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A Survey on Systems of Nonlinear
Schrodinger Equations (*)

ANTONIO AMBROSETTI

Dedicated to the memory of Guido Stampacchia

Abstract. — We survey some recent results dealing with some classes of systems of
nonlinear Schrodinger equations.

1. — Introduction.

In this paper we will survey some recent results dealing with systems of
nonlinear Schréodinger equations like

' + o = aud + AF,w,v)
(11) { 1 1 u

V' +wv = agt® + AF,(u,v),

where A > 0 and w;,a; > 0,1 =1,2.

Systems of nonlinear Schrodinger equations (NLS) arise in Nonlinear Optics.
For example, a planar light beam propagating in the z direction in a self-focusing
medium, can be described by a NLS of the type

iE, +E,.+|E’E =0, (i denotes the imaginary unit)

where E(x,z) denotes the complex envelope of the electric field. Looking for
stationary pulse-like solutions in the form E(z,x) = e®*u(x), one finds that
the real valued function u satisfies, up to a re-scaling, the nonlinear ODE
—u" + ou = u?, whose non-trivial even positive solution is given by

U,x) = Vo Ul/wx), where Ux) = v2 sech(x).

(*) Supported by M.U.R.S.T within the PRIN 2004 “Variational methods and non-
linear differential equations”.



476 ANTONIO AMBROSETTI

If the propagation takes place in a dual-core coupler, instead of a single equation,
one is led, up to a re-scaling, to a linearly coupled system of NLS equations like

(12)

—w +u =ud+ M,
V' 4+v =+ u.

which is of the form (1.1) with F'(u,v) = uv. Another class of systems as

—u' +ou = adud + nu,
(1.3)

—v" + v = adv® + utv,

2,42

corresponding to the nonlinear coupling term F(u,v) = % u~v”, arises when ¥ is
the sum of two right-hand, and left-hand, polarized waves. See also [3] where the
case F(u,v) = u?v? — uv is discussed. For further examples of systems of NLS in
Nonlinear Optics, we refer to the book [1].

In the rest of this paper we will mainly survey some recent results from
[3, 4, 5, 6, 7] focusing on (1.2) and (1.3), which have new interesting features.
The former system has many families of solutions and bifurcation phenomena
arise. Furthermore, there exist solutions with two or more bumps, a phenom-
enon which usually takes place dealing with a single NLS equation with external
potentials. In the case of a nonlinear coupling, one main question is to find so-
lution pairs whose components are both not trivial. Finally, we can prove a sui-
table concentration-compactness Lemma to deal with non-autonomous linearly
coupled systems. The application of this Lemma requires a sharp analysis of the
solutions of the autonomous system corresponding to the problem at infinity.

2. — Bound and ground states.

A solution pair (u,v) of (1.1) is called a bound state if u,v e H :=
W12(R) x WH2(R). Hereafter, the Sobolev space W'2(R) is endowed with the
standard scalar product and norm

(u | v) :f(u/i/ + uv)de, ] = (u | w),
R
whereas the scalar product in H is given by

(w,0) | ,0)) = (w|u) + (v |v).

Bound states of (1.1) are the critical points of the functional

Liu,v) = L) + To(u) — 4 f Flu, v)de,
R
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where it is assumed that F(u,v) € L'(R) for all (x,v) € H and

1 1 .
Liuw) = 2![|u’|2 + wu?lde — 4!aiu4dac, 1=1,2.

Of course, since w; > 0, the quantity [ [Jw'|* + w;utlde defines a norm HuH?
R
equivalent to the usual one and we can write

1 9 1 .
Liw) =3 ]l — 4!aiu4dm, i=1,2.

In the sequel we will use the same symbol 7, to denote both the Euler functional
of (1.2) and of (1.3). In the former case, w; = a; = 1,7 = 1,2 and F(u,v) = uwv.

A bound state (u,v) of (1.1) is said non-trivial, resp. positive, if (u,v) # (0,0),
resp. # > 0,v > 0. The set of non-trivial bound states of (1.1) will be denoted by
B,. A pair (u,v) € B, is called a ground state if

I, ) = min{I,(u,v) : (u,v) € B,}.

The relevance of the ground states relies on the fact that they are the natural
candidates to be orbitally stable for the corresponding evolution equation, see
e.g. [10, 13, 18].

In order to find ground states it is convenient to consider the Nehar:
manifold

M) = {(,v) € H\ (0,0) : (I} (u,v) | (u,v)) = 0}.

Obviously, for all 4 > 0,8, C M. Let us first consider the case of (1.2). One finds
that (u,v) € H \ (0,0) belongs to M, whenever

2.1) [l + (o] :f(u4+v4)dac+2/1fuvdac,
R R

It follows that for every 1 € (0,1), M, as the following properties:

(M1) 3p, > 0such that ||(u,v)| > p,, ¥V (u,v) € M,.

(M2) M, is a smooth manifold of codimension one in H# and V (u,v) € H \ (0,0)
there exists a unique ¢ > 0 such that (tu, tv) € M.

(M3) M; is that it is a natural constraint, in the sense that (u,v) € B,
whenever (u,v) is a critical point of I, constrained on M.

Similarly, in the case of (1.3), one has that (u,v) € M, provided

(2.2) 3 + [l0l3 zf(a1u4 + agvt)de + 2/1fuzv2 dz.
R R

In this case M, satisfies the properties (M1 — 2 — 3) for all 1 > 0.
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Moreover, I is bounded from below on M. Actually, using (2.1), resp. (2.2),
one finds

(2.3) L(u,v) = 411(||u||2 +ol®,  Vu,v)e M, Vie 1),
respectively,

(2.4) Lu,v) = %(Hu”% +[[v]3), V(u,v)eM;, ¥Vi>0.
Let

my = inf{l,(u,v) : (u,v) € M,;}.

From the preceding properties, we infer that in order to find a ground state of
(2.1), resp. (2.2), it suffices to show that m; is achieved.

3. — Existence of ground states.

In this Section we discuss the existence of ground states for (1.2) and (1.3).

First we deal with the case of a linear coupling F'(u,v) = uv, proving the
existence of a ground state of (1.2) for all 4 € (0, 1). Roughly, we argue as follows.
Let (uy,vy) € M; be such that I,(u,,v,) — m;. Consider the pair (|u,|, |v,|) and
let ¢, € R be such that (¢, |u,|, t;|v.]) € M;. Using (2.1) we find that ¢, > 0 and
satisfies

I ol 1%+ 1| o] 7 = 2}5[;! |24 [0 ] e

2 _
tn*

[ [fnl* + ol ] dw
R
letall* + floal|* — 24 [ uvnde
< R 1

[t + vilde
R

Using (2.8) we get I;(t,|un|, to|vn]) = 21y, vy,) < I;(ty,v,) and hence we can
assume that u, and v, do not change sign. A similar argument allows us to
suppose that, in addition, %,, and v,, are Steiner symmetric. Otherwise, denoting
by u}, v} the Steiner symmetrization of u,, resp. v,, and letting ¢; be such that
(Eruy tror) € M one finds that ¢ € (0,1] yielding

Lt uy, 6,07) < 1, vy).

nr'n-n

It is now easy to check that, up to a subsequence, (u,,v,) converges strongly to
some (u,,v;) € M;, such that I,(u;,v;) = m,;.
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If we consider the nonlinear coupling F(u,v) = %u2v2, we can repeat the same
arguments, by using (2.2) and (2.4). In conclusion we have:

PrOPOSITION 3.1. — For all A € (0,1), (1.2) has a ground state: there exists
(uy,v;) € M; such that I;(u;,v;) = m;.
In the case of (1.3), the same result holds for all A > 0.

4. — The linearly coupled system (1.2).

In this section we will discuss in more details the linearly coupled system
(1.2). First of all, let us list some facts about the solutions (u,v) of (1.2).

(11) Forall 2 > 0, if (u,v) is a solution of (1.2), then also ( — u, —v) does.

(iz) If 2 =0, (1.2) has the following four non-trivial solutions in H: (U, 0),
o,U), (U,U), (U,-U) and their antipodal pairs (— U,0), (0,-U), (— U, -U),
(— U, U). By a direct inspection, one checks that the ground states are given by
(£ U,0) and (0, & U), namely mg = Io(+ U, 0) = I,(0, £ U).

(i3) For any 4 > 0, if (u,v) # (0,0) is a solution of (1.2), then both the com-
ponents have to be different from zero.

(i4) Forany /4 € (0,1), if (u,,v;) is any ground state of (1.2) then u; - v, > 0
and, up to a translation, %, and v, are Steiner symmetric, see [5, Lemma 3.6].

(i5) The map [0,1) > A—m, is strictly decreasing and continuous, see
[5, Lemma 6.2].

Moreover, the set 8, of non-trivial bound states of (1.2) has several families of
solutions.

First of all, there are two families of explicit solutions: the symmetric states
(U1, U1_y), for all 2 € (0,1); and the anti-symmetric states (U1, ,, —Uiy,), for
all 1> 0.

In addition, using the Implicit Function Theorem, one easily checks that a
unique branch of non-trivial bound states of (1.2) emanates from each of the
bound states for A = 0, see (i2) before. Of course the branch starting from (U, U),
resp. (U, —U), is given (locally) by the family (U1_;, U1_;), resp. (U1, —Uy4;). It
has also been proved in [4] that at A = 3/5 there is a unique secondary bifurcation
from the symmetric states (U;_,, U;_,), see [4, Lemma 3.2].

REMARK 4.1. — It would be interesting to show that the branch bifurcating
from the family (U;_,, U;_;) is a curve having one endpoint at (U, 0), in such a way
that locally it coincides with the branch emanating from (U, 0). O

In order to find which one, among the preceding bound states, is a ground
state we first point out that, by (i5) and (ip) it follows that

(4.1) lim m; = my = Io( U, 0) = Lo(0, + U).
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Since mg < Ip(U,U) = %ma 1,(Uy_;,Uq1_,), (4.1) implies that

m, < L;(Ui-),Ui-;), Y Ai>0, A~0.

More precisely, one can prove that there exists 6 > 0 such that for 1 € (0, 9), the
branches bifurcating from (+ U, 0) or (0, + U) are, up to translations, the ground
states of (1.2), see [5, Lemma 3.8]. Moreover, one can show that there exists
& >0 such that for 1 € (1 —&,1) the ground states of (1.2) are given, up to
translations, by the symmetric states (Uy_;,Uy_;) or (— Uy_;,—U;y_;), see [5,
Lemma 3.11]. In particular, we get lim; ., m; = 0.

REMARK 4.2. — It is an open problem to show that the ground states coincide
with:

e the branches emanating from (£ U, 0), (0, £ U) for all 0 < 1 < 3/5;

e the families (Uy_;,U;_,), (— Uy_;,—U;_,), forall3/5 < 2 < 1. O

We end this section by stating a result from [7] dealing with the existence of
multi-bump solutions of (1.2). It is worth pointing out that, multi-bump solutions
have been broadly investigated in the case of semi-classical states of a single
NLS equation in the presence of an external potential. Here the new fact is that,
dealing with linearly coupled systems, multi-bump solutions arise in the auton-
omous case.

THEOREM 4.3 ([7, Theorem 1.1]). — There exists ¢ > 0 such that if 0 < 1 < ¢,
system (1.2) has a solution (w;,v;) € H such that w; ~ U+ &) + Ux — &),
v; ~ =U(x) as A — 0, where &, ~ log (1/4).

The existence of this solution pairs relies on a perturbation method, varia-
tional in nature, which is usually employed to find multi-bump semiclassical
states for a single NLS equation in the presence of an external potential, see e.g.
[8]. Here, the system is autonomous and, roughly, the counterpart of the external
potential is played by the coupling term. The proof requires that the second
component is negative. Actually, a negative coupling term is “attractive” and can
be used to balance the repulsive effect of the two bumps of the first component.

REMARK 4.4. — We conjecture that the family (u},v}) can be continued for all
4 €(0,1). The bumps &; of the first component should tend to zero and (u},v;)
should converge to (U;. ;, —U;.,) for A = 1,in such away that 4 = 1is a secondary
bifurcation for the family of the anti-symmetric states. The existence of such a
bifurcation has been shown only by means of some numerical argument, see [2],
whereas a rigorous proof has not been provided, yet. O
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5. — The nonlinearly coupled system (1.3).

In contrast to the linearly coupled case (see property (i3) above), system (1.3)
has solutions with one trivial component (these solutions will be called semi-
trivial). For example, if (u,0) is a semi-trivial solution, then wu solves
—u" + oy = a;u? and hence

U= l~]1(x) = \/%_1 Uy, () = 1/20% sech(y/wr).

Similarly, if (0,v) is a solution of (1.3), then

v = Us(x) = \/% Uoy, () = /266—622 sech(y/wax).

In order to establish if these semi-trivial solutions are the ground states found in
Proposition 3.1, we follow [6]. Let y;, ¢ = 1,2 be given by

2 2
R S T S Y . L
PeW 2RO} [ 7202 PEWHIONO) [ U5g?

The values y; can be estimated as follows, see [6, Lemma 5.5]

3 1
Wi \* w;i\? W .. .,
5.1 H—) <9yr < | — i— =1,2 .
( ) aj(a)j) —yj2 _max{aj(w) 7ajwj}7 Y] s &y 17&.7

Moreover, letting 4 = min{)%, )5} and A4’ = max{)3,3}, one shows that

LEMMA 5.1. — (i) VA < 4, (Uy,0) and (0, Us) are strict local minima of I,
on M;. ~ _
(1) YA > A, (Uy,0) and (0, Us) are saddle points of I, on M.

The former property, jointly with Proposition 3.1, implies that 7, has a saddle
point (u;,;) € B,, which cannot be semi-trivial and this allows us to prove that
@A > 0,5)\)L > 0.

On the other hand, from (it) it follows that the minimum of I; on M; is
achieved by a pair (u,,v;) whose components are both different from zero,
namely (u;,v;) is a ground state. Moreover, one can prove that u; > 0,v, > 0.

We collect these results in the following theorem, see [6]; for a result similar
in nature see also [14, 15].

THEOREM 5.2. — (3) If 2 € (0, A), then (1.3) has a positive bound state (i, ;).
(1) If 2 > A then (1.3) has a positive ground state (u;,v;).
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In the preceding statement, both the components are, up to translation,
Steiner symmetric. Moreover, Theorem 5.2 can be used to given an answer,
though still not complete, to the question raised in Remark 4.2. Actually, let (v, v)
be a solution of (1.2) and set ¢ = u + v, w = u — v. Then ¢,y satisfy

1 3
-¢'+0-N¢ = Z¢3+Z¢I//2
(5.2)
" 1 3 3 2
v +A+ypp = yid +ZW’

which is nothing but a specific case of (1.3) with w;=1—4, we =1+ 4,
a1 = az = 1/4 and coupling coefficient =3/4. For 0 < A < 1, the semi-trivial
solutions (2U;_,,0), correspond to the symmetric states (U;_;, U;_;) of (1.2).
Here, the estimates (5.1) become 4 < 1/2 and A’ > 1*, where A* > 0 is such that

L 5o\ 3
(1:) =3 (7 ~062)

Using Theorem 5.2, we infer that for 0 <1< 1/2, 2U;-;,0), and hence
(U1-;, Ui-,), is not a ground state, whereas for 2" < 1 < 1, 2U;,, 0), and hence
(Uy-;,Uq_;), is a ground state.

REMARK 5.8. — Since 2* > 8/5, a comparison between the preceding discus-
sion and what conjectured in Remark 4.2, highlights that the results of Theorem
5.2 are not sharp. O

6. — The PDE case.

All the results discussed in the preceding sections can be extended to the
PDE case, namely to systems as

—du+ o = auP + AF,(u,v)
-+ wev = agtP + AF,(u,v),

where (u,v) € H := W2(R") x W2(R"), n > 2,1 <p <2* — 1, and F is such
that F(u,v) € LY(R™), for all (u,v) € H. Let us remark that in the case of the
nonlinear coupling F(u,v) = 1u?v?, this implies that n = 2,3.

In particular, it is interesting to see what is the counterpart of Theorem 4.3 in
dimension n = 2,3. We will follow [7].

Consider the linearly coupled system

_ _ .3
6.1) { Au+u =ud+

—M+v =+,
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and let P be any regular polygon in R? or any platonic solid in R, centered
at the origin. Let P; #0, 1 =1,...,m, denote the vertices of P, and set
s =min{|P; — P;| : i #j} and r = |P;| (we include the degenerate case of a
segment [ — P, P)).

THEOREM 6.1. — Ifr < s, then there exists ¢ > 0 such that if 0 < 4 < ¢ system
(6.1) has a solution (u,,v;) € WH2(R™) x WL2(R™) such that v, ~ —U(x), whereas
u,; 18 a multi-bump with maxima located mnear &E;P; namely wu;(x)~

S U@+ EP;) + Ule — &, P;), where &; satisfies
1

log (1/4)
s

&

REMARK 6.2. — The condition » < s is satisfied by the regular polygons in R?
with less than 6 sides and by all the regular polyhedra in R® with the exception of
the dodecahedron. In the degenerate case of two vertices, one has s = 2r, and we
recover the result stated in Theorem 4.3. O

7. — Non-autonomous systems.

In this final section we deal with systems in the presence of external poten-
tials. We focus on some recent results of [4, 5].
Let us consider the system

(7.1) { —Mu+u = 1+ a@)|ulfu+ i,
’ —M+v = 14 b@)wf v+ u,
where n > 2,1 < p < 2* — 1 and a, b satisfy
a,b € L™(R"), ‘l‘im alx) = |l‘im b(x) = 0,
Xr|—00 X|— 00

ignf{l +a@)} >0, iglf{l +b(x)} > 0.
If the preceding conditions hold, one can prove the following results:

THEOREM 7.1. — (3) If a(x) 4+ b(x) > 0, then for every 0 < . <1, (7.1) has a
positive ground state.

(1) If ax) > 0, alx) £ 0, resp. b(x) > 0, b(x) £ 0, then there exists A* € (0,1)
depending only on a, resp. b, such that (7.1) has a positive ground state for all
A€ 0,17]

@) Ifa <0,b<0,a+b %0, then there exists 0 < 1; < g < 1 such that (7.1)
has a positive bound state for all 1 € (0, 1) U (A2, 1), provided max{|al., b, } is
sufficiently small.



484 ANTONIO AMBROSETTI

The proofs are based upon concentration-compactness arguments, the pro-
blem at infinity being (7.1) with @ = b = 0, namely (1.2). Roughly, the Euler
functional of (7.1) is given by

&, (u,v) = I;(u,v) — b f (a@)|uP + @)l de,  (u,v) € H,
p+1 o

where I; denotes the Euler functional of (1.2). Consider the Nehari manifold
corresponding to @,,i.e.

N, = {,v) € H\ (0,0) : (D) (u,v) | (u,v)) =0},

and set
¢, =inf{®,(u,v) : (u,v) € N;}.

The key ingredient is the following lemma (for the proof, see [5, Section 4]).

LEMMA 7.2. — @; satisfies the (PS) condition on N, at any level smaller than
m;. In particular, if ¢, < m; then (7.1) has a positive ground state.

Next, to prove (2) of Theorem 7.1, one shows that a(x) + b(x) > 0 = ¢, < m,.
To prove (i7) one takes into account a different problem at infinity, namely the
system

{—Au+u = a(x)|u|p’1u,

—M+v = .

Letting m,, denote the ground state level of the preceding system, it is possible to
check that ¢; < m, < m,;—. Using the property (i5) of m;, (i7) follows.

The proof of (¢47) is more delicate, because if a < 0, b < 0 and a + b # 0 then
one proves that ¢, = m; and that no ground state exists. As a consequence,
bound states have to be searched on N, by a min-max procedure. To carry out
this program, we need first to investigate the (PS) condition, proving

LEMMA 7.3. — Assume that m; is an isolated critical level of I, and let m,
denote the smallest critical level of I, greater than m,. Then ®; satisfies the (PS)
condition on N, at any level d such that m; < d < min{m;,2m,}.

A sharp analysis of the ground states of (1.2), based also on the discussion
carried out after Remark 4.1, allows us to prove that the assumption that m; is an
isolated critical level of I,, holds true for all 1 ~ 0 and A ~ 1.

Finally, to conclude the proof of (iit), one defines a min-max level d; > m,
using the method of barycenter, see [9, 11, 12] and shows
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LEMMA 74. — If max{|a|.,|b|..} < 1then m, < d, < min{mn,,2m,}.
REMARK 7.5. — Singularly perturbed, nonlinearly coupled, systems in R? with
external potentials as
—&au+ V@u = u? + pfr’u,
—&2M + Ww =1 + puv,

have been recently investigated in order to find spikes, namely solutions which
concentrate at a point as ¢ — 0. See [16] and [17], which deals with the case
f < 0. The existence of spikes in the presence of a linearly coupling term, is
studied in [4, Section 5]. O

We conclude this section by stating a perturbation result, see [4], dealing with
the existence of solutions of

"+ 1 + eb(@)v® + Iu,

_a _ 3
(72) { u +u A + ealx))u® + v,

near the family of symmetric states. First, one proves that for all 1 € (0,1),
A #3/5, (U1_;, U;_,) are non-degenerate in an appropriate sense. Then one uses
the perturbation techniques from [8] yielding

THEOREM 7.6. — For all A€(0,1), .#3/5 (7.2) has a solution near
(Uy_;,Uq_;), provided ¢ is sufficiently small.

It is an open problem to extend the preceding result to the PDE case.
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