds. Then EV(x — v) = 0, so that 4 — v € BD(Q). |

loc

We recall that LD(Q) = {u € BD(Q) : Euv. = E*u}. The following corollary
can be easily deduced from Theorem 4.1.

COROLLARY 4.2. — Given any u € SBD(Q) there exist v e LD(Q) and
w € SBV(Q; R™) such that uw = v + w.
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