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A Local Error Estimator
for the Mimetic Finite Difference Method (*)

L. BEIRAO DA VEIGA

Abstract. — We present a local error indicator for the Mimetic Finite Difference method
for diffusion-type problems on polyhedral meshes. We prove the global reliability and
local efficiency of the proposed estimator and show its practical performance on a
standard test problem.

1. — Introduction.

The Mimetic Finite Difference method has been applied successfully in a
large range of applications, for instance electromagnetics, gas dynamics and
diffusion. The advantage of such a method is twofold. First, it allows for a large
choice of discrete scalar products, leading to an entire range of different (con-
sistent and stable) numerical schemes for the same problem. This additional
freedom can be used, for instance, to tackle a scheme which satisfies some ad-
ditional physical or numerical properties. Second, the Mimetic Finite Difference
method allows for general polyhedral meshes with degenerate and non-convex
elements, which is a very useful property in many applications.

In the present paper we consider the diffusion problem written as a system of
two equations

divF =5, F+XKvp=0 in Q

1
@ p=20 on 0Q2 .

The first equation represents the mass conservation while the second one is the
constitutive equation relating the scalar variable p to the velocity field F' through
the symmetric material tensor K. For simplicity, we consider the case of
homogeneus Dirichlet boundary conditions for the scalar variable.

The diffusion problem has already been the object of a large number of pa-
pers in the literature of MFD, see for example [6, 7, 19, 20, 21, 22, 23, 25, 26] and

(*) Comunicazione tenuta a Bari il 26 settembre 2007 in occasione del XVIII Congresso
dell’'Unione Matematica Italiana.
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references therein. In [11, 13], the authors proved for the first time the con-
vergence of the method for general polyhedral unstructured meshes with flat
and curved faces, while in [12] a family of inexpensive MFD discretization
schemes was introduced.

As noted above, one of the main advantages of the MFD method with respect
to classical finite elements is the generality of the mesh. The elements can be
general degenerate and non-convex polyhedrons, eventually of different type
across the domain. Such flexibility makes the MFD method a very appealing
ground for the application of adaptive strategies for error control. In the present
paper we present a local (reliable and efficient) residual-based error estimator
for the MFD method applied to problem (1). In this contribution we therefore
focus on the evaluation of the local error, which is a key issue in adaptivity. The
results of this paper are shown without proof; the proofs can be found in [4, 5].

The paper is organized as follows. In Section 2, we briefly review the Mimetic
Finite Difference method and, in particular, the assumptions on the scheme. We
essentially require the same (minimal) properties on the mesh geometry and
discrete scalar products introduced in [11] to prove the convergence of the
method. Moreover, we introduce a post-processing scheme for the scalar vari-
able, in the spirit of [27, 24]. The post-processed pressure is shown to converge in
a stronger norm and it is a key ingredient in the proposed error estimator.
Afterwards, in Section 3 we introduce the local error indicator, and show the
main result of the paper, i.e. global reliability and local efficiency bounds. Finally,
in Section 4 we combine our error estimator with an adaptive strategy and apply
it to a standard benchmark problem, in order to show the practical performance
of the error indicator. More numerical tests can be found in [5].

In the whole contribution the scalar C will indicate a general positive con-
stant, eventually different at each occurrence, uniform in the mesh size.

REMARK 1.1. — For simplicity of exposition, in the present paper we focus the
proofs and notation on the case of three dimensional problems. The error esti-
mator for the bi-dimensional case is identic, the proofs being a simpler re-
formulation.

2. — The mimetic finite difference method.

In the present section we give a brief description of the Mixed Finite
Difference method applied to problem (1).

Let Q be a polyhedron with Lipschitz continuous boundary. Furthermore, let
Q;, be a non-overlapping conformal partition of Q into simply-connected poly-
hedral elements with flat faces. We indicate in the sequel the set of faces of ),
with &, and with kg the diameter of each element E. Furthermore, for every
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E € Q) and every face e € OE, let n? represent the outward unit normal to e.
Moreover, in the sequel we associate to every e € £, a normal unit vector n.,
fixed once and for all.

We assume the following properties of the mesh €, introduced in [11] in
order to derive the a priori error converge estimates for the scheme.

(M2) We assume that we have two positive integers N, and N; such that
every element E has at most N, faces, and each face e at most N, edges.

(M3) We assume that there exist three positive constants v., a. and [, such
that for every element ¥ it holds

vhip < ||, a.f <lel, Lhg <]l

for all faces e and edges [ of £, where here and in the sequel |E|, |e|, |I| represent
respectively the volume of £, the area of ¢ and the length of .

(M4) We assume that the mesh faces are flat and that there exists a positive
number y, such that: for each element £ and for each face e € OF there exists a
point M, € e such that e is star-shaped with respect to every point in the disk of
center M, and radius /.

(M5) We further assume that for every £ € Q,, and for every e € OF, there
exists a pyramid Pj, contained in £ such that its base equals to ¢, its height equals
to y,hg and the projection of its vertex onto e is M,.

(M6) We assume that there exists a positive number 7. such that: for each
element K there exists a point Mg € E such that E is star-shaped with respect to
every point in the disk of center My and radius t./g.

In the sequel, we assume for simplicity that the tensor field K is piecewise
constant with respect to the mesh. In an adaptive framework, since subsequently
refined meshes are typically obtained by subdivision, it is sufficient that such
assumption holds for the initial mesh.

We also assume the following standard condition.

(P1) The tensor field K is symmetric and uniformly strongly elliptic, implying
that there exist two constants k. and k* such that

2) klo|? < v"Kew < k*|v)®? v eR® \vxeQ,

where, here and in the sequel, || - || indicates the Euclidean norm of R?. We are
now in the position to introduce the Mimetic Finite Difference method.

The first step of the MFD scheme is to define the degrees of freedom for
the pressure variable p and flux variable F. We therefore introduce the space
Q7 of discrete pressures that are constant on each element E. For g € Q%, we
denote by qg its value on E. For notation simplicity, for any q € @, in the
sequel we will identify the vector of its values and the respective Q),-piecewise
constant function.
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The space of discrete velocities X? is defined as follows. To every element
E € @, and face e € OF, we associate a number G¢, and the respective vector field
G%nE. We make the continuity assumption

(3) % = —Gg,

for each face e shared by two elements £; and K. Then, the number m of the
discrete velocity unknowns will be equal to the number of boundary faces plus
twice the number of internal faces. We consider the space X? as the subspace of
R™ which satisfies (3).

We define the following corresponding interpolation operators. Given any
function ¢ € L(Q), we define its interpolant ¢/ € Q% as

4) @e = |E|™" f gV VEeQ,.
E

For every function G € [LS(Q)]S, s > 2, with div G € L2(Q), we define its inter-
polant G' € X¢ as

(5) (GLY = \erlfG -nfdy  VE €@, Vec OF .

Note that, in the sequel, there will be no confusion in the notation, because in-
terpolant (4) is applied to scalar functions and interpolant (5) to vector functions.

The second step of the MFD method is to build a discrete divergence op-
erator. For each element G € X?, we define its discrete divergence DZV'@ as the
element of Q7 given by

(6) (DIV'G) = [E| ) |elGy;  VE € Q.
ecOk

It is easy to check that the following very important commuting diagram prop-
erty holds. For all G € [L"’(Q)]S, s > 2, with div G € L?(Q), it holds

(7) DVIG! = (div G) .

The third step of the MFD method is to define scalar products for the spaces
Q“ and X?. For the space Q%, we take the only consistent choice

(8) P, qlge = > |Elprqe  Yp,q € Q" .

Eeq,

For the space X¢, the scalar product is defined as

) [G.Qlx = > [6,.Qly VYG,QeX’,

EEQh

where [G, Q] is a local scalar product on E. The choice and construction of such



A LOCAL ERROR ESTIMATOR FOR THE MIMETIC FINITE DIFFERENCE METHOD 323

local scalar products is a main point in the MFD method, and it is the object of
various papers in the literature, see for example [20, 22]. A general procedure for
building these products, such that certain fundamental assumptions are sa-
tisfied, was given in [12]. We here assume that those same (minimal) stability and
consistency assumptions are satisfied.

(S1) There exist two positive constants s, and S, such that for every element
E in the decomposition we have

(10) s.|BI > (GY <IG,Glg < S.E| Y (G VG eXx?.

ecOE ecOE

(S2) For every element E, every linear function q on E and every G € X, it holds

(11) (&V9), Gl = - [ qDTVG)pdV + 3 Gy [ qdx .
E ecOF e
Furthermore, we introduce the local and global norms
(12) IG5 = 16,61 = Y IGIE . G =[G Glg -
EcQ,,

The fourth step of the MFD method is to define the discrete flux operator G¢,
as the adjoint of the discrete divergence operator with respect to the introduced
scalar products. We have

(13) [G, Gy = [p, DDV'Gly:  VpeQ?, VG e X7 .
Finally, the MFD method for problem (1) reads

(14) DIVIF; =b | F, =Gy

or, in more explicit form,

15) [Fq, Glxi — [pa, DIV'Glg = 0 VG e X?
[DIV'Fy, qlg: = [V, qlge vgeQ".

2.1 — Convergence of the method.

In [11], the authors prove that properties (S1) — (S2) are implied by the ex-
istence of an element lifting operator Rz with certain consistency and stability
properties. We here assume the existence of such operator; as underlined in
Remark 2.1, this is a very weak assumption. Note that this operator never needs
to be built in practice, the knowledge of its existence being sufficient for our
purposes.

(S) For every element E € Q) it exists a lifting operator Ry acting on X9,
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with values in [L2(E)P?, such that

Rg(Gp)|, -n. =Gy  Vec OE
(16)

div Rg(Gg) = PDV'G)y inE
for all G € X¢,
(17) Ry(GY) =Gy VG constant on E

and the velocity scalar product can be written

(18) Q.61 = [ K 'Re@p) Re(Gr)dV Q.G € X"
E

As shown in [13], the above properties automatically imply the following ap-
proximation property

In the sequel we will indicate with R the global operator X¢ — [L2(Q)]?, which is
obtained combining all the local lifting operators Rz element by element.
The following convergence result for the MFD method is proved in [11].

THEOREM 2.1. — Assume that the domain Q is convex and K € WL°(Q). Let
(F, p) be the solution of problem (1) and (Fg, pq) the solution of problem (15). Then
it holds

|F _RFdHLZ(Q) < Ch”pHHZ(Q)
(20) | div (F — RF )| 20) = 1D = b || 1200y < CRIIbl (g

Ip" — Pl < CRPUIPl e + 1bllm@) -

Note that the requirements  and K are needed only for (20)s. In the general
case, a simple modification of the proof in [11] leads to

COROLLARY 2.1. — Let (F,p) be the solution of problem (1) and (Fq,pg) the
solution of problem (15). Let p € H'19(Q), 0 < q < 1. Then it holds

1) |F — RF 4| 12(0) < CRY||p||p+a()
Ip" — Pallzzo < CRHIpl o + 100 m@)

where 0 < s <1 1s a problem regularity constant, depending on K and on the
shape of Q.
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REMARK 2.1. — In the recent contribution [14], the authors prove that prop-
erties (S1) and (S2), under a reasonable algebraic assumption on the discrete
scalar product, imply the existence of the local lifting operator Rg. Such a result
confirms the general opinion that a “virtual” operator Rz essentially exists in all
cases of interest.

Finally, we introduce a post-processing scheme, in the spirit of [27, 24], for the
mimetic finite difference method of Section 2 and show a convergence result for
the improved solution. The post-processed pressure is used in the computation of
the local error estimator of Section 3.

Let the discrete norm

(22) gl g =" IValiem + > kM IlgllGe, -

Eeq, ecty,

for all q sufficiently regular, where [ - ]| represents the classical face jump op-
erator, which is assumed to be equal to the function value on boundary faces.
Moreover, let Q¢ be the space of €,-piecewise linear functions with zero average
on each element.

Given (Fy, pg) solution of problem (15), we define p, as the unique function in
QY that satisfies

(23) \E|Vplg - Valg = —[Fa,(VQ)' s~ VE € @, Vg€ @ .
We then set our post-processed pressure as
(24) Pa =P+ pa -

Note that, due to (18) and (17), from (23) it follows

25)  [Vp; VaaV = - [ K'RgF, - VgdV  VE €0, g Q.
E E

We then have the following result. The proof is omitted and can be found
in [4]

PROPOSITION 2.1. — Assume that the domain Q is convex. Let p}; be computed
as in (24), and (F, p) be the solution of problem (1). We then have

(26) e = pilllya + 27 e = Pill 2 < ChUPI ) + 18l a@) -

In the general case of a non convex domain £, a simple modification of the
proof shows that a weaker convergence result, in the spirit of Corollary 2.1,
holds. Note that, due to property (S2), the solution py of (23) does not depend on
the choice for the scalar product [-, 5.
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REMARK 2.2. — An equivalent post-processing for the pressure variable is
presented in [15], where the authors focus also on the computational aspects in the
calculation of p;.

3. — A local error estimator.

In the present section we introduce a local error estimator, in the spirit of [24],
for the mimetic finite difference method under study, and show reliability and
efficiency results. Even for the finite element method, local error estimators for the
diffusion problem in mixed form are relatively recent, see [8, 16, 24]. For general
results regarding a posteriori error analysis, we refer for instance to [28, 1].

Given (Fg,pg) solution of problem 15, and p; computed as in (24), the pro-
posed error estimator is given by

=

EEQ},

* 1 — *
iy = 1KV + Fall[ + hgllb = b 72y + 5 > b 1007z
ecOl

(27)

The main result of this contribution is the following Proposition, stating the
reliability and efficiency of the proposed estimator. The proof can be found in [4, 5].

PROPOSITION 3.1. — Let (F, p) be the solution of problem (1). Then it holds
(28)  |IF = RF 4|2y + bl div (F — RF )| 120 + [P — Palll1.a < C -
Moreover,

(29)  np < C(IF — RpF || o) + hel| div (F — RpFg)|

e+ e —pallliaz)

where the norm ||| - |||, , z stands for the discrete norm ||| - |||, ; with the sums
restricted to the element E and the faces e € OF.

Note that the norm (28) in which we measure the error for the vector variable
is essentially equivalent to the ||| - |||4 norm adopted in [11], see also remark 3.1
below. Simply, the assumption (S) on the existence of the lifting operator Ry
allows us to write it in L? form. The a-priori error estimates for the norm in 28
are listed in Theorem 2.1 and Proposition 2.1.

The term hg||b — 0| 12y appearing in the estimator is not a higher-order
term and, in principle, it is not exactly computable. Nevertheless, it can be easily
estimated up to higher order terms with a sufficiently high quadrature rule.
Finally note that, due to the identity

(30) b— bl =div(F — RgFy)
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shown in [11], a different scaling can be adopted for the divergence error term
and the estimator 7 easily changed accordingly.

REMARK 3.1. — Assume that F € W™4(Q) for some ¢ > 2,0 < m < 1. Using
interpolation properties, inverse inequalities and Lemma 4.1 in [11], it easily
follows

IIF! = Fallly <C, (hmwwm,q(g) RO — RE 10,
(31)

X X 1/2
+ (E; K2 div F — div Rqum)) )
S

where the constant C, depends on q and blows up for ¢ — 2. Therefore, even when
the lifting operator R is not explicitly known, the first two terms in the norm (28)
are important nevertheless. Indeed, it is clear from the previous bound that the
convergence of RF; to F in 28 implies the convergence of F; to F'in (31).

4. — A benchmark test.

In this section we address a classical test, the so called L-shaped domain, in
order to check the practical performance of the error estimator. A full set of
numerical tests, comprising also highly graded loads and jumps in the coeffi-
cients, can be found in [5].

We assess the performance of our approach by comparing the error con-
vergence of the numerical approximations that are obtained on given sequences
of uniformly and adaptively refined meshes starting from a given base mesh.
The sequence of uniformly refined meshes is built by constructing each mesh by
the same mesh generation process used for the base mesh but with finer mesh
size parameters. Note that this uniform refinement strategy preserves the
conformity and shape-regularity of the mesh. Instead, an adaptively refined

Fig. 1. — Two successive local refinements starting from an hexagonal element.
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mesh is generated from a given mesh by refining each element that has been
marked for refinement in accordance with the local error estimate provided by
our indicator. We adopt a classical marking strategy and refine marked elements
E as shown in Figure 1. The details about our marking and refining strategies
can be found in [5].

In our test we will present two figures. In the first figure, we display the base
mesh from which both uniform and adaptive calculations start, and a locally
refined mesh at an intermediate level of the adaptively refinement process. The
comparison of the two meshes reflects which part of the computational domain
requires refinement according to the error estimator. In the second figure, we
show four plots that are labeled from (a) to (d) and that display, respectively,

(a) the pressure error [[p — pallg;

(b) the flux error ||[F' — Fgl||xa;

(c) the global error and the global estimator n appearing in Proposition 3.1;
(d) the effectivity index defined by the ratio between estimator and error.

These quantities are measured on uniformly (solid lines) and adaptively re-
fined meshes (dashes lines) and are plotted versus the total number of mesh
elements N. As N is roughly proportional to 1/A? on uniform meshes, the con-
vergence rate of the errors and a-posteriori estimates are reflected by the slopes
of the experimental curves shown in the log-log plots (a)-(c). For comparison, in
the bottom-left corner of plots (a)-(c) we report the slopes that are expected on
the base of “theoretical” arguments. The comparison of the error curves of plots
(a)-(b) shows how convergence rates for both pressure and flux (also when the
corresponding errors are independently measured) are improved by adapting
the mesh according to the a-posteriori estimator 7.

The same holds for plot (c) with respect to the target error of Proposition 3.1.
Moreover, plot (c) allows the reader to compare the behavior of the error and
estimator, see again Proposition 3.1. Finally, the effectivity index shown in plot
(d) highlights the precision of the global estimator in the evaluation of the global
error. For computational convenience, we approximate the term |F — RF Hiz(Q)

by Sp [1F! — Flll3.

4.1 — The L shaped domain test.

We consider the Poisson problem on a L-shaped domain, obtained carving
out the lower right quarter from the square domain [ — 1, 11%. The source term
b is null, and the boundary conditions are set in accordance with the pressure
solution

(32) p(r,0) = r*/3sin (20/3),

here expressed in terms of the polar coordinates (r, §) in the plane.
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S
A

(@ )

Fig. 2. — The base mesh for both uniform and adaptive calculation, e.g. (a), and the
locally refined mesh after three successive adaptive refinements, e.g. (b).

The initial grid adopted in this test is shown in Figure 2(a), and is given by
applying the coordinate transformation mapping [12] (¢,0) — (x,¥y)

(33) x =& + ¢sin 2né) sin 2n),
(34) y =( + ¢sin 2né) sin (2n0).

with distortion parameter ¢ =1/10 to a regular grid of squares in the co-
ordinates system (&, ().

It is easy to check that, although the load is regular, the exact solution p is
only in H*/3(Q) due to the presence of the re-entrant corner. Moreover, again due
to the non convexity of the domain, the problem regularity parameter s of
Corollary 2.1 is 2/3. Thus, the expected asymptotic rates of convergence on
uniformly refined meshes are

(35)  err~ N3 |IF' —Fyys ~ N3, ||pT —pallg ~ N2,

Conversely, a fully successful adaptive strategy should succeed in recovering the
optimal convergence rate of regular problems, that is

(36) err ~ N™'2||IF" — Fylllys ~ N2, |lp" = pallgr ~ N7,

First, note that the mesh depicted in Figure 2(b) shows how the adaptive
strategy correctly refines near the re-entrant corner. As it can be checked in
Figure 3(a)-(c), the numerical results agree with the above predictions.
Moreover, Figure 3(d) shows the good behavior of the effectivity index.
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Fig. 3. — Numerical results from uniform (solid lines) and adaptive (dashed lines)
calculations; plot (a) shows the pressure error in the ||| - ||| p-norm; plot (b) shows the flux
error in the ||| - ||| x«-norm; plot (¢) shows the a-posteriori estimate » (empty circles) and
the global error (filled circles); plot (d) shows the efficiency index.
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