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Bounded Solutions for the Degasperis-Procesi Equation (*)

GIUSEPPE M. COCLITE - KENNETH H. KARLSEN

Abstract. — This paper deals with the well-posedness in L' N L™ of the Cauchy problem
for the Degasperis-Procest equation. This is a third order nonlinear dispersive
equation in one spatial variable and describes the dynamics of shallow water waves.

1. — Introduction.

In this paper we investigate the wellposedness in L! N L>® of the Cauchy
problem for the Degasperis-Procesi equation

(1) o — Opu + udyu = 30, udeu +uds,u,  (t,w) €R, xR,
endowed with the initial condition y:

(2) (0, x) = up(x), reR,

where we assume that

3) up € LY(R) N L¥(R).

Degasperis and Procesi [9] deduced (1) studying the following family of
third order dispersive nonlinear equations, indexed over six constants
a,7,Co, C1,C2,C3 € R:

B + cody + Y1 — 203 u = 9, (crv? + ca(Duw)’ + c3udZu).

Using the method of asymptotic integrability, they found that only three equations
within this family were asymptotically integrable up to the third order: the KdV

. . 3
equation (a = ce = c3 = 0), the Camassa-Holm equation (01 = - 2%, Co = %),
. 2c3 . ¢
and one new equation | ¢; = — 2= which properly scaled reads

(4) O+ Opu + 6udyu + 9 u — <6§’mu + 5 0sudiu + = u@f’ém ) =0.

(*) Comunicazione di 30 minuti tenuta a Bari il 26 settembre 2007 in occasione del
XVIII Congresso dell’Unione Matematica Italiana.
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By rescaling, shifting the dependent variable, and finally applying a Galilean
boost, equation (4) can be transformed into the form (1), see [7, 8] for details.

Let us spend some words on the Korteweg-deVries (KdV) and Camassa-
Holm equations. The first one models weakly nonlinear unidirectional long
waves, and arises in various physical contexts. In particular, it models surface
waves of small amplitude and long wavelength on shallow water: u(t,x) re-
presents the wave height above a flat bottom, with x being proportional to the
distance in the propagation direction and ¢ being proportional to the elapsed
time. The KdV equation is completely integrable and possesses solitary waves
that are solitons. The wellposedness of the initial value problem for the this
equation is well studied, see [19] and the references cited therein. In particular, it
is globally weellposed in H'(R).

Camassa and Holm [1] deduced their equation as a model for the the pro-
pagation of unidirectional shallow water waves on a flat bottom: wu(t,x) re-
presents the fluid velocity at time ¢ in the horizontal direction x [1, 20].

It is a water wave equation at quadratic order in an asymptotic expansion
for unidirectional shallow water waves described by the incompressible
Euler equations, while the KdV equation appears at first order in this ex-
pansion [1, 20]. In another interpretation, Dai [11] derived the same equa-
tion as a model for finite length, small amplitude radial deformation waves
in cylindrical compressible hyperelastic rods. The Camassa-Holm equation
possesses many interesting properties, among which we highlight its bi-
Hamiltonian structure (an infinite number of conservation laws) [1, 15] and
that it is completely integrable [1]. Moreover, it has an infinite number of
non-smooth solitary wave solutions called peakons (since at the wave peak
they are continuous but not C'), which interact like solitons and are stable.
We point out that the KdV equation admits solitary waves that are solitons
too, but it does not model wave breaking because its solitions are smooth.
The Camassa-Holm equation is remarkable in the sense that it admits so-
liton solutions and at the same time allows wave breaking. For a discussion
of the Camassa-Holm equation as well as other related equations and a
complete list of references, see the recent paper [17]. From a mathematical
point of view the Camassa-Holm equation is rather well studied. There are
several results on local wellposedness, global existence for a certain class of
initial data, blow up in finite time for a large class of initial data, and ex-
istence and uniqueness results for global weak solutions, a complete list of
refecences can be found in [2].

Let us now turn to the Degasperis-Procesi equation (1). As mentioned
before, it was singled out first in [9] by an asymptotic integrability test
within a family of nonlinear third order dispersive equations. In [8]
Degasperis, Holm, and Hone proved the exact integrability of (1) by con-
structing a Lax pair. Moreover, they displayed a relation to a negative flow
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in the Kaup-Kupershmidt hierarchy by a reciprocal transformation and
derived two infinite sequences of conserved quantities along with a bi-
Hamiltonian structure. They also showed that the Degasperis-Procesi
equation possesses “non-smooth” solutions that are superpositions of mul-
tipeakons and described the integrable finite-dimensional peakon dynamics,
which were compared with the multipeakon dynamics of the Camassa-Holm
equation. An explicit solution was also found in the perfectly anti-symmetric
peakon-antipeakon collision case. Lundmark and Szmigielski [22] presented
an inverse scattering approach for computing n-peakon solutions to (1).
Mustafa [24] proved that smooth solutions to (1) have infinite speed of
propagation: they lose instantly the property of having compact support.
Regarding wellposedness (in terms of existence, uniqueness, and stability of
solutions) of the Cauchy problem for the Degasperis-Procesi equation (1),
Escher, Liu, and Yin have studied this within certain functional classes in a
series of recent papers [12, 13, 14, 21, 27, 28, 29, 30]. In particular, those
results concern continuous solutions, that is consequence of the Sobolev
regularity they assume on the initial condition.

In [4] we proved the well posedness of the so called entropy solutions,
that will be defined later, within the class of the functions with bounded
variation. Here we want to prove an analogous result within the class of
bounded functions. One of the motivations is the uniqueness principle proved
in [5] based on an Oleinik type estimate for L* solutions to (1). In the
present paper we sharpen the Oleinik estimate of [4], that involves the total
variation of the initial datum. In this way we have the perfect equivalence
between the infinite family of entropy inequality and the one-side Lipshitz
inequality.

Finally, we recall that the existence of a semigroup of solutions generated by
I? initial conditions and the convergence of numerical schemes for (1) were
proved in [6, 10, 16].

Formally, problem (1), (2) is equivalent to the hyperbolic-elliptic system

2
O + 0, <%> +0,P=0, t.x) cR. xR,
(5) 3
—892mP+P:éu2, (t,x) e R. xR,
(0, x) = up(x), reR.

Since ¢71</2 is the Green’s function of the differential operator 1 — 9%, the
function P has a convolution structure:

(6) Pt,2) = P'(t2) = I! eIt y)dy,
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and (5) can be written as a conservation law with a nonlocal flux function:

A+ 0y |+ %f el vlt, y)dy | =0, (t,x) e R. xR,
(M) A
u(0, ) = uo(w), r€R.

Following [4], our starting point is that formally there is an L? bound on the
solution in terms of the L2 norm of the initial data . Indeed, if we introduce the
quantity v := (4 — 8§x)’1u, then formally the following conservation law can be
derived:

(@0 + 500" + 407
8
® + O (gu?’ +dv(1— )7 WP + 0, [(1 - ) Wd)] - 4u2v) = 0.

3 xx xx
It follows from this that v € L*(R,; H2(R)) and thereby also . € L*(R; L*(R)).
The L2 estimate on u is the key to deriving a series of other (formal) estimates,
among which we highlight

(9) PeL™Ry; WE2(R)), agxP e L=([0, T L"\(R)NL®R)), T >0,
and
w e L>(0,T]; L"(R) N L(R)), T >0,

where the L™ estimate is particularly important as it implies a one side Lipshitz
inequlity on » (that is an upper bound for d,u).

To prove existence of a global weak solution we construct a family of ap-
proximate smooth solutions for which similar bounds can be derived rigorously.
To this end, we introduce the smooth solutions u, of the following fourth order
viscous approximation of the Degasperis-Procesi equation (1):

(10) O, — O}

4
- A+ 80Py — D U

e + 4,0y, = 30,U 0% U + U0 AT

XXX

This equation can be written in the more suggestive form of a viscous con-
servation law with a non-local flux:

u? 3
(11) T [ el py | = o2 .
R

Assuming that the initial condition % satisfies (3), we establish a series of
¢ - uniform estimates that are analogous to the formal ones discussed above.
For example, {u:},., is uniformly bounded in L*R_;L*(R)) and
L>(0,T]; LA(R) N L*(R)), for any T > 0, which implies that a subsequence of

{u},.o converges strongly in L! (R, x R), for any 1 < p < oo, and also in
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LP(R. x R), for any 1 < p < 2, to a limit function » that satisfies (8) and (9),
which we furthermore prove is a weak solution of the Degasperis-Procesi
equation. By a weak solution we mean a function u that belongs to
L*(R,; L?(R)) and satisfies (7) in D'([0, c0) x R). In addition to the estimates
mentioned above, we also prove that the weak solution u satisfies a one-sided

Lipschitz estimate: d,u(t, x) < %—1— Ky for a.e. (t,x) € (0,T) x R, where Ky is a

constant that depends on T and the L? N L™ norm of uy. An implication of this
estimate is that if the weak solution % contains discontinuities (shocks) then
they must be noninereasing. To obtain the desired strong compactness we use
the compensated compactness method [25].

To assert that the weak solution is unique we would need to know somehow
that the chain rule holds for our weak solutions. However, since we work in
spaces of discontinuous functions, this is not true. Instead we shall borrow ideas
from the theory of conservation laws and replace the chain rule with an infinite
family of entropy inequalities. Namely, we shall require that an admissible weak
solution should satisfy the “entropy” inequality (P* is defined in (6))

(12) Om(u) + 0pq(u) + 1/ (w)0,P* <0 in D' ([0,00) x R),

for all convex C? entropies #:R — R and corresponding entropy fluxes
q : R — R defined by ¢'(u) = 7/(u) u. We call a weak solution » that also satisfies
(12) an entropy weak solution. We prove that the above mentioned weak solution,
which is obtained as the limit of a sequence of viscous approximations, satisfies
the entropy inequality (12), and thus is an entropy weak solution of (1), (2).

Finally, we stress that there is a strong analogy with nonlinear conservation
laws (Burgers’ equation). Indeed, we can view (7) as Burgers’ equation perturbed
by a nonlocal source term. This point of view works due to the boundednes of
0, P" (see (9)). This analogy makes it possible to prove L! stability (and thereby
uniqueness) of entropy weak solutions to the Degasperis-Procesi equation by a
straightforward adaption of Kruzkov’s uniqueness proof [18].

The remaining part of this paper is organized as follows. In Section 2 we give the
precise definitions of weak and entropy weak solution for (1), (2), and state our main
wellposedness result. In Section 3 we define the viscous approximations and es-
tablish some important a priori estimates. In Section 4 we prove our main result.

2. — Definition of entropy solution and main results.

Let us be more precise about the meaning of solution for the Cauchy problem
(1), (2). We begin by introducing a suitable notion of weak solution.

DEFINITION 1 (WEAKSOLUTION). — We call a functionu : R, x R — R a weak
solution of the Cauchy problem (1), (2) provided



444 GIUSEPPE M. COCLITE - KENNETH H. KARLSEN

i) we L* (R LAR));

2
1) Oy + Oy <Z> +0,P" =0 in D(0,00) x R), that is, the following
identity holds

2
(13) f f <u8t¢ + %axcp - awa) dae dt + 1[ o ()0, ) dae = 0,

R+ R

forall ¢ € C([0,00) x R), where

(3 3
Pitx) =1 —2) 1<§u2>(t,x) =3 1! e Ut ) dy.

REMARK 1. — It follows from part ©) of Definition 1 that « € L'((0, T) x R) for
any T > 0 and 0,P" € L*(R, x R) (consult the proof of Corollary 2). Hence
equation (13) makes sense.

We extend the definition of a weak solution by requiring the fulfillment of an
entropy condition so we arrive at the notion of an entropy weak solution for the
Degasperis-Procesi equation.

DEFINITION 2 (ENTROPY WEAK SOLUTION). — We call a functionu : Ry xR — R
an entropy weak solution of the Cauchy problem (1), (2) provided

1) u s a weak solution in the sense of Definition 1;
1) u € L>*(0,T] x R), for any T > 0;
i11) for any convex C? entropy n : R — R with corresponding entropy flux
q : R — R defined by q'(u) = un/'(u) there holds

) + 9 qu) +n'(w) 9. P" < 0 in D'([0,00) X R),
that is, for every ¢ € C*([0,00) x R), ¢ > 0,

14) [ [0+ gt — 1 o.P'g) didt + [ nauo@)g(0,2)dzr > 0.
R+ R R

REMARK 2. — It takes a standard argument to see that it suffices to verify
(14) for the Kruzkov entropies/entropy fluxes

u? 2
nw) == |u —cl, qu) := sign(u—c)(;—g), ceR.

Using the Kruzkov entropies/entropy fluxes it can then be seen that the weak
formulation (13) is a consequence of the entropy formulation (14).

Our main results are collected in the following theorem:
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THEOREM 1 (WELL-POSEDNESS). — Suppose condition (3) holds. Then there
exists an entropy weak solution to the Cauchy problem (1), (2). Fix any T > 0,
and let u,v : R, x R — R be two entropy weak solutions to (1), (2) with initial
data ug,vo € L'R) N L>(R), respectively. Then for almost any t € (0, T)

(15) e, ) = 0t ey < €™ lto = vollicry,
where

3
(16) My =3 (Il o 10 o) < 0

Consequently, there exists at most one entropy weak solution to (1), (2).
The entropy weak solution u satisfies the following estimates for any t > 0:

2

(17) ||u(t»')“L1(R) < HuO”Ll(R) + 12t||u0”L2(R)7
2

(18) 1w, N L~@w < l1uoll L@y + 6tll%ollz2)-

Finally, the following Oleinik type estimate holds for a.e. (t,x), ¢,y) € (0, T] x
R,x#y,

(19) u(t, x) —ut, y) < 1+KT,
r—y t
where
5 ,112
(20) Ky = |:6||u0||i2(R)+§(|u0|L°C(R)+6T|u0|i2(R)) } .

3. — Viscous approximations and a priori estimates

We will prove existence of a solution to the Cauchy problem (1), (2) by ana-
lyzing the limiting behavior of a sequence of smooth functions {«.},.,, where
each function u, solves the viscous problem (10) endowed with the initial condition

u:(0,%) = ug.(x), x€R,

or equivalently the following parabolic-elliptic system:

2

atub‘ + ax (%) + aOCPt, = gaixuf:: (t7 90) S R+ X Ra
(21) 3

— P, + Py =5, (t,%) eR, xR,

(0, %) = 1), r cR,
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where we assume that

o, € HYR), for some ¢ > 2,
(22) ||“0,s||L2(R) < ”uOHLZ(R)a ||%0,a|\Lx(R) < ||uo||LoC(R)7 for every ¢ > 0,

uoe — Uy in LR ), as ¢ — 0.

Using again the fact that e~Il /2 is the Green’s function of the operator 1 — 62, we
have an explicit expression for P, in terms of u,:

P(t,x) = P"(t,x) = 1 — %) @uz)(t, x) = Z f e At y) dy.
R

The wellposedness of the viscous problem (5) in C([0, co); H/(R)) for each
fixed ¢ > 0 can be proved using an argument similar the one of [3, Theorem 2.3].

Next we have a uniform L? bound on the approximate solution u, (see [4,
Lemma 2.2]). The argument is based on a preliminary H? estimate on the
quantity v, = v.(t, ) defined by (see [4, Lemma 2.3])

[z—yl

T u,(t,y) dy, t>0,xcR.

bt ) = (4~ ) ) t) = 1[ e

The use of the quantity v, is motivated by the fact that [v(u — 0%,u) dx is

R
a conserved quantity of the Degasperis-Procesi equation (see (8)), where
4v — 872“1) =y and u solves (1) (see [7]).

LEMMA 1 (ENERGY ESTIMATE). — Let us assume (3) and (22). Then the fol-
lowing bounds

(23) 25, M2y < 2200l L2y Vel Oette|| o, <y < 2l1%0ll 2

hold for any ¢ > 0 and t > 0.

Due to the integral identities

3
2 —le—yl,,2
(24) Pt = [y dy,
R
3 [ olrvlg; 2
(25) 0.P.t,x) = [ e Ysign(y — apitt, ) dy.
R

We have some bounds on the nonlocal term P,, which all are consequences of the
L? bound in Lemma 1 (see [4, Lemma 2.4]).
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LEMMA 2. — Assume (3) and (22) hold, and fix any & > 0. Then

(26) P, >0,
(27) I1PoCt, Mgy, 0Pt gy < 12lJut0l72yy >0,
(28) 1Pl e ey 10:Pell i <y < 6llwollZ2r),

(29) 102, Pott, ey < 24l1uollFemy, > 0.

Using the L? bound in Lemma 1, we can bound u, in L (see [4, Lemma 2.5]).

LEMMA 3 (L -ESTIMATE). — Assume (3) and (22). Then
(30) [|u.(2, ')HLl(R) < ||u0HL1(R) + 12t||“0||%2(13)7

holds for every t > 0 and ¢ > 0.

We continue this section by proving some estimates that are sharper than the
correspondent ones in [4].

Using the W' bound on {P,},., stated in Lemma 2, we show that the family
{":} .~ is bounded in L>.

LEMMA 4 (L™-ESTIMATE). — Assume (3) and (22). Then
(1) 26, M| oy < HMO||L°°(R)+6||u0||iZ(R)t’ t>0,¢>0.
ProOF. — Due to (21) and (28) we know that
Ot + UpOpthy — aaﬁxug =-9,P, < 6||u0\|%2(R).

Since the map

2
F@ = [Juoll L) +6l[ %072 1, t>0,
solves the equation
daf 2
at - 6|2ollz2m)

and, due to (22)
u,(0,2) < f(0), r <R,
then the comparison principle for parabolic equations says

w8, ) < f@), t>0, rcR. 0

As a consequence of (28) and (31), from the second equation in (21) we deduce
the following estimate.
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LEMMA 5. — Let ¢ > 0 and (3) and (22) hold. Then
3 2
(32) Haazcxpé'(t’ ')HLOC(R) < 6Hu0||i2(3) + 2 (H“OHLsc(R>+6||“0H%2(R>t) , 120

We conclude this section by showing through an estimate of Oleinik type that
a solution of the Degasperis-Procesi equation can only contain decreasing dis-
continuities (shocks), which coincides with what is known for the Burgers’
equation. We point out that the Oleinik estimate proved here does not depend on
the total variation of the initial condition as the one proved in [4].

LEMMA 6 (OLEINIK TYPE ESTIMATE). — Let ¢, T > 0. If (3) and (22) hold, then
(33) Ot (t, ) < %—I—KT, xeR, 0<t<T,
where the constant Ky is defined in (20).

PrOOF. — Setting q. := 9d,u,, it follows from (21) and (32) that

(34) 8th + %5@% + qg — &0, q: = _8§WP5 < K%‘
The map
1
fO=5+Kr,  t>0,
satisfies

af
di

+f2:21%+K%2K%,

namely f is a supersolution of (34). Therefore the comparison principle for
parabolic equations says

QE(t’ x) Sf(t)7 (t7 %) e (07 T] X R7

and hence (33) follows. O

4. — Well-posedness in L! N L>.

Relying on the a priori estimates derived in Section 3, we prove in this section
existence, uniqueness, and L' stability of entropy weak solutions to (1), (2) under
the L' NL> assumption (3). These claims are immediate consequence of
Lemmas 7, 10, and Corollary 1 below.

We begin by proving that there exists at least one entropy weak solution to
(1), (2) under assumption (3).
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LEMMA 7 (EXISTENCE). — Suppose (3) holds. Then there exists at least one
entropy weak solution to (1), (2).

We will construct a weak solution by passing to the limit in a sequence {u,},.
of viscosity approximations, see (10) or (21). We make the standing assumption
that the approximate initial data {u075}6>0 are chosen such that they respect (3)
and (22). Having said that, in the present context, comparing with the framework
of [4], we do not have have at our disposal a uniform BV estimate. Indeed, the
relevant a priori estimates are only those contained in Lemmas 1, 2, 3, and 4. We
use the the compensated compactness method [25, 26] to obtain strong con-
vergence of a subsequence of viscosity approximations.

THEOREM 2. — Let {v,},., be a family of functions defined on (0,00) x R
such that
vl 0, mxr) < M, T,v>0,
and the family
{atrl(vv) + axq(vv)}y>0
is compact in Hy,}((0,00) x R), for every convex n € C3(R), where q'(u) = u (w).

Then there exist a sequence {vy},cy C (0,00),v, =0, and a map
ve L>®(0,T) xR), T > 0, such that

vy, =0 a.e. andin LY

((0,0) xR), 1 <p < 0.

Finally, the following compact enbedding of Murat [23] is useful.

THEOREM 3. — Let Q be a bounded open subset of R™, N > 2. Suppose the
sequence {L,},.y of distributions is bounded in W=1>(Q). Suppose also that

L, =L+ L2

n’

where {L‘; }n v lies in a compact subset of HL(Q) and {L’i}n oy lies in a
bounded subset of L}, (Q). Then {L,},.y lies in a compact subset of Hi1(Q).

loc loc

We now turn to the proof of Lemma 7, which will be accomplished through
two lemmas.

LEMMA 8. — Let us suppose (3) holds. Then there exists a subsequence
{Us trenw O {8} o0 and a limit function
(35) we L™ R,; L*(R) N L>(0,T); L°(R)NL'R)), T >0,
such that
(36) Uy, — u i LP0,T) xR), T>0,1< p<oo.
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PROOF. — Let 7 : R — R be any convex C? entropy function, andletq : R — R
be the corresponding entropy flux defined by ¢'(u) = # (1) u. By multiplying the
first equation in (21) with #/(u,) and using the chain rule, we get

(37) () + D,q(u,) = 602 n(auy) —en" () (Dprt,)* 417 ()0, Py,
2
:;Li =L

where £!, £2 are distributions. We claim that

£l — 0in H(0,T1x R), T > 0,

(38)
Lf is uniformly bounded in L'([0,T] x R), T > 0.

Indeed, (23), (31), and (27) imply

(39) 0| 2@, «ry < 2Velli ||~ L2zpy— 0,
(40) ||877”(“s)(8a7u8)2||L1(R+xR) < 4”’7”HL%(IT)H“OH%%R)7

(41) 1 @e)0ePellso.may < 12T a0 22cm:
where

2 2
Ir= [— (||u0”Lx(R)+6Hu0||L2(R)T)a 1ol @y + 6ll%ollz2a) T |-

Hence, (38) follows. Therefore, Theorems 3 and 2 give the existence of a
subsequence {u,, },.y and a limit function u satisfying (35) such that as k — oo

Uy, — w in LY

(42) (R, xR) for any p € [1,00 ),
Uy, — U ae. in Ry xR .

Thanks to the L' and L™ estimates (30) and (31) we can upgrade (42) to (36). O
LEMMA 9. — Suppose (3) holds. Then
(43) P, — P" in LP(I0,T;WY@R), T>0,1<p<2.

where the sequence {e},.n and the function u are constructed in Lemma 8.

ProoF. — Using the integral representation of P, stated in (25), Lemma 4,
and arguing as in [4, Theorem 3.2] we have that

3
HP% - Pu||LP([0,T]><R)§ 2 (Hu0||L°C(R) + 6T||u0”12ﬁ(R>> ||ug,c - “HLP([O,T]xR)v

for every 1 < p < oo and T > 0. In light of Lemma 8 we get (43). O
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ProoF oF LEMMA 7. Let ¢ € C*(R, x R) be a compactly supported test
function. Due to (21)

2
f f (usa@ + %M — 0P+ suef)ﬁxqﬁ) de dt + f 20,,()$(0, ) dae = 0.
R

R+ R

Therefore, (22) and Lemma 8 say that the function « constructed in Lemma 8 is a
weak solution of (1), (2) in the sense of Definition 1.

Finally, we have to verify that u satisfies the entropy inequalities stated
in Definition 2. Let # € C2(R) be a convex entropy with flux ¢ defined by
q'(u) = uy/(u). The convexity of # and (21) yield

) + Bpq(u,) + 1/ )Py = e0? n(u,) — e (u) (Do)’ < 0% n(uy).

Therefore, the entropy inequalities follow from Lemmas 8 and 9. O

Using the Kruzkov’s method of doubling the variables [18] we can prove the
L! stability (and thus uniqueness) of entropy weak solutions [4, Theorem 3.3].

LEMMA 10 (L' STABILITY). — Let u and v be two entropy weak solution of (1)
with matial data u(0, -) = ug and v(0, -) = vy satisfying (3). Fix any T > 0. Then

(44) ||u(l‘/7 ) — U(t, .)”LI(R) S eMTtHu() — ,UOHLI(R)7 ae te (O, T),
where the positive constant My is defined in (16).

As an immediate consequence of this lemma we have.

COROLLARY 1 (UNIQUENESS). — Suppose condition (3) holds. Then the Cauchy
problem (1), (2) admits at most one entropy weak solution.

Proor oF THEOREM 1. The existence, stability, and uniqueness of entropy
weak solutions are stated in Lemmas 8, 10 and Corollary 1. The L!, L= and
Oleinik type estimates (17) and (19) follow from Lemmas 3, 4, 6 and 8. O
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