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When does Agglutination Arise in the Homogeneization
of Ordinary Differential Equations?

ELENA Bosa - Livio C. PICCININI

In memory of Guido Stampacchia

Abstract. — When dealing with Differential Equations whose coefficients are peri-
odical, it s of interest to consider the limit when the period becomes shorter and
shorter. This process is called homogeneization and leads to an equation with
constant coefficients. The constants are some mean of the original coefficients,
usually non trivial. We say that the mean is reqular if it is increased whenever
coefficients are increased on a mon-zero set; on the contrary we say that agglu-
tination arises if there are intervals of constancy. It is well known that a chess-
board structure leads to agglutination. The authors give some sufficient condi-
tions to prevent agglutination and show that some more general forms of mosaic
can not save regularity.

1. — Introduction and aim of the paper.

In the last years of his life Stampacchia renewed his interest in ordinary
differential equations. The fruit was the book “Equazioni differenziali in R":
problemi e metodi”, written with the collaboration of Piccinini and Vidossich M,
but founded upon a previous work written by himself in the fifties. He could
never see his work through the press, because of his untimely death.

In this paper we wish to extend in a critical way some results about homo-
geneization theory that were presented in the third chapter of [6]. They are not
difficult to grasp, but in the general case they show a complicated behaviour
including agglutination, that is the “devil’s staircase”. This phenomenon was first
glimpsed by Piccinini in [4] for the chessboard structure, then it deeply studied
by Mortola and Peirone in [2], and in particular by Peirone in [3]. Devil’s stair-
case is not an uncommon phenomenon, and it depends on some privileged
behaviour connected with rational numbers inasmuch they allow a finite re-

(*) Later on it was translated in English ([6]). The references in this paper are with
respect to the English translation
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presentation. Dirichlet’s function was perhaps the first example of it. A recent
case was found in the generalization of Bak-Sneppen processes, as it is shown in
[1]. In homogeneization theory this phenomenon arises when a first order
equation periodic in both its arguments is lead to the limit. The rotation index so
obtained is some form of mean of the coefficients. When homogeneization is
performed with respect to a leading variable (or depends only on one variable)
such mean is strictly monotone, that is if coefficients are increased on a non-zero
measure domain, it increases. On the contrary, when it is performed at the same
rate in both variables agglutination (or devil’s staircase) may arise: it means that
there are intervals of constance even when coefficients are increased on a po-
sitive measure set.

We may call regular the classes of structures for which agglutination cannot
arise, and we show that there are regular classes larger than those consisting of
homogeneization in a single variable. We show that in general, anyhow, a mosaic
structure generates agglutination. Finally we find some (very simple) mosaic
structures for which regularity is maintained.

2. — Notation and theoretical foundations.

As it is well known there exist ordinary differential equations for which
Cauchy problem has infinitely many solutions (Peano’s phaenomenon). The
theory of G-convergence for these equations becomes more complicated, and
moreover is no longer consistent with homogeneization with respect to both
variables (%). Since here we are not interested in these special cases, for which
homogeneization seems not to be meaningful, we can restrain ourselves to those
equations for which Cauchy problem has a unique solution. In view of periodicity
we can also limit ourselves to the case when solutions exist on the whole R. We
consider thus equations of the form

Aflyl =y — f(,y) =0,

where f satisfies the conditions: f is continuous with respect to ¥ and is mea-
surable with respect to « and there exists a constant M such that

2.1) |fGe,y)| < M(|y| + 1).

DEFINITION 2.1. — Let
An[yn] = Aﬂ? [yw] =0

() A general approach, even if not very elegant, was given in [5]
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be a sequence of differential equations and let Aly] = Arly] = 0 be a differential
equation.

Suppose (2.1) is satisfied uniformly and that the Cauchy problem has always
a unique solution. We say that A,, G-converges to A if for every pair (x°,y°) the
sequence {y}, consisting of the solutions of the Cauchy problems

An[yn] =0

yn(g(;o) = yO
converges uniformly to the solution y(x) of the Cauchy problem

Alyl=0

y@) =1y,

When we are dealing with periodic structures we are often interested in

problems of homogeneization, that is to study a global behaviour that can be
different from microlocal properties.

The general theorem on homogeneization for first order equations is the fol-
lowing (Theorem 2, page 190 of [6])

THEOREM 2.2. — Let f(x,y) be a C-function, periodic in x with period L and
periodic in y with period M. Then the equations

(2:2) Yy, = fela, yr) = f ke, kyy)
G-converge to the equation
(2.3) y=p

where p is a number satisfying the condition

minf(v,y) < p < maxf(z,y) ).

Remark that the limit can actually be given by one of the extrema as it is
shown by the function f(x,y) = sin (x — y). The sequence (2.2) G-converges to
p =1, that is to the maximum.

A trivial case of theorem (2.2) is achieved when the function f depends only on
2. In this case we get that p is given by the arithmetic mean of f on the period.
Exchanging the roles of the variables one obtains a less trivial result for au-
tonomous equations, where the function depends only on y. In this case p is given
by the harmonic mean of f.

() If one thinks of an equation with double periodicity as a field of tangents on a
thorus, it is clear that p represents the mean ratio between the number of principal
rotations and secondary rotations.
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In order to extend this result we recall the definition of functional mean.
Let @ be a continuous strictly monotone function defined on some interval of
R. We say that p is the functional mean of @ and b according to @ if p is the value
such that
D(a) + D(b)
2

More generally, given a normalized measure x and a density function g on an
interval [a, b], its functional mean according to @ is the unique value p such that

D(p) =

b
() = [ PlgNdu)

3. — Regular homogeneization and its extension.

We have seen that, when dealing with a class of periodic functions depending
only on a unique variable, homogeneization is regular in the sense that an in-
crease of the function causes an increase in the limit. Remark anyhow that we are
allowing only changes that preserve the dependence on a unique variable,
otherwise the statement would be false as we shall show in the next section. We
now enlarge in a simple way this class of functions.

THEOREM 8.1. — For 0 < 0 <% let

x —tan@

(3.1) Dy(x) = 1t otand’

defined either on the interval x > —1/tan 0 or on the interval x < —1/tan 6. Let
f(x,y) = F(xcos @ + ysin 0), where F' is continuous and periodic of period 1. Then

1. f(x,y) is periodic in x and y with period L = (cos0) ', M = (sin0) ",

2. If F does not attain the value —1/tan 6, the G-limit of homogeneization
(2.2) is given by the functional mean according to function (3.1), and in this
class homogeneization is regular.

3. IfF attains at some point the characteristic value —1/tan 0, the G-limit is
the characteristic value, and does not depend on the remaining values A.

Proor. — The first statement is obvious, and the periods L and M are just the
points where the first period (unitary) of F', estimated starting from (0, 0), is
completed. Thus theorem (2.2) holds and there exist a G-limit associated to a
constant. We need just to estimate the constant.

() That is, homogeneization is no longer regular, as it happened for autonomous
equations when the characteristic value 0 was attained
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We first recall explicitely the trivial homogeneization 3" = f(x) , where f is peri-
odic of period 1. Since ¥, = f(nx), integrating we get

() — oo = f fnt)dt :% f F(s)ds
0 0

Let now p = fl f(@®)dt; we compare the behaviour of y,, with the behaviour of the
limiting solutioon

y(@) = pe +y°
We get

x—[mc]<g
n

@) — @) = % ‘(m ~lnalp — [ feods| <" .

[na]

what ensures the uniform convergence to the solution with constant slope p,
where p is given by the arithmetic mean.

This is the case of § = 0. The general case is obtained by a positive rotation of
angle 0. We interpret the differential equation as a field of directions of which we
know the tangent with respect to the horizontal. We express now the new tangent
with respect to the line —x sin 6 + y cos 6 = 0, getting a new direction field given
by tan (arctan F' — 6). We are thus reduced to the trivial case, where the G-limit is
represented by the arithmetic mean. This will now be represented with respect to
(«c, ) variables, getting thus

1 14+ F(s)tan@
p = tan (arctan f tan (arctan F'(t) — 6)dt + 0) =9 ; ,
0 (1 + tan?0)

1 14+ F(s)tan@

that is the functional mean of the statement.

Remark that this formula for § = 0 gives the arithmetic mean, while for § = 7/2
its limit is the harmonic mean corresponding to the case of autonomous equations.
The last part of the statement is required when the functional mean can no longer
be used. Without loss of generality we may suppose that F'(0) = —1/tan 6, hence
we find the linear solution

y(x) = —x/tan 6.

Since the G-limit exists by theorem (2.2), it follows that its coefficient is actually
p=—1/tand. O



366 ELENA BOSA - LIVIO C. PICCININI
4. — Chessboard, Mosaic and Agglutination.

By a mosaic we mean a first order differential equation 3" = f(x,y) where
f(x,y) is periodic with respect to both variables and is piecewise constant on a
finite number of polygons. Existence and uniqueness are ensured when the
following consistency conditions are satisfied:

1. in each polygon the associated value does not coincide with the slope of any
of its sides

2. for each side the values associated to the two adjoining polygons are both
either greater than the slope or less than the slope of the side.

The points of coordinates (hL, kM) are called the grid of the mosaic, while all
the vertexes of the polygons are called knots. It may happen that knots do not
belong to the grid, that some knots lie on the grid (it is the case of the chess-
board), and even that all the knots belong to the grid.

As in any case of differential equation with doubly periodic structure, we can
consider the input-output function: for any given Cauchy problem

Y =f,y)
y(0) =¢°

we let Y(y°) = y(L), that is the exit value at the end of one period in the in-
dependent variable. Clearly the rotation index depends only on the structure of
the input-output function, and what happens in the inside does not effect the
limiting value.

A useful lemma is the following:

LEMMA 4.1. — Let a mosaic be given. Then the input-output function is
piecewise linear. Changes of derivative may happen only when the solution
touches a knot.

ProoF. — Since the derivative is piecewise constant inside each polygon, it
follows that the solutions are piecewise linear up to each knot. Any local (i.e.
relative to a single polygon and single sides) input-output function is therefore
linear in view of Talete’s theorem. Since the global input-output function is
built up by the local ones, and since the composition of linear functions is linear
it follows the first statement. The second part follows from the fact that any
change must arise from changes in the collection of local input-output func-
tions (that otherwise are invariant), and also this fact can happen only when a
knot is crossed. O

4.1. — Generalization of the classical chessboard.

We can make a generalization of the classical chessboard with square boxes
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by giving different sizes to the squares. In this case we have a big square whose
side measures 2, in which we have slope a, in the two edges down on the left and
aloft on the right there are two different smaller squares, in which we have slope
b. If we increase the smaller squares till their sides measure 1 we have the same
situation of the classical chessboard.

4

n 1 2 A 4 A F

Fig. 1. — Mosaic with squares of different size

We now consider how the G-limit changes as we modify the values of the two
parameters.
Remark that obviously solutions are polygonals. If the smaller squares are too
big and the polygonal crosses them, then we have a situation similar to the
classical chessboard. Instead, if we reduce enough these squares, the polygonal
may not cross them. In this particular case whatever value we give to the
parameter b, leaving the parameter a unchanged, the G-limit won’t change. In
this way for every rational slope %! we can find a particular dimension of the
smallest squares for which, if we set a = and we exchange the value of the
parameter b freely, the G-limit remains 2.
Let’s now consider which is the greatest dimension we can give to the smaller
squares in order to maintain this feature. We examine this problem in the event
that slope a is rational (in the form 2 with (1, n) = 1 that is m and » are coprime)
and a < 1. In fact the instance a > 1 is symmetrical. In order to be clear we may
call /2 the dimension of the smallest squares while the dimension of the biggest
ones remain fixed 2. First we can examine what happens with slope a = %, we
have two main inequalitiess that have to be satisfied:

2™ s opn2™ <2 gy
n n
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S0, in this case, the greatest dimension of the smallest squares is %

‘35 T T T T T T

25

[}

0 0a 1 14 2 2458 3 FA 4

Fig. 2. — Slope 1

Let’s try to study now the general situation:

THEOREM 4.2. — Let the main coefficient a. = "* with m and n coprime. Then
the greatest size of the secondary squares for which the couple (% , b) has G-limit ™
is L.

Proor. — First for every value m with (m,n) = 1 we can always find a poly-
gonal which doesn’t cross the small squares. We can consider polygonals which
start from the edge aloft on the left of the first small square (as in Figure 2). In
fact, if we aim to maximize the size of the squares, the polygonal somewhere will
touch one of their corners.

Consider now / = 1, the polygonal starts from (0, ) and crosses » right sides
of the big squares in order to arrive to (2n,2m + k). Suppose now to overlap all
the intersection points between the polygonal and the vertical side of the biggest
square in one unique segment 2 unites long (Figure 3). There are exactly n + 1
points including the starting and the arriving points. We can see that it is pos-
sible that none of this points meets up with the smaller squares. In fact if the
polygonal starts from (0,}1) and for any two units the y-value increases of a
quantity % with (m,n) = 1 the intersection points on the segment are all of the
type h + %k where k = 1,...,n and they are all different. We can easily see that
none of them meets up with the small squares. In this way so we have found a



WHEN DOES AGGLUTINATION ARISE IN THE HOMOGENEIZATION, ETC. 369

n

L]

Fig. 3. — Intersection points overlapped

Fig. 4. - h>1

polygonal of slope 2 which doesn’t cross any small square of dimension % Isit
possible to enlarge this small squares keeping the property that there exist that
particular polygonal?

It can easily be seen that this isn’t possible, so the largest size of the small
squares is exactly 1. As a matter of fact if the polygonal starts from a point
(0,1 4 ¢) sooner or later one of the intersection points, which are far from each

n
other % will cross one of the smaller squares. O
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We come now to non regularity.

From the classical theory of the chessboards we know that agglutination
arises when the G-limit is 1 and % is odd but it does not happen when # is even. In
our case, on the contrary, we shall show that for any size of the smaller squares
less than 1, agglutination may arises also for even n. In particulary it is enough to
show it for n = 2.

Ifb < % the polygonals that touch the smaller squares, with the same coeffi-

cient a can no longer be unchanged as b varies. Hence, in order to have the same
G-limit, @ must change, so agglutination is found.
Else, if the smaller squares are larger than { we don’t have the situation de-
scribed in Theorem 4.2, there isn’t a singular value of the parameter in the bigger
squares that gives always the same G-limit with every parameter of the smaller
squares.

But, as the two parameters are ¢ < 1 and b < 1, if we find a poligonal with
starting point in (0, 0) and periodic (arrives in (4, 2)) we know that the poligonal y*
starting from (0, ¢) will arrive at (4,2 + ¢&').

In fact, if the solution y* would be continued with the slope a (of the smaller
squares) we should attain y*(4) = 2 + ¢ but its actual slope is b # a hence it at-
tains a different value y*(4) = 2 + ¢. Therefore it is possible to modify one of the
values of the two parameters (for example @) in order to make this new poligonal
periodic (in order to arrive at the point (4,2 + ¢)), this new poligonal will have
slope %but while the parameter b is the same of the first poligonal the parameter
a has been modified. This non regularity keeps occurring till the side of the
smaller squares is smaller than 1.

5. — Regular Mosaics.

We have seen that in general mosaic leads to non regularity. We wish now to
investigate a class for which regularity is preserved. It holds in fact the following

THEOREM 5.1. — The classes of mosaic in which the knots belong to the peri-
odicity grid are regular.

Of course the mosaic is the most elementary: a lower-left triangle versus an
upper-right triangle or an upper-left triangle versus a lower-right triangle. The
latter case will not be considered because it is generated by a linear transform.
Remark that regularity does not imply there are simple formulas for the calculus
of the rotation index. The case of Theorem 3.1 is rather an exception derived by
the use of a linear transform of a single-variable periodic function.

Proor. — Without loss of generality we consider unitary periods L = M = 1.
First of all we need a remark about irrational G-limits. If the limit G is irrational,
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there cannot exist any trajectory such that (0) = 4° and y(n) = %° + m, with m
and n integers. We prove now that the set of parameters for which G is attained
cannot have positive measure. In fact if it were so open balls should exist for which
G is also attained. Suppose that the parameters p and q lie in the interior of the
ball, then there exists ¢ = 1/% > 0 such that p + ¢ and q + ¢ still belong to the ball.
Consider the trajectory coming out from ¢(0) = 0, with parameters p and q. Let y*
be the trajectory coming out of ¥*(0) = 0 with the increased parameters. At the
point x = nwe get thus y*(n) — y(n) = 1. Hence there exists some value 0 < ¢ < ¢
for which the corresponding solution satisfies y**(n) = m, where m is an integer.
But that means that for the limit it holds

G(p+e’,q+8/)=%7

that is, it is a rational number, hence, in view of monotonicity it is strictly
greater than the original irrational limit G(p,q). Hence G(p+¢,q+¢) >
Gp+¢&,q9+¢) > Gp,q), what contradicts the hypothesis ®.

We consider now the case when the limit G is a rational number 2 In this case
there exists a trajectory such that (0) = %° and y(n) = y° + m. By a translation
we get y” =0. Consider now also the trajectory such that %*(0) =1 and
y*(n) = m + 1. In the strip y(x) < y < y*(@), 0 < & < n there lay exactly (n — 1)
knots. In view of Lemma 4.1, in order to study the n-th iterated input-output
function we need only to study the trajectories that pass through those (n — 1)
knots. Let () be the trajectory that passes through a knot (#°,m%). In view
of periodicity we get y**(x) = y(x —n®) +m" for x >n’ and in particular
() = y(n —n°) + mP. For x < n® we get y*(x) =y +n —n®) — (m —mP)
and in particular for ¥*(0)=ym —n’) — (m —m°. So y™*un)—y*0) =
m = y(n) — y(0). Therefore the n-th iterated input-output function is actually
linear and is given by F(3°) = m + 9.

Since any increase in parameters implies a positive increase of the input-output
function and of all its iterates, this means that any increase no longer allows fixed
point for which %(0) = %° and y(n) = 4° + m. Hence we have proved that the
class is regular. |

We now want to understand which are the main differences and the main
similarities between the mosaic with triangular-shaped boxes and the classical
chessboards. As the knots of this new mosaic belong to the periodicity grid due to
Theorem 5.1 there is regularity: if we modify one of the value of the parameters
the general slope is modified itself.

(®) Of course the argument can easily be generalized to any mosaic, and, taking the
limit, to any double periodic structure.
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] 1 2 3 4 5 B ?
Fig. 5. — Mosaic whit triangle-shaped boxes

Let’s try to find the equation that connects the two parameters p and q of the
slopes in the triangular-shaped boxes. Starting from a point with coordinates
(0,%0), let y,, be the y value of nth intersection with the vertical grid. We find the
general relation

l1+g¢ l1+g¢
5.1
(5.1) Yn+1 =P 1+p Yn 1+p
From (5.1), calling A = p—HZ and B = —HZ we have

A A
. 1A _
=8 (yo 149)*173

A 14+¢\"\1+gq
. _ pn — _ - = -
yn=A-B77p <1 (1+p> )p—qp

with Yo = 0

So, in the case of G-limit % with the first parameter p = 1 (the slope in the tri-
angles down on the left is a fixed value 1) we have y» = 1 and so the equation

o 1+¢q 2 1+¢q
o= (- (50) )i

P +49-1=0

that is

In the same way we find a similar relation in the case of G-limit { and p = 1
C+¢F+3¢-5=0

In the general case of slope % and p = 1 we have

oy (1ta\"\1+4q
= (-7 )i
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that is (with ¢ # 1)
27Z+1q _ (1 4 q)7l+l _ O

The next theorem allows us to enlarge to some extent the classes that are
regular. It gives also the possibility of estimating the G-limit of a structure in
some cases for which such a limit is known for another structure. Theorem 3.1
was a simple case of this procedure and succeeded because of the existence of
explicit formulas for the single variable homogeneization.

THEOREM 5.2. — Non singular linear transforms that are consistent with
periodicity preserve the reqularity or respectively the non-reqularity of classes.

The fact is obvious, since Theorem 2.2 establishes that the G-limit exists.
Coefficients are transformed linearly and the values that correspond to those
values that let agglutination arise will make agglutination arise in the new
structure. The regularity is also preserved in view of the linearity. It is only
necessary to find out which are the linear transforms that are consistent with
periodicity. We must require that one point of the original grid is plotted
somewhere on the y- axis, and some other point of the original grid is plotted
somewhere on the x- axis, namely there must exist four integers n,, mq, ng, ms

T e
-

Periods are obviously L and M respectively.

Remark finally that the main examples of this family of linear transforms are
the rotation of 7 and the shear transform that switches between the two types of
triangles indicated at the beginning of this section.

and
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