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Generalizations of Sequential Lower Semicontinuity

ADA ARUFFO - GIANFRANCO BOTTARO

Dedicated to the memory of Guido Stampacchia

Abstract. — In [T] W.A. Kirk and L.M. Saliga and in [3] Y. Chen, Y.J. Cho and L. Yang
wntroduced lower semicontinuity from above, a generalization of sequential lower
semicontinuity, and they showed that well-known results, such as some sufficient
conditions for the existence of minima, Ekeland’s variational principle and Caristi’s
fixed point theorem, remain still true under lower semicontinuity from above. In the
second of the above papers the authors also conjectured that, for convex functions on
normed spaces, lower semicontinuity from above is equivalent to weak lower semi-
continuity from above. In the present paper we exhibit an example showing that such
conjecture 1s false; moreover we introduce and study a new concept, that generalizes
lower semicontinuity from above and consequently also sequential lower semi-
continuity; moreover we show that: (1) such concept, for convex functions on normed
spaces, 1s equivalent to its weak counterpart, (2) the above quoted results of [3] re-
garding sufficient conditions for minima remain still true for such a generalization,
(3) the hypothesis of lower semicontinuity can be replaced by this generalization also
in some results regarding well-posedness of minimum problems.

1. — Introduction.

In [3] Y. Chen, Y.J. Cho and L. Yang noted that sequential lower semi-
continuity, although important, is not essential for solving some minimization
problems and proposed the following generalization ([3], Definition 1.2 and
Definition 1.5).

DEFINITION 1.1. — Let (X, 1) be a topological space. Let x € X. A function
[:X — [—00,+00] is said to be sequentially lower semicontinuous from above at
x if flx) < lirll f(x,) for every sequence (xy,),en of elements of X such that

Nn—+00
2y — & and (f(@,)neN s a weakly decreasing sequence. Moreover f is said to be

sequentially lower semicontinuous from above if it is sequentially lower sema-
continuous from above at x for every x € X.

Actually the same definition was previously considered by W.A. Kirk and
L.M. Saliga in [7] (Section 2, definition above Theorem 2.1).
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Both in [7] and in [3] this concept is called lower semicontinuity from above,
in [3] it is used only when X is metrizable or X is a normed space endowed with its
weak topology, in [7] in a lightly different situation (see also [7], Section 2, de-
finition above Remark 1); furthermore also J.M. Borwein and Q.J. Zhu in [1]
(Exercise 2.1.4) used the same concept, naming it partial lower semicontinuity,;
here we are calling it sequential lower semicontinuity from above, as it is a
generalization of sequential lower semicontinuity.

Moreover the authors of [3] conjectured that, for convex functions on normed
spaces, sequential lower semicontinuity from above is equivalent to weak sequential
lower semicontinuity from above (see [3], some rows below Definition 1.5).

Here we exhibit an example showing that such conjecture is false (Example
3.1 (see also Examples sketched in Remarks 3.1)). Then we define a new concept
(Definitions 4.1), called by us inf-sequential lower semicontinuity, that gen-
eralizes sequential lower semicontinuity from above and we show that:

(a) for convex functions on normed spaces, such concept is equivalent to its
weak counterpart (Theorem 4.1),

(b) some results listed in [3], such as sufficient conditions for the existence
of minima remain still true under this generalization (Section 5).

Moreover, with Theorems 5.5, 5.7, 5.8 and 5.9, we wish to give some examples
in which the hypothesis of lower semicontinuity can be weakened by means of the
one of inf-sequential lower semicontinuity when we deal with well-posedness in
the sense of Tykhonov or in the generalized sense.

We also give another example (Example 4.1) which shows that, for not convex
functions on Hilbert spaces, the stronger condition of lower semicontinuity with
respect to the topology induced by the norm is not sufficient to get inf-sequential
lower semicontinuity with respect to the weak topology.

Moreover in Section 3, besides the above-cited Example 3.1 (and those in-
cluded in Remarks 3.1), we supply further examples and results regarding the
condition of sequential lower semicontinuity from above; furthermore in Section
4 we also give some examples and results in which we compare sequential lower
semicontinuity from above with inf-sequential lower semicontinuity, both in the
general case and in the case of convex functions. Further examples will be given
in [2].

2. — Notations and Preliminaries

NoOTATIONS. — In the sequel, unless otherwise specified, all linear spaces will be
considered on the field I, where I = R or I = C. As convention, in [—o0, +o0],
inf @ = 400 and the product 0 - ( 4 co) is considered equal to 0. By IN we denote
the set of natural numbers (0 included), while 7., :={n € Z:n >0} and
Ry := {& € R:x > 0}; 5y is the Kronecker symbol. If Z is a metric space, A C Z,
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let a(A) := inf{d > 0: A has a finite cover consisting of sets with diameter < 5} be
the Kuratowski measure of noncompactness of A. If Z is a linear space on R or on
C, let dim Z denote the dimension of Z, and, if A C Z, let spA and coA denote
respectively the linear subspace of Z that is generated by A and the convex hull
of A; if x,yeZ let [x,y]:={le+A—-Dy:1€[0,1]} and, if x#y, let
Je,y] :={Ax + @ — Dy: 2 € [0,1[}. If Z is a topological linear space, let Z' denote
the continuous dual of Z; if A C Z, let o A be the closure of co A. If Z is a normed
space, then |z|, indicates the norm in Z of an element z€Z and
Sza,r):={ze€Z:|z—a|;, <r} (@€ Z, re Ry). Let 2, ¢y and CO([O7 1], ) re-
spectively denote the real, or complex, Banach spaces of the sequences whose
squares of moduli of coordinates are summable, of the infinitesimal sequences, and
of the continuous functions on [0,1]. If Z is a Hilbert space, then (z,w), indicates
the scalar product in Z between two elements z, w € Z. If A and B are sets, if
CCA and f:A — B is a function, then f , means the restriction of f to C; if
g:A — [—o0,+o0] is a function, then epig:= {(x,y) € A x R:g(x) <y} and
domg := {x € A:g(x) < +oo} denote respectively the epigraph and the effective
domain of g; moreover let arg min(4, g) := {x € A:g(x) = 1nf g}. If Z is a topolo-
gical space and if A C Z, let A be the boundary of A. Moteover let B([0,1]) in-
dicate the Borel g-algebra on [0, 1] with respect to the euclidean topology and |A| is
the Lebesgue measure of a set A. If (z,,),,¢ is a sequence of elements of [—oo, +00]
and if ¢ € [—o0,+00], then 1, \ ¢ (respectively 7, " ¢) means that (,),cxn is
a weakly decreasing (respectively increasing) sequence with hm T, = L.
Henceforth we shall shorten both lower semicontinuous and lower sermcontlnulty
in “Isc”, both sequentially lower semicontinuous and sequentially lower semi-
continuity in “slsc”, both sequentially lower semicontinuous from above and se-
quential lower semicontinuity from above in “d-slsc”.

DEFINITION 2.1. — Let X be a linear space on I, A C X, y € A. Then (in ac-

cordance with [6]):

(a) the point y is said to be an internal point of A if for every x € X there
exists a y, € Ry such that y + Ax € A forall A € [0, y,];

(b) the point y is said to be an extreme point of A ifx, z € A, L €10,1[ for
which y = Ax + (1 — Az implies x = z = y;

(¢c) @ normed space Y 1is said to be strictly convex if every point
y € 0Sy(0,1) is an extreme point of Sy(0,1).

THEOREM 2.1. — Let Y be a normed space, C a convex subset of Sy(0,1),
B C CnoSy(0,1) such that

(2.1) CnoSy(0,1)NecoB = B.
Then (C\ 8Sy(0,1)) U B is a convex set.



296 ADA ARUFFO - GIANFRANCO BOTTARO

ProoF. — Let y, z € (C'\ 9Sy(0,1)) UB and let 1 €]0,1[. Then Ay + (1 — A)-
ze(C, as C 1is convex. Now, if Ay+ 1 —2)zecSy0,1), we have
Y+ A —-ANzeCnSy(0,1)=C\ dSy(0,1) C (C\ dSy(0,1)) UB; besides, if at
least one of the points y and z belongs to C\dSy(0,1), it holds
|2y + @ — Azly < Alyly + A — D|z|y < 1; so it remains to examine the case in
which y,z€ B and Ay + (1 — 1)z € 9Sy(0,1): in such case Ay+ (1 — Az e
CnNaSy(0,1) NcoB = B and hence we can conclude.

Also if we shall not use it, here we note a simple corollary of previous theorem.

COROLLARY 2.1. — Let Y be a strictly convex normed space, C a convex subset
of Sy(0,1), A C 9Sy(0,1). Then C\ A is a convex set.

PRrROOF. — Since Y is strictly convex, if B C CnNadSy(0,1), we have
coB C BUSy(0,1), hence CnNaSy0,1)NnecoB=CNoSy(0,1)NnB=B and
hence (2.1) is verified; therefore, applying Theorem 2.1to B := (C N dSy(0,1)) \ A
we obtain that C \ A = (C'\ 9Sy(0,1)) U B is convex.

REMARK 2.1. — Note that Theorem 2.1 can be seen also introducing the fol-
lowing definition of extreme sets and proving for them a simple property.

Let X be a linear space on F, A C X, S C A. Then S is said to be an extreme
setof Aifx, z € A, A €]0,1[ for which Ax + (1 — 1)z € S implies that at least one
point between x and z belongs to S.

Then, if A is convex and S is an extreme set of A, the set A\ S is convex:
indeed, ifx, z € A\ Sand 1 € ]0, 1[, then Az + (1 — 2)z € A for the convexity of A
and Az + (1 — A)2¢S because otherwise at least one point between « and z should
be in S, that is absurd.

(The proof of the above statement is also requested in [6] (Exercise 2.4.1), but
for a slightly different class of sets, therein called extreme sets too).

Therefore, for obtaining Theorem 2.1, it is enough to note that, in the hy-
pothesis of such theorem, C N dSy(0,1)\ B is an extreme set of C: indeed, if
x,2€C,1€]0,1[ le+ 1 -z e CnNoSy(0,1)\ B, then1 = |z + 1 — z|y <
Axly + @ — A|z|ly < 1; hence |x|y = |z|]y = 1; now, if we had x, z € B, we would
get e+ (1 — )z € coB N C N aSy(0,1); from this, using (2.1), we would obtain a
contradiction.

THEOREM 2.2. — Let Y be a real normed space, f:Y — [—o0,+00] a convex
Sfunction for which there exist xy € domf and ry € R, such that

22) inf  f(x) > —c0.

weSy (2o,9)

Then there exist g €Y' and y € R such that f(x) > g(x) +y for every x €Y
(consequently f(x) > —oc for every x € Y).
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Proor. — It is sufficient to use the proof of [3] (Theorem 1.7) that works also in
the above hypotheses, observing previously that f(x) > —oco for every x € Y
(really, if by absurd there exists yy € Y such that f(yy) = —oo, then, by the
convexity of f, it holds f(Axy + (1 — Dyo) = —oo for every 4 € [0, 1], in opposition
to (2.2)) and that it is enough to prove the inequality of the thesis for every
x € domf.

DEFINITION 2.2 ([4], at the beginning of Sections 1 and 6 of Chapter I). — Let
(X, 1) be a topological space and let f: X — | — oo, +0o0] be a not identically +oo
Sfunction. Then the problem (X,f) to minimize f on X will be said:

(a) Tykhonov well-posed if there exists one and only one point
z € arg min(X, f) and if x,, — z for every sequence (x,,),en of elements of X such
that f(x,) — inf f;

) well—fgosed in the generalized sense if every sequence (x,),cn of ele-
ments of X such that f(x,) — inf f admits a convergent subsequence towards
some element of arg min(X, f).

3. — Examples and some results about sequentially lower semicontinuous
from above functions.

ExaMPLE 3.1. — For every infinite dimensional Hilbert space Y there exists
a function f:Y — [0,+oc] that is convex, d-sisc with respect to the topology
induced on Y by its norm, but that is not d-slsc with respect to the weak
topology on Y.

Let £ be a complete orthonormal set for Y, let e, € E' (n € ) (with e, # ey,
if n, meN, n#m) and let ¢:Y —[0,+00] be defined by gy =
sup{|(y,w)y|:w € E} for every y € Y. For every k € 7 let y,, = (1 — } ey + ey,
then

(e 10)y = 0 for every w € B\ {eo, e},
1
(31) <yk760>Y = 1 - Ey
<2/k>@k>y = 17

hence g(yr)=1. Let C:={yecY:(y,w)y =0foreveryw € £\ {e,:n € N},
0<(y,ey)y <1foreveryn € N} and B:= {y;:k € Z,}; then C is a closed
convex subset of Y and, if y € (co B) \ B, there exist N € Ziyy oy AN € ]O 1[and

ko, ... ky € 74, with kj, #k; if h #j, such that Z/%—landy Zlhykh,
h=0 h=
then from (3.1) follows that (y,w)y =0 for every we E\ {e,:m € ‘\T} and



298 ADA ARUFFO - GIANFRANCO BOTTARO

0<(y,en)y <1 for every m € N and, being (yx,e,)y =0 for every n >k
(keZy),itis (y,en)y = 0 for every n > max{ko, ..., kn}; hence g(y) < 1; con-
sequently, if we define B(E)= {¢:E — ' bounded functions} and |¢|pz =
sup{|p(w)|:w € E} (where [ is the field on which Y is Hilbert space) and
®:Y — B(E) such that &(y) = (w € E—(y,w)y € I') for every y €Y, being
9@) = |P(Y)| g for every y € Y, we get that

P(B) C d(C)n 533(5’)(0, 1)NcodB) =
= @(C) N ISpE)(0,1) N P(co B) C dSpx)(0,1) N d(coB) C &(B);

so &(C) and @(B) verify the condition (2.1). Applying Theorem 2.1, if
D:=C\{yeY:gy=1HDUB={yeC:gly) <1} UB, we obtain therefore
that &(D) = (@(C) \ SpE)(0,1)) U @(B) is a convex set and hence, being @ in-
jective, also D is a convex set.

Moreover B is a closed set, because for every couple of distinct elements of B,
Wk, ym) With k, m € Zy, kb # m, it is |yx — yuly > V2.

Now let f: Y — [0, 4+00] be defined by f(y) = {i(gi g Z Eg\D;
the convexity of D and the convexity of g, consequence of the linearity of @ and of
the convexity of | |z ), f is a convex function.

First we shall verify that f is d-slsc with respect to the topology induced on Y
by its norm. Let z, 2, € Y (k € IN), 2 — 2z such that (f(z;))ren is a weakly de-
creasing sequence. It is not restrictive to suppose that z; € D (k € IN), hence
z € C; moreoveritis g(z) = kEToo 9(z;;) because g is continuous, being @ and | | BE)

then, by

continuous; now, if z € CN{y € Y:g(y) =1}, then z, e DN{y € Y:g(y) =1}
(k € N) since (g(zK)ken = (f(@r)ren is a weakly decreasing sequence; therefore
2 € B (k € N)and z € B because B is closed; so z € D and the thesis follows from
the continuity of g.

Now we shall prove that f is not d-slsc with respect to the weak topology on Y.
Since (1 — %)eo —eg and e, — 0, it is y; — ey; furthermore f(y;) = 1 for every
ke 7y, so (f(yp)ren is a weakly decreasing sequence, but f(ep) = 400 > 1=
kEToo f(yg); sof is not d-slsc in the point ey with respect to the weak topology on Y

and we have concluded.

REMARK 3.1. — Making some little changes to the Example 3.1, it is possible to
construct other examples of convex functions on Y that are d-slsc with respect to
the topology induced on Y by its norm and that are not d-slsc with respect to the
weak topology on Y. Here we sketch two of them.

(o) First of all, we define a function, enjoying the above properties, on Y = ¢,
endowed with the “sup” norm. For every k € 7, let y, = (1 — %)eo + ¢y, then

0 < (Yp)n < Wik = 1 for every n € N\ {k},



GENERALIZATIONS OF SEQUENTIAL LOWER SEMICONTINUITY 299

hence |yily =1. Let C:= {x = @y)pen € Y:0 <2, <1 for every n € N} and
B :={yi:k € 7. }; then C is a closed convex subset of Sy(0, 1) and, analogously to
what we proved in Example 3.1, if z € (coB) \ B then |z|y < 1 and consequently
C N oSy(0,1) NecoB = B; so C and B verify the condition (2.1). Applying Theorem
2.1, we obtain therefore that D := (C \ 0Sy(0,1) UB = {x € C: |x|y <1}UBisa
convex set. Moreover B is a closed set (it can be proved likewise in Example 3.1).
Now let f:Y — [0, +o0] be defined by f(z) = { Lz_‘ol; Lf, Z E ID/ \ D then, by the
convexity of D and the convexity of | |y, f is a convex function. The verifications that
[ is d-slsc with respect to the topology induced on Y by its norm and that it is not d-
slsc with respect to the weak topology on Y are completely analogous to those of the
corresponding conditions proved in Example 8.1, using the | |, instead of g.

(b) Now, on Y =%0,1],R) endowed with the “sup” norm, we define a
function, satisfying the above properties. Let n € N and let y,, € Y be defined by

—4nt+1— if t €0, n+1)]

1 1 }

n+1
dn+ 1t -1 ifte

]4 I
t) — ] (n+1) 2(n+1) ; then
U —2t+1+ 3 1fte]2(7 ol
-4 if t € [[15,1]

(32) 0=y (5 FICESY) ) <yu(®) <wn(3 n+1)) =1 for every t € [0,1] \{4n+1)72(n1+1)}
hence |y, |y = 1. Let C := Sy(0,1) and B := {y,:n € N}; then, if y € (coB) \ B,
from (3.2) follows that 0 < y(f) < 1 for every ¢ € [0,1] and hence |y|y <1 and
consequently C N aSy(0,1)NecoB = dSy(0,1)NcoB = B, so C and B verify the
condition (2.1). Applying Theorem 2.1, we obtain therefore that D := Sy(0,1) U B
is a convex set. Moreover B is a closed set, as any sequence of elements of B
which is uniformly convergent to z € B \ B is also pointwise converging to z and
therefore the function z is the constant 1, but this is not possible, because for
every n € N there exists a point in [0, 1] in which y,, assumes the value 0. Now let
F:Y — [0, +00] be defined by f(z) — { L?_’l; . ve ID/\D’
of D and the convexity of | |y, f is a convex function. The verification that f is d-
slsc with respect to the topology induced on Y by its norm is completely similar to
the analogue one of Example 3.1, using | |0 1 ) instead of g.

Finally we shall prove that f is not d-slsc with respect to the weak topology on
Y. Let z € Y be defined by 2(t) = 1 for every ¢t € [0,1]. Then, if x: B([0,1]) — R is
a measure, being (y,),en pointwise converging to z and |y, ()| <1 for every
t €[0,1], by Lebesgue dominated convergence’s theorem, we obtain that
[ yndu — [2dp and hence y, — z; furthermore f(y,) = 1 for every n € I\, so
(FW)nex is a weakly decreasing sequence, but f(z) = 400 > 1 = nllrpoc Fyn); s0

then, by the convexity
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f is not d-slsc in the point z with respect to the weak topology on Y and we have
concluded.

ExampLE 3.2. — In [3] (Example 1.3) an example is given of a function from
R to R that is d-sisc, but not Isc. Here we shall exhibit another example of d-slsc
function from R to R for which the set of points of Isc is Q and that does not
have points of continuity; this example shows, in a certain way, how much these
functions can be irregular unlike the case of lsc functions (see [6], Theorem
3.1.7, where it is proved that every Ilsc function from an open subset A of a
complete metric space to R is continuous on a dense G subset of A).

Let f: R — R be defined by

~-1-7 ify € Q, y = £ withp €, g€, each other prime

f(y):{o if y e R\ OQ

Then if ¥ € R and (y,),cx is a sequence of real numbers different from y con-
verging to y such that (f(y,)).en is a converging sequence too, it follows that
there are two possibilities:

(@) ¥ € R\ Q definitely

(17) y» € Q definitely;
moreover in the case (i1), if p, € Z, q,, € 7. are each other prime and such that

n = % for every n € N := {m € N:y,, € Q} it must be ¢, — 400, otherwise it

should exist a strictly increasing sequence (1) of natural numbers belonging
to N such that (g,, ke is bounded and hence constituted by elements of a finite
set; from this and being (y,,)rex @ converging sequence, analogously also
(P Jkex could assume only a finite number of values; but then (%)ke;\' should
have values in a finite set and could not converge to y. '

Consequently and using densities in R of Q and of R \ Q, it results that f is
Iscin y if and only if ¥y € Q and does not admit points of continuity. However f is
d-slsc, because if y € R\ Q, if y,, — y and if (y,),en verifies (72) then, with the
above notations and as seen above, ¢,, — oo and therefore (f(,,)),cn cannot be
weakly decreasing.

ExaAMPLE 3.3. — Here we shall show that there exist functions, also from R to
[0, +0¢], that are convex, d-slsc, but that are not lsc (clearly, on the contrary, it is
not possible to obtain a similar example by means of a function from R to R,
because such a function is always continuous, being convex).

> ifael-1,1]

Letf: R — [0, +o0],f(x) = {2 if « € {—1,1}.Thenf is convex, d-sisc (if
+oo if |x| >1

xe{-1,1},if x, e R (n e N), x,, — « and (f(x;)),ex is a weakly decreasing
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sequence, then |x,| > 1 for every » € N and hence 2 = f(x) < hm f (acn)) but it
is not Isc in the points —1 and 1.

For certain convex functions the result becomes true:

THEOREM 3.1. — Let X be a real normed space, xy € X, Y a vector subspace of
X, f:X — ] — 00, +00] a d-slsc function such that f\% Ly + Y — R is the re-
Zo

striction of an affine function and f‘ X\Eo4T) = +oc. Then flx oy 18 continuous, Y is
closed and hence f is lsc. ’

Proor. — Let ¢g:Y — R be a linear function and y€ R such that
f(x) = glx — xp) + yforevery x € xy + Y. First we shall prove that g is continuous

(so f is continuous too). From the d-slsc of f, we can deduce that
hm 1nf f (90) € | — 00, +00], otherwise there should be y, € X (r € IN) such that
yn = xo and f(y,) \, —oo, that is in contradiction with the d-sisc of f at xy; so
hm mf g(x) € ] — 00, +o0] and therefore g has a lower bound in a suitable neigh-

bourhood of 0 and, by its linearity, it is bounded in a suitable neighbourhood of 0
and hence it is continuous.

Now we shall prove that Y is closed. Let §: Y — R be the continuous exten-
sion of g to Y. Let y,€Y, ycX such that y, —y. Then y €Y and
9Wn) = 9(yn) — g(y); therefore (9(y,))nen admits a subsequence (g, )kex that
is weakly monotone.

(@) If (g(yn)kex is a weakly decreasing sequence, then (f(y,, + %0)kex is
a weakly decreasing sequence too; hence, since f is d-slsc, f(y + xg) <
hm 1nf W, +%0) = hm (g(ym) +)=9@y)+yeR and so we obtain
f(y + xo) < 400, that 1mphes yel.

(29) If (9(yn, ke 1s a weakly increasing sequence, being g( — y,,) = —9(¥Yx,)
for every k€N, we have that (f( —w,, + %0)ken is a weakly decreasing
sequence; hence, being g(—y) = —g9(¥), —yn, — —y and —g(yn,) — —9¥),
from the d-slsc of f, we have f(—y+xy) < llicm inf f(— yy, + o) =

llm (—9Wn,) +7) = -9 +7y € R and so we obtain f( —y ) < +00, that
1mphes —y €Y and therefore y € Y.

Finally we can deduce that f is Isc: let y, ¥, € X (n € N), y, — ¥; since

= +o0, without restrictions we can consider ¥, € 2y + Y for every

J

[X\(@o+Y)
n € IN; then, from the closure of Y, we deduce that y € xy + Y and so, from the

continuity of f on xy + Y, consequence of the continuity of g on Y, we obtain
fy) = 1ir+n f(y,) = lim +inf f(y,), from which the thesis follows.

REMARK 3.2. — Another result, in which under suitable hypothesis it is true
the implication “d-slsc = slsc”, is the following one.
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Let X be a topological linear space and let f: X — [0, +o0] be a function such
that f(yx) = yf(x) for every y € [0, +o00| and for every x € X. Suppose that f is d-
slsc. Then f is slsc too.

We shall show it in a successive paper, as a particular case of a more general
result (see [2], Theorem 3.5).

LEMMA 3.1. — Let X be a topological linear space and let f: X — [—o0, +00]
be a convex function. Suppose that x, m € N), x € X, y € [—oo,+00[ are
such that x is an internal point of dom f (and hence f(x) < +00), &, — ,
f(x,) /'y < f(x). Then there exists another sequence (Y, )nen 0Of elements of X
such that y,, — x, f(y,) =y for every n € \.

PRroOF. — From the hypotheses it follows that f(x,) < +oo for every n € N
and f(x) € R. Moreover, if y = —oo, then f(x,,) = —oo for every n € N and we can
conclude choosing y,, = «,, for every n € IN. On the contrary, if y € R, then we can
suppose without restrictions that also f(xx,,) € R for every n € IN. So, in this case,
being f a convex function, being f(x) € R and being & an internal point of domf,
for every n € N it must exist a 1 < 0 such that f(u,, + (1 — p)x) € Randf(z) € R

for every z € [x,, ux, + (1 — ©)x]; then the restriction f‘ . is continuous and

f) >y >fle,) > 111’{1 fQx, + A — Ax) for the convexity of f, therefore f

assumes every value in [, f(x)]; hence it is enough, for every n € I\, to choose
Yn € [y, x] such that f(y,) = y: in fact, with such a choice, to show that y,, — «,
it suffices to note that for every n € N there exists 4, € [0,1] such that
Yn = I + (1 — Ay )y, Whence y,, — & = (1 — 4,,)(x,, — @), and to take into account
that x,, — « and that 0 has a neighbourhood basis constituted by balanced sets.

THEOREM 3.2. — Let X be a topological linear space and let f: X — [—oo, +o0]
be a convex, d-slsc function. Then f is slsc in the points of (domf)°.

ProoF. — Let x,,x € (domf)°, x, — x and let y = hm 1nf f(xy). Then there
exists a subsequence (¥, )ren Of (X )nen such that ff (x”k) — y and there exists a
further subsequence (xnk dnex of Xy, )kex such that (f (xnk Nnex is a weakly
monotone sequence. Now, if by absurd y < f(x), exploiting Lemma 3.1 there ex-
ists a sequence (y,,),<x such that ¢, — x and f(y,,) "\, 7; so it is enough to use the
d-slsc of f to get a contradiction.

REMARK 3.3. — Concerning Example 3.1 (and examples sketched in Remarks
3.1) it can be observed that the construction of an example satisfying the state-
ment of those numbers is possible only by means of a function whose points of not
Isc are all belonging to d(domf) (where 9 is considered with respect to the to-
pology induced by the norm) and the same thing happens for the points in which it
is not d-slsc with respect to the weak topology.
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In fact, if (X,7) is a topological linear space, if f:X — [—o00,+o0] and if
g: X — [—o00,+00] is defined by

(3.3) 9(x) = min{f(x), lir;Ligff(y)}for every x € X,

then, for Corollary 1.2.1 of [5] (whose demonstration works also if X is a topo-
logical linear space, even on the complex field), we get that epig = epif and g is a
Isc function; furthermore it is convex because its epigraph is a convex set, being
the closure of a convex set; moreover, if (X, 7) is a locally convex topological linear
space, for [5] (Corollary 1.2.2, that works as well when the scalar field is the
complex one), g is also Isc with respect to the weak topology of X.

Moreover, if f is convex and d-slsc (with respect to the topology 1), it happens
that W is a closed convex and therefore weakly closed set (see [11], Theorem
I11.6.3), whence g(x) = f(x)( = 4o00) for every x € X \ domf by definition of g. If
in addition the topology of X satisfies the first axiom of countability, then from
Theorem 3.2 it follows that f is Isc in the points of (domf)°; therefore from (3.3)
we get g(x) = f(x) also for every x € (domf)°. Hence, being g < f for (3.3), we get
flx) =g < hm 1nf g(y) < hm mf f(y) for every x € (domf)° and where the
“liminf” can be cons1dered 1nd1fferently with respect to topology t or weak to-
pology. So f(x) = g(x) for every & € X \ d(domf) and f is both strongly z-Isc and
weakly Isc in every points of X \ d(domf) and therefore it is also d-slsc with
respect to the weak topology in the same points.

4. — A new concept, weaker than sequential lower semicontinuity from
above.

DEFINITION 4.1. — Let (X, 1) be a topological space. Let f be a function,
f:X — [—00,4+00]. Then f is said to be:
(7) inf-sequentially lower semicontinuous at x € X (“t-slsc at x”) if one of the
Sfollowing equivalent conditions is verified (see Remarks 4.1):
(@) (@p)pen sequence of elements of X for which x, —x and
lim f(x,) = inff, implies f(x) = inf f,
7H+°O(b) (@n)nen sequence of elements of X for which x,, — x and f(xy,) \, inff,
implies f(x) = inf f;
(72) inf-sequentially lower semicontinuous (“i-slsc”) if one of the following
equivalent conditions is verified (see Remarks 4.1):
(A) condition (a) holds at every point of X,
(B) condition (b) holds at every point of X.

REMARK 4.1. — With the hypotheses and notations of Definitions 4.1, here we
shall prove the cited equivalences.
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We have
(a) = (b) is obvious;
(b) = (a) because from nlirf f(x,) =inff we deduce that there exists a

subsequence (f (2, )ken of (f(2,))nen constant or strictly decreasing: in any case
such subsequence is weakly decreasing.

Moreover

(A) = (B) is obvious;

(B) = (A) because (b) = (a).

REMARK 4.2. — Let (X, 7) be atopological space. Let & € X. Let f be a function,
f:X — [—00, +00]. We note that:

() if f is d-slsc at x, then f is i-slsc at x, because, if x,, — x and f(x,,) \, inf f,
then f(x) < inff;

() if f is d-slsc, then f is i-sisc, for (a).

REMARK 4.3. — Note that i-slsc can be expressed equivalently in the following
way:

f is i-slsc if z (sequentially) cluster point of a minimizing sequence implies f
slsc in z.

Moreover the concept of i-slsc means indeed that the set of the (sequentially)
cluster points of the minimizing sequences coincides with the set of minimum
points, that is i-slsc of f can be characterized in the following way, through a
property of arg min(X, f).

Let (X, 1) be a topological space. Let f: X — [—o0, +00]. Then f is i-slsc if and
only if { lir+n X (@Xn)nen sequence of elements of X for which lir+n f(x,) =1inff
Nn——+0o0 N——+00

and there exists lir+n x,} = arg min(X, f).
N——+00

In fact the inclusion C is a direct consequence of (A) of Definitions 4.1, while
the inclusion D can be obtained considering constant sequences.

Perhaps i-slsc may be more easily compared with some type of well-posed-
ness, as we shall do in Remark 5.3, but here we are denominating this concept -
slsc also because it can be considered also an extreme case of some definitions we
shall give in [2], that are extensions of “sequential lower semicontinuity from
above” and that are more in the direction of “sequential lower semicontinuity”.

ExamMpLE 4.1. — There exists a Hilbert space Y on which there is a function
that is Isc with respect to the topology induced on Y by its norm, but that is not
i-slsc with respect to the weak topology on Y.
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The present example shows hence that, without hypothesis of convexity on
the function, lower semicontinuity with respect to the topology induced by the
norm does not imply with respect to the weak topology (besides, as it is well
known, lower semicontinuity) the weaker (see (b) of Remarks 4.2) i-slsc.

Let Y = ¢2 with the usual inner product and let C be the convex subset of ¥
defined by C := {y = Wm)mex € Y:ym > 0for everym € N, there exists M,, € N
M

such that ,, = 0 for every m > M,, Zy: Ym = 1}; for every y = (Ym)men € C let
K, := min{m € N:y,, > 0} and lezni(}\fy :=max{m € N:y,, >0}. Now let
N,-K, ifyeC
+oo ifyeY\C"

First we shall verify that f is Isc with respect to the topology induced on Y
by its norm. Let ¥ = Wm)mens Wn = Wpmdmex € Y (0 € N), w, — y. Since
f\Y\ o= +00, without restrictions we can consider w,, € C for every n € N. Since

f:Y — [0, +oc] be defined by f(y) = {

(W = Ym| < 1100 = Yly ;=5 0 (m € N), it holds:

lim wy, =y for every m € N,

N—+00
therefore y,, > 0 for every m € NN and

(4.1) ym > 0= there exists H,, € N such that w,, ,, > 0 for every n > H,,;

moreover, since w, — y also weakly, considering the inner product of w, — ¥y
with the points z;, = (2 m)men € Y such that 2, =1if m <k, 2., =0if m > k
(k € N) we obtain

k k
(4.2) lim Z Wy = Z Ym for every k € I\,
p oo m=0 m=0
then Z Ym < 1 for every k € N and hence
m=0
(4.3) 0<> ym <L
meN

Now let e, := (0nm)mex for every n € N; we shall distinguish four cases:

@y ed,

(1) y € sp{en:m € N} \ (CU{0}),

(#11) y € Y \ sp{e,:m € N},

(w)y =0.

(@) If y € C, then from (4.1) we obtain that there exists a v, € N such that
Ny, >N, and K, <K, for every n>v, so fly)=N,—K,<
liminf (N, — Ky,) = 1%111 +1£1Cf f(wy).

N——+00

(1) If y € sp{e,n:m € N} \ (CU{0}), then we can define K, and N, as when
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y € C; from (4.3) it follows that Z Ym < 1; moreover, as in the previous case,
meN
there exists a v, € N such that K, <K, for every = >v,; now, if

liminf N,,, < 400, it should exist a subsequence (wy, )ien Of (Wy)nex such that

Nn—-+00

{Nuw,, : I € N} is bounded, consequently there should be a H € N such that N,
Nth <H for every helN and hence from (4.2) it should hold

1= lim anhm Zym <1, that is absurd; so hmlanw = +oo and

h‘H’OO n——+
m=0

fy) = +oo = 13333:35 N, — Ku,) = 171113 +noloff(wn)-

(1) If y € Y \ sp{en:m € N}, as when y € C we can define K, and we obtain
that there exists a v, € N such that K,,, < K, for every n > v,; moreover, since
in this case there exist arbitrarily great values of m € IN such that y,, > 0, for
(4.1) we have liminf N,,, = 400 and hence f(y) = +o00 = 171}3 irolof (N, — Ky,) =

. . n—+
liminf f(w;,). -
n——+00

() If y = 0 and if liminf (V,,, — Ky,) < +00, it should exist a subsequence

(W, Dnex of (Wy)pen sucﬁ?:hat there is L € N for which anh — me,, < L for each
h € IN; consequently, since Z Wy, m =1 (h € N), there should be for every
N

heNam,eNn [Kwn Nw:n ]E such that wy, m, > 77 +1 and hence it should hold
(W, — Yly = |Wn, |y > |w,7h m,b| > 7Ly, contradictorily to  |w,, —yly ——0;
therefore f(y) = f(0) = +o00 = lylllll lrolof (Nuw, — Ky,) = 1711111 +1{.101' f(wy).

Finally we shall prove that f is not ¢-slsc with respect to the weak topology on
Y. For this, it suffices to note that f(e,) = N,, — K,, = 0 = minf for every
n e N, hm e, =0 with respect to the weak topology on Y, but

N—+

400 = f(0) > O = hm 1nff(en)

y|Yh~>+oo

THEOREM 4.1. — Let X be a normed space, let f: X — [—oo, +00] be a convex, i-
slsc fumction with respect to the topology induced on X by its norm. Then f is i-
slsc also with respect to the weak topology on X.

PrOOF. — Let x € X and let (x,,),cn be a sequence of elements of X for which
X, — x and f(x,) \, inf f. Now we shall distinguish two cases:
(7) there exists a sequence (t,),cx of elements of co {x,,: m € N} such thatt, — «
and f(t,) = inf f for every n € N,
(i1) there does not exist a sequence as in (7).

In the case (i) we can conclude, simply using the i-slsc of f at & with respect to
the topology induced on X by its norm, relatively to the sequence (¢,),cx.

If we are in the case (i7), then there exists y > 0 such that

(4.4) Sx(x,y) Nco{xy:m e N} C{y € X:f(y) > inff};

besides, being « € co {x;: k > n} for every n € IN (as a convex closed subset of X
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is weakly closed too), there exists a sequence (y,),cn of elements of Sx(x,y),
strongly converging to x, such that ¥, € co {x;:k > n} for every n € I\; there-
fore by (4.4) it is

(4.5) f(y,) > inf f for every n € N;
now for every n € N let N, € N, N,, > n + 1 such that there exist /;,, € [0,1]
N, N,
for je {n+1,...,N,} with Z Ajn =1 for which y, = Z Ajn%j; since
j=n+1 Jj=n+1

hrp f(x,) =inff, for every a > inff there is n, € N such that f(x,) < a for
N——+00
every n > n, and hence for n > n,, by the convexity of f, it is

Nn Nn
f(?/n) < Z }Lj,rl/f(%j) < Z /ﬂbj‘na =a
j=n+1 Jj=n+1

and therefore lir+n f(y,) = inf f; since (4.5) is verified, it is possible to define for
N—+00
induction a strictly increasing sequence (7);cn of natural numbers such that:

1y = 0, Ny = min{n > ny: f(y,) < f(yy,)} for every k € \;

in this way we obtain a subsequence (¥, )rex Of (¥y)nen such that y,, — « and
f(yn,) \,Inff; so we can conclude using the i-slsc of f at x with respect to the
topology induced on X by its norm, relatively to the sequence (¥, )irexn-

ExAMPLE 4.2. — Here we shall exhibit in (a), in (b), in (¢) and in (d) some
examples of convex functions which are not -slsc.

(a) For every non trivial normed space X there exist a convex function
k:X — [0,+00] and a point w € X such that k is not i-slsc at w.

(b) For every infinite dimensional real normed space X, there exists a linear
function j: X — R such that j is not ¢-slsc at u whatever u € X is considered. Such
a function j can be chosen as whatever a linear not continuous functional on X.

(c) If X is an infinite dimensional normed space, then there exists a function j
as in (@) but taking values in R; moreover such function j can be chosen in such a
way as to have that j is a linear function with respect to the structure of linear
space on R of X (see also (b)) and that, for every & € X there exists a sequence
(¢ )nex of elements of X such that x, — « and j(x,) — —oc0 = ;1;)1; i).

(d) If X is an infinite dimensional Banach space, then there exists a function j
as in (a) but with values in [0, +o0].

[0 ifaeSx(0,1)
(a) Let k(x) = { +oo if x € X\ Sx(0,1)

obtained a function k such that {x € X: k(x) < +o00} is also a closed set: it suffices

(or, with a slight change, it can be
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0 if x € Sx(0,1)
to define k(x) = { 1 if x € 0Sx(0,1) ) and let w be whatever a point of
+oo if x € X\ Sx(0,1)
08x(0,1); then it suffices to consider w, = (1 — ﬁ)w for every n € N to get
that w, — w, (k(w,)),cn (that is constantly 0) is weakly decreasing and
k(w) > WEIPOO k(w,) = inf k.

IfX = C’O([O7 1], ) with the “sup” norm, we can construct also the following,
perhaps more expressive, example.
Let C := {x € X:a(t) > 0 for every ¢t € [0,1]} and let

{I{te[O,l]:x(w:oH ifex e C
k() = )
+00 ife € X\C

Then C'is a convex set and k is a convex function, because, if ¢,y € C, 1 € 0, 1], then
{t €[0,1]: G + (1 — DHy)(t) = 0} = {t € [0, 1]:x(t) = 0} N {t € [0,1]: y(t) = 0}
and hence
{t € [0,1]: Vx + 1 — Dy)(@®) = 0}]
=t € [0,1]:x®) =0} N {t € [0,1]: y(&) = 0}
<IN{t € [0,1]:2) =0} + A — D|{t € [0,1]:y(@) = 0}

Now it results infk = 0 and, choosing as w whatever a point of C such that
[{t € [0,1]: w(t) = 0}| > 0, it is enough to consider w,(t) := max{w(t),n%l} for
every ¢t € [0,1] (n € N), because with such choice it holds that w, — w and
k(w,) = 0 for every n € N (see (a) or (b) of Definition 4.1 (2)).

(b) It is enough to observe that first conclusion of Theorem 3.1 remains true if
the hypothesis of d-sisc is replaced by the one of i-slsc (moreover it suffices to
assume such condition at the point x): really with the same proof it is possible to
show the following result.

Let X be a real normed space, xp € X, Y a vector subspace of X,
f:X —]—o00,+00] a i-slsc at xy function, such that f\r Ly + Y — R is the
o

iction of an affine function
restriction of an affine function and f\X\(xo )

(c) We shall work with the normed space X considered on the real field, also if
X is a normed space on the complex field.

Let e, € X be such that |e,|y =1 e N), e, #ey if n, me N, n#m,
{en:n € N} linearly independent set of vectors, B a Hamel basis of X such that
{en:m € N} C B. For every « € X let &, (b) e R(n € N, b € B\ {e,:n € N})
be such that © = Z Tpen + Z 2(b)b, where in these sums there is only a

neN beB\{e,meN}
finite number of not null addenda, and j(x) := Z Ny,

neN

= +oc. Then f is continuous.
lwo+Y
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Then j is a linear function with respect to the structure of linear space on R of
X. Now let x € X and zn = +1 €1y for every n € IN; consequently z, — ,
because |z, — x|y = =5 — 0, while j(z,) =j®) — n+1j(6(ﬂ+1)2) =j(x) — (’fjfl)
j@)—n—-—1— —o0o and so we can conclude.

(d) Let Y be a Banach space, on the same field of X’s one, and let T: X — Y be
a linear surjective not continuous operator (in order that such an operator ex-
ists, it suffices to suppose that dimX > dimY > 1 (for example let ¢, € X be
such that |e,|y =1 (m € N), e, # ey, if n, m € N, n # m, {e,:n € N} linearly
independent set of vectors, B a Hamel basis of X such that {e,:n € N} C B;
since dimX > dimY > 1, if C is a Hamel basis of Y constituted by elements
having norm 1, there exists ¢: B — C surjective; then it is enough to define
T(en) = nple,) for every n € N, T(b) = p(b) for every b € B\ {e,:n e N}, T
extended for linearity to all X)).

Let j(x) := |T(x)|yx for each x € X. Then j is convex, by the convexity of the
norm and the linearity of 7. Now by absurd we suppose that j is i-slsc; then, on
account of (@) of Definitions 4.1, we obtain

(4.6)  (2n),en sequence of elements of X for which

X, — a and nhrf j(x,) =0, implies j(x) = 0;

but from this we get that T is continuous: indeed, owing to the closed graph
theorem, it is enough to prove that 7 is closed; besides, if (x,,),cx is a sequence of
elements of X for which there exist x, ¥y € X with x,, — « and T(x,,) — y and if
z € X is such that T(z) =y, we have T(x, —z) — 0, hence j(x, —2) — 0 and
because of (4.6) we infer that j(x —2)=0 and so T(x—z) =0, that is
T(x) = T(z) = y and then we have a contradiction with the assumption that T'
was not continuous.

5. — Sufficient conditions for the existence of minima; well-posedness.

THEOREM 5.1. — Let X be a sequentially compact topological space and
f[:X — [—o0,400] a i-slsc function. Then there exists xo € X such that

Sflwo) = if)}ff .

ProOF. — Since X is sequentially compact, there exists a sequence (y,)en Of
elements of X as well as xy € X such that y,, — xo, f(y,) \, 1nf f. Now it suffices
to use the i-slsc of f at xy for concluding.

REMARK 5.1. — In [3] Y. Chen, Y.J. Cho and L. Yang stated the following:

Theorem ([3], Theorem 1.6) Let X be a real reflexive Banach space and let
f:D(f) =] — oo, +0] be a d-slsc and convex function, not identically +oc.
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Suppose that lim f(x) = +0o. Then there exists xy € D(f) such that

o]y —+o00
f (o) = lnf f ().

Actually such a statement can not be true, as we can see by means of the
following example:

Let X be a not null real reflexive Banach space, y € 9Sx(0,1), D(f) = Sx(y, 1)
and f(x) = |x|y for every « € D(f): then the function f satisfies all the hypotheses
of the above Theorem, but it does not verify its thesis, belng 1nf f (x) =0 and
f(x) > 0 for each x € D(f).

However the above result becomes true if the hypotheses that D(f) is convex
and closed are added, hypotheses, among other things, usually assumed in lit-
erature (see for example [5], Proposition II.1.2); both such hypotheses are
exploited in the proof of [3]; anyhow, also in this context, the proof seems a little
lacunary to us; we will not specify the details here, because we shall give a
generalization of such result in the part (a) of Remarks 5.2.

THEOREM 5.2. — Let X be a reflexive Banach space, let f: X — [—oo, +00] be a

i-slsc fumction with respect to the weak topology on X. Suppose that
lim f(x) = +o0. Then there exists xg € X such that f(xg) = in}t;f ().

J2e]x—+00 xe

Proor. — Iff is + oo identically then the thesis is obvious; otherwise, if (,,),en
is a minimizing sequence for f, then the hypothesis of coercitivity on f assures
that such a sequence must be bounded and therefore, being X reflexive, there
exists a subsequence weakly converging to a point x and it is enough to use i-slsc
of f at ¢y with respect to the weak topology to conclude.

COROLLARY 5.1. — Let X be a reflexive Banach space, let f: X — [—o0, +00] be
a convewx, 1-slsc function with respect to the topology induced on X by its norm.
Suppose that  lim f(x) = +oco. Then there exists x9 € X such that
flao) = inf f@). belg=+o0

Proor. — It is enough to apply Theorem 4.1 and Theorem 5.2.

REMARK 5.2.

(a) Using Corollary 5.1, the following result can be proved:

Let X be a reflexive Banach space, D a closed, convex, not empty subset of X
and f: D — [—o0, +00] a convex, i-slsc function with respect to the relative to-
pology on D of the one induced on X by its norm. If D is not bounded, suppose
furthermore that lim f(x) =+o0c. Then there exists xy € D such that
flao) = inf f@.

In fact it suffices to note that in the above hypotheses the function
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g: X — [—o00, +00] defined by g(x) = {JIQ g i EQ\D is 1-slsc and convex.
Therefore, since d-slsc implies i-slsc (see part (b) of Remarks 4.2), if we add
the hypothesis that D(f) is non empty, convex and closed, then the result stated
in Remark 5.1 becomes true.
Moreover note that the obtained proof for that result, with the added hy-
potheses above cited, is also shorter than the proof of [3], because it represents
an example of proof in which, by means of Theorem 4.1 (and part (b) of Remarks

4.2), in spite of

convex, d-slsc with respect to the topology induced on X by its norm %
d-slsc with respect to the weak topology

(for a function f: X — [—o0, +00], where X is a normed space) (see Example 3.1
and those sketched in Remarks 3.1), can be used the fact that such a function f
convex, d-slsc with respect to the topology induced on X by its norm, is always -
slsc with respect to the weak topology on X.

(b) Note that, in consequence of Theorem 5.2, in the hypotheses of Theorem
5.2 and if f does not assume the value —oco, we deduce that f is bounded from
below; but the same result can be found also if X is simply a normed space,
provided that f is supposed a convex and i-slsc function with respect to the to-
pology induced on X by its norm, and maintaining the hypothesis of coercitivity
on f: in fact it is enough to use the subsequent Theorem 5.3, applied to the
normed space X considered with respect to its linear structure on the real field,
exploiting that each affine function is bounded on every bounded set and that,
owing to the hypothesis of coercitivity, f is bounded from below in X \ B where B
is a suitable bounded subset of X.

LEMMA 5.1. — Let (X, 1) be a topological space satisfying the first axiom of
countability. Let f: X — | — oo, +00] be a i-slsc function. Then, if xy € X and if
f(xo) € R, there exists a neighbourhood U of xy such that in{] fx) > —occ.

xre

Proor. — Let U, (n € N) be such that U,.; C U, for every n € N and
{Uyn:n € N} is a fundamental system of neighbourhoods for x. By absurd let

in[}f f@) = —oo for every n € N; then for every n € IN there exists a point
xeUy

yn € U, such that f(y,) < —n and hence y, — xg, but nhrf fyy) = —oc0 =
in)f( f(x) < f(xy), that is contrary to (a) of Definitions 4.1 relatively to .
XTeE.

THEOREM 5.3. — Let Y be a real normed space, f:Y — | — 00, +00] & convex,
i-slsc function. Then there exist g € Y' and y € R such that f(x) > g(x) + y for
every x € Y.

Proor. — If f is +oo identically, then the thesis is obvious; otherwise it is
enough to use Lemma 5.1 and Theorem 2.2.
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REMARK 5.3. — As anticipated in Remark 4.3, now we shall compare our de-
finition of ¢-slsc with some definitions of well-posedness considered in [4] (see
Definitions 2.2): in particular we shall show below that i-slsc appears to be a slight
generalization of well-posedness in the generalized sense; inspired thereof, we
shall bring out that in some results of [4] it is possible to substitute the hypothesis
of Isc with the one of i-slsc (see Theorems 5.5, 5.7, 5.8 and 5.9).

Let (X, 7) be a topological space and let f: X — | — 0o, +0o0] be a not identically
+oo function. Then, besides the following obvious implication:

(X, f) Tykhonov well-posed = (X, f) well-posed in the generalized sense,
if X is a Hausdorff space, then:
(X, f) well-posed in the generalized sense = f i-slsc function.

In fact, if (x;),cn sequence of elements of X and «# € X are such that x,, — x and
f(x,) — inf f, then, using well-posedness in the generalized sense of (X, f), there
exist z € arg min(X,f) and a subsequence of (x,),cn converging to z; hence,
being X Hausdorff space, = z € arg min(X, f).

Moreover, we can note also that:

(X, f) well-posed in the generalized sense = f bounded from below,

because of nonemptyness of arg min(X, f), together with the fact that f(x) > —oco
for every x € X.

THEOREM 5.4. — Let (X, d) be a compact metric space and f: X — | — oo, +0]
a 1-slsc, mot identically +oo function. If there exists z€ X such that
arg min(X, ) = {z}, then (X,f) is Tykhonov well-posed.

Proor. — Let x, € X (n € N) be such that f(x,) — inf f and by absurd we
suppose that (f(x,,)),.cx does not converge to z; then there exist yeX\{z}anda
subsequence (2, )xex of (,),ex converging to y; therefore, by i-sisc of f, we
obtain that y € arg min(X, f), that is in contradiction with the hypothesis.

THEOREM b5.5. — Let (X,d) be a complete metric space and let
f:X — ] — 00, +00] be a i-slsc, bounded from below, not identically +oo function
such that

(5.1) lir(1§1+ diam{y € X:f(y) < ir)}ff—i— e} =0.
Then (X, f) 1s Tykhonov well-posed.
(Note that (5.1) is a necessary condition for the Tykhonov well-posedness of

(X,f), also if X is not complete and f: X — | — 0o, 4+00] is only supposed not
identically +oc: see [4], Theorem 1.2.11).
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PrOOF. — The proof of [4] (Theorem 1.2.11, see at page 9) works well also in
this case.

REMARK 5.4. — Regarding some problems about well-posedness, as for ex-
ample the one considered in Theorem 5.5, note that in [4] the authors suppose,
in the “standing assumptions” (see at page 5), that the function by us called f
and that they call / is real valued, affirming in a Remark that such hypothesis
can be done “without loss of generality” (really the proof of [4] (Theorem
1.2.11) works well, as already written above, also if such an assumption is
omitted).

However, in sight of the hypothesis of completeness on the space, we think
that, the fact that generality is not lost assuming the functional to be real valued,
may be emphasized by the following result, in which we are introducing a
function g, suitably tied to our f, that offers the advantage to be defined in a
closed set; because of role played in these problems by the hypotheses of i-slsc
and boundedness from below, in the following Theorem we are also comparing
such properties for f and g.

THEOREM 5.6. — Let X be a topological space that satisfies the first axiom of
countability and let f: X — ] — oo, +00] be a i-slsc function, not identically +oc.
Let Y :=domf, lety e R, y > ir)}ff and let g:Y — ] — oo, +00| defined by

f@) if f(y) < + o0

lirgljglff(x) if y€Y\ dom f and liagnjxylf fl@) <400
g(y) = xédomf xédomf .

y ify € Y \ domf and lignjrz}ff(x):+m

xedom f

Then:

(@) g(y) < 400 for every y € Y, g(x) = f(x) for every x € domf, irl}f g= ir)}f f
and g is a 1-slsc function;

b) if z € X, 1t holds

fl@) = i&ff SzeYandgk) = ir;fg,

that is arg min(X, f) = arg min(Y, g);

(¢) Tykhonov well-posedness of (Y,q) implies Tykhonov well-posedness of
(X, f); well-posedness in the generalized sense of (Y, g) implies well-posedness in
the generalized sense of (X, f).

Moreover, if X is also a metrizable space, then:

d) (X, f) is Tykhonov well-posed if and only if (Y, g) is Tykhonov well-posed;
(X, f) is well-posed in the generalized sense if and only if (Y, g) is well-posed in
the generalized sense.
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PrOOF. — (a) The only not obvious part is the proof that g is ¢-slsc. Let (,,)nex
be a sequence of elements of Y such that y,, — y and hm g(yn) 1nf g.
Now we shall prove that

(5.2) there exists a sequence (zj);., Of elements of dom f
such that z; — y and klim 9(z) = ir}l/fg.
——+00

We shall distinguish two cases:

(1) Wn)nex admits a subsequence (¥, )kex of elements of domf;

(#7) (Yn)nen does not admit a subsequence of elements of domf.

If we are in the case (¢), it is enough to define zj, = y,, for every k € IN.

If we are in the case (i%), given {Uy: k € N} base for the neighbourhood system of
y, with U}, open (k € IN) (existence of such a base being secured because X
verifies the first axiom of countability) and owing to (i7), to the equality
ir}}f g= ir)}f f and to the inequality y > ir}}f f, there exists a subsequence (¥, ke of

(n)nex such that y,, € UpyN (Y \ domf) and g¢(y,,) <y for every k € N; so
9Yn,) = lim inf f(x) for every k € IN; then, to obtain (5.2), it is sufficient to con-

”cedom

sider z;, € Uy ﬂ domf such that f(z) < g(yn,) + kil for every k € IN.

So (5.2) is proved.

Now, if y € dom f, we can conclude using i-slsc of f. Instead, if y € Y \ domff,
owing to the equality irj}f g= igf f and to the inequality lirxn J;lf f@) < lllcr_r} +1101cf f(zk),

xe dom f
we obtain that g(y) = lian J;f fx) = ir;f g.
xe dom f

0 If f(z)= 1nf f, then z € domf and therefore, using (a), we get
9@ =f@) = ntf = mf g.
Conversely, 1f zey, g(z) inf g, then, being g(z) < 7, there exists a sequence
Yn)nen of elements of dota f such that y, —z and lim f (yn) = 9@ =
infg = 1nf f and so, using i-slsc of f, we deduce that f(z) = mf f

(c) As (Y,g) is Tykhonov well-posed (resp. well-posed )fn the generalized
sense), then arg min(Y, g) = {z} (resp. arg min(Y, g) # &J) and so, exploiting (b),
the same is true for arg min(X, f). Let (x,).cn be a sequence of elements of X

such that f(x,) — ir)}f f; then definitely x, € domf and hence g¢g(x,) =
f(x,) — i§f f= ir%f g, from whence, using Tykhonov well-posedness (resp. well-

posedness in the generalized sense) of (Y,g), x, — 2 (resp. (&y),cn admits a
convergent subsequence towards whatever an element of arg min(Y,g) =
arg min(X, f), where the equality follows from (b)) and we conclude.

(d) Owing to (c), it is enough to prove that Tykhonov well-posedness (resp.
well-posedness in the generalized sense) of (X,f) implies Tykhonov well-po-
sedness (resp. well-posedness in the generalized sense) of (Y, g). Then we sup-
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pose that (X,f) is Tykhonov well-posed (resp. well-posed in the generalized
sense).

Wherefore arg min(X,f) = {z} (resp. arg min(X,f) # ) and so, exploiting
(b), the same is true for arg min(Y, g).

Let d be now a metric that induces X’s topology. Let (y,),cx be a sequence of
elements of Y such that g(y,) — infg; then there exists ny € N such that
9(yn) < y for every n > nyg; consequgntly, by definition of g, for every n > ng
there is a sequence of elements of domf converging to ¥, and such that f, cal-
culated on the elements of such a sequence, converges to g(y,) (being able to
choose such a sequence identically equal to y, if ¥, € domf); hence for every
n > ng there is a point x,, € dom f such that d(y,, x,) < %and flay) < 9yn) + %;
therefore, being ir}}f f= irj}f g, we get f(x,) — il}‘l{f f, from whence, using Tykhonov
well-posedness (resp. well-posedness in the generalized sense) of (X, f), we de-
duce that x, — z (resp. there exist w € arg min(X,f) and a strictly increasing
sequence (1y)gen of natural numbers such that x, — w and moreover
w € arg min(Y, g) owing to (b)) and hence y, — 2z (resp. ¥,, — w) too and we
conclude.

THEOREM 5.7. — Let (X, d) be a metric space and let f: X — | — 0o, +00] be a ¢-
slsc function, not identically +oo and bounded from below. Then (X, f) is well-
posed in the generalized sense if and only if every minimizing sequence admats
at least a convergent subsequence. In such a case, arg min(X,f) is compact
nonempty. Moreover well-posedness in the generalized sense is equivalent to
compactness of arg min(X, f) and upper semicontinuity at 0 of the multifunction
ceRi—{yeX:f(y) < ir}%fera}.

Proor. — The proof of [4] (Proposition 1.6.36, see at page 27) works well also
in this case.

THEOREM 5.8. — Let (X, d) be a metric space and let f: X — | — oo, +00] be a
1-slsc, bounded from below and not identically +oo function. Then:
(a) if (X,f) is well-posed in the generalized sense, it is

(5.3) lim o({y € X:f@) <inff +e}) = 0;

(b) if X 1s complete and (5.3) is verified, it follows that (X, f) is well-posed in
the generalized sense.

PrOOF. — (a) The proof of [4] (Theorem 1.6.38, see at page 28, from “con-
versely” forward) works also in this case, using that the set M := arg min(X, f) is
compact on account of Theorem 5.7.

(b) Let (,)nen be a minimizing sequence; then from (5.3) we deduce that
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{x,:m € N} is totally bounded and therefore (x,),cn admits a Cauchy sub-
sequence; being X complete, such a subsequence is convergent; so conclusion
follows from the first thesis of Theorem 5.7.

DEFINITION 5.1. — ([4], Section 2 of Chapter I, after Theorem 11) Let
D C [0,4o00] such that 0 € D. Then ¢: D — [0, +o00[ is called a forcing function it
¢(0) =0and

a, €D (neN), ca, —0=a, — 0.

THEOREM 5.9. — Let (X,d) be a bounded metric space and let
f:X —]—00,+0] be a i-slsc, bounded from below and not identically +oo
Sfunction. We have:

(a) if (X,f) is well-posed in the generalized sense, then

(5.4) there exists a forcing function ¢ such that ir)}f f <sup f—c(a(A))
A

for every A C X such that A # &, sup f < + o
A

(b) if X 1s complete and (5.4) is verified, it follows that (X, f) is well-posed in
the generalized sense.

Proor. — It is sufficient to use Theorem 5.8 and the equivalence between
conditions (5.3) and (5.4), that is proved in the demonstration of [4] (Theorem
1.6.39, see at page 28) without the use of completeness of X and of any lower
semicontinuity hypotheses.

REMARK 5.5. — Here we wish to compare our definition of i-sisc (see
Definitions 4.1) and some of results of this Section with some definitions and
results introduced (also in sequential spaces) and studied in [8], [9] and [10].

Let (X, ) be a topological space. Let f: X — [—oo, +o0] be a function. Then f
is said to be:

(2) ([8], Definition 2.4 (i)) sequentially lower pseudocontinuous at x € X (“slp
atx”)ifz € X, f(z) < f(x), implies f(z) < 1,12111 ngcf f(a,,) for every sequence (x,),en

of elements of X for which x,, — x; sequentially lower pseudocontinuous (“sip”)
if f is slp at « for every x € X;

(71) ([10], Definition 2.2) sequentially lower weakly pseudocontinuous at
x € X (“slwp at x”) (sequentially lower quasicontinuous in [9], Definition 3.1) if
z e X, f(z) < f(x), implies f(z) < I}Lril H)lcf f(x,) for every sequence (i), ),cn Of ele-

ments of X for which x, — x; sequentially lower weakly pseudocontinuous

(“slwp”) if f is slwp at x for every x € X;
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(222) ([9], Definition 2.1) sequentially transfer weakly lower continuous at
x € X “stwlc at ") if z € X, f(2) < f(x), implies that there exists 2z’ € X such that
fi@) < 1711111 +1{.10f f(x,) for every sequence (x,),cn of elements of X for which
X, — x; sequentially transfer weakly lower continuous (“stwlc”) if f is stwlc at x
for every x € X.

The following facts are easily verifiable:

(a) if x € X and f is slp at «x, then f is i-slsc at «;

(b) if x € X and f is i-slsc at « and if there exists (1), Mminimizing sequence
of elements of X for which x, — wx, then f is slp at x;

(¢) f can be slwp and not i-slsc (it is enough to define f:R — R,

flx) = {(1) g Z z 8, that is not i-slsc at 0), f can be i-slsc and not slwp (it is
o 0 ify>0
sufficient to consider f: R — R, f(x) = ; ﬁ Z i] :200’ —2[] -2, _1[, that is
3 ifye[-1,0]

not slwp at —1, as can be seen showing that, with z = —2, the condition con-
sidered in (z2) is not verified).

Moreover:
(d) if the topology of X satisfies the first axiom of countability and f is i-slsc,
then f is stwic too.

In fact, if x € X and if z € X, f(z) < f(x), then

inf{lim inf f(xy) : (@n)nen sequence of elements of X such that x,, — x} > i§f f,

because, otherwise, satisfying the topology of X the first axiom of countability,
there should exist a sequence (y,),cn of elements of X such that y, — x and

nkrfoc flyn) = ir}}f f from whence, using the i-slsc of f at x, « should be a minimum
point for f, that is impossible, being f(z) < f(«x); hence for concluding it suffices
to choose a point 2’ € X such that f(z') < inf{liminff(x,): %, € X (n € N),
€, — %} n—-+00

(e) There exist a topological space X that does not satisfy the first axiom of
countability and a function f: X — R that is i-slsc, but is not stwic at 0.

Let X be an infinite dimensional Hilbert space endowed with its weak to-
pology and e, € X (n € N) (with e, # e, if n, m € N, n # m) elements of an
orthonormal set for X. Let f:X — R, be a function defined by f(x)=

1 ifkeZ,and x € {ke, : m € N}
{1 ifeecX\{ke,:keZ,, neN}
n— +oo for every ke Z,, therefore inf{limigoff(xn) 22y, € X (neN),

n—

Then ir}}f f = 0; moreover ke, — 0 as
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xy, — 0} =0, whence f is not stwlc at 0, because f(x) > 0 for every x € X;
moreover, being |ke,|y =k for k € 7, and n € N, every sequence (,),en of
elements of X such that hm f(x,) =0 is not bounded and hence not weakly
convergent; so f is i- slse.”

So Theorem 2.1, Corollary 3.1 of [9] (and Lemma 4.1 of [8]) are similar to our
Theorem 5.1, but not directly comparable to it; the same thing happens for a result
about well-posedness: Theorem 3.1 of [10] and our Theorem 5.4. Furthermore, as
regards other results about well-posedness, we give with Theorem 5.7 (using that a
1-slsc function f: X —] — 00, +00], in the hypothesis of compactness on X, is boun-
ded from below because it admits minimum, for Theorem 5.1) and Theorem 5.5
respectively generalizations of Theorems 3.2 and 3.3 of [10], because in both cases
the hypothesis of slp is by us replaced by the weaker i-slsc.
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