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Connected Components of Hurwitz Spaces of Coverings
with One Special Fiber and Monodromy Groups Contained
in a Weyl Group of Type B,

FRANCESCA VETRO

Sunto. — I questo articolo vengono studiati rivestimenti X = X’ Ly dovex X', Y sono
curve proiettive complesse non singolari e f ¢ un rivestimento di grado d > 3, con
gruppo di monodromia Sg, ramificato in ng + 1 punti uno dei quali é un punto
speciale ¢ la cui monodromia locale ha struttura ciclica data dalla partizione
e=(ey,...,e) di d. Inoltre n ¢ un rivestimento ramificato di grado 2 con luogo

r
discriminante contenuto in f~1(c). Se si suppone ng + |e| > 2d, dove |e| = > (e; — 1),
i=1

questi rivestimenti hanno come gruppo di monodromia G un gruppo di Weyl di tipo
Dy oppure By In questo articolo viene dimostrato che quando G = W(Dy) e
ng + le| > 2d gli spazi di Hurwitz che parametrizzano rivestimenti come sopra sono
wrriducibili, mentre quando G = W(By) non lo sono e, in quest’ultimo caso, ne ven-
gono determinate le componenti connesse. In questo modo viene completato lo studio
dellirriducibilita degli spazi di Hurwitz che parametrizzano rivestimenti con una
fibra speciale e con gruppo di monodromia un gruppo di Weyl di tipo W(By) iniziato
mn [22].

Abstract. — Let X, X', Y be smooth projective complex curves with Y curve of genus > 1.
-
Let d be an integer > 3, let e = (ey, . .., e,) be a partition of d and let |e| = > (e; — 1).
i=1

LetX 5X L vbea sequence of coverings where 7 is a degree 2 branched covering
and f is a degree d covering, with monodromy group Sy, branched in na + 1 points,
one of which is special point ¢ whose local monodromy has cycle type given by e.
Movreover the branch locus of the covering m is contained in f~1(c). In this paper we
prove the irreducibility of the Hurwitz spaces that parameterize sequences of cover-
mgs as above with monodromy group a Weyl group of type Dq when ng + |e| > 2d.
Besides we determine the connected components of the Hurwitz spaces that para-
meterize sequences of coverings as above but with monodromy group a Weyl group of
type By.

Introduction.

A classical result of Hurwitz based on an earlier work of Clebsch and Liiroth
states the irreducibility of Hurwitz spaces Hdﬁn(Pl) which parametrize simple
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coverings of P! of degree d branched in n points [11]. In [20] Severi used this
result in order to prove the irreducibility of the moduli space M, of curves of
genus g. Natanzon and Kluitmann considered coverings of P! with one special
fiber and proved independently the irreducibility of the corresponding Hurwitz
spaces (see resp. [18], [16]). Natanzon’s paper refers to some applications of this
result to the theory of integrable systems. The problem of irreducibility of
Hurwitz spaces was studied by Fried and Vélklein with regard to applications to
inverse Galois theory [7]. The Hurwitz spaces of simple coverings of curves of
positive genus were studied by Harris, Graber and Starr in [9]. They proved an
irreducibility result for spaces which parametrize degree d coverings branched
in n points and having full monodromy group when n > 2d. This was used in their
famous theorem for existence of sections of one-parameter family of complex
rationally connected varieties [10]. The Hurwitz spaces Hg%e(Y) which para-
metrize degree d coverings of curves Y of positive genus with one special fiber
and full monodromy group were studied in [14] and [21] where their irreduci-
bility was proved when the number % of simple branch points is sufficiently large.
The best estimate is established in [21] where the irreducibility of the spaces
Hj, (Y)is proved under the hypothesis n + |e| > 2d where e = (e, ..., e,) is
the f)irtition of d that gives the local monodromy of the special fiber and
le| = Zl (e; — 1).
=

The symmetric group S, is the Weyl group of the root system of type 441 and it
is natural to study coverings whose monodromy group is contained in an arbitrary
Weyl group. We refer the reader to the papers [5], [12], [13] where coverings of this
type and their connection with spectral curves are studied. Biggers and Friedin[1]
proved the irreducibility of Hurwitz spaces of coverings of ’!, whose monodromy
group is a Weyl group of type Dy, which have simple branching in the sense that
each local monodromy is a reflection. Kanev in [15] generalized the result to
Hurwitz spaces parameterizing Galois coverings of ! whose Galois group is an
arbitrary Weyl group. The author studied in [22], coverings with monodromy
group the Weyl group W(B;). Such coverings may be decomposed as follows:
X L X' 5 YwhereX, X', Y are smooth, connected, projective complex curves, r is
adegree 2 covering withn; > 0branch points and f is adegree d > 3 covering, with
monodromy group Sy, branched in 7 + 1 points, ng > 0 of which are points of
simple branching while one is a special point ¢ whose local monodromy has cycle
type e. Denote by D, and Dy respectively the branch ljgcus of randf. In particularin
[22] it was studied sequences of coverings X 2 X' L. Y as above such that either
f(Dy) N Dy =@ or D, N f1c) # @ but D, is not contained in f~1(c) and it was
proved the irreducibility of the corresponding Hurwitz spaces when Y ~ P! and
then it was extended the result to curves of genus > 1 under the hypothesis
ng + |e| > 2d. In the end it was proved the irreducibility of Hurwitz spaces that
parameterize coverings X L X' L pPlwith D, C ).
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In this paper we complete the study of coverings of the type X = X’ ER Y
with ramified = and with one special fiber, considering the remaining case:
D, c f7'(c¢) and g(Y) > 1. The arguments of [22] does not work in this case and
in fact it turns out surprisingly that the corresponding Hurwitz spaces are not
always irreducible. Namely, there are two possible cases under the hypothesis
ng + |e| > 2d. The monodromy group G of the coverings is either W(Dy) or
W(By). The two main results in the paper are the following: in Theorem 1 we
prove that when the monodromy group is W(Dy) the corresponding Hurwitz
spaces are irreducible. In Theorem 2 we prove that when G = W(B;) the cor-
responding Hurwitz spaces have 2% — 1 connected components where g = g(¥).

CONVENTIONS. Two degree d branched coverings #h;:X; — Y and
hy : Xo — Y are called equivalent if there exists a biholomorphic map
p : X1 — X such that hy o p = hy. We denote by [/1] the equivalence class con-
taining /;. Moreover here the natural action of S; on {1,...,d} is on the right.
We denote the action of ¢ € S; on ¢ with 7°.

1. — Weyl groups of type Bj;.

In this section we recall some facts about Weyl groups of type B;. We use the
notation of [3] and use some definitions of [4].

1.1 — Letd > 3be aninteger. Let {¢1, . .., &} be the standard base of R? and let R
be the root system {+¢;, +¢+¢:1<1,5 < d}. The Weyl group of type By,
W(B,), is generated by the reflections s, i =1,...,d, and s, 1 <i<j<d.
The reflection s,, interchanges ¢; and — ¢; while unchanging each &, with # # 1.
The reflection s;, ., interchanges ¢; and ¢;, — &; and — ¢;, leaving unchanged ¢, for
each b # i,5. If weidentify {+¢; : 1 =1,...,d} with {—d,...,—1,1,... d} by the
map +¢ — =1, the action of W(By) over {£¢;: ¢ =1,...,d} allows us to define
an injective homomorphism ¢ from W(B;) into Sz that sends s, . to
ANC—1 =), 8 t0 (i — 1) and s, = ;5,55 t0 (@ — (=17 J). ‘

In particular, if one ignores the sign-changes, each element w € W(B,) de-
termines a permutation of the indexes 1, . .., d that can be expressed in the usual
way as a product of disjoint cycles. Let (4142 . . . %,) be a such cycle. Then w sends
+e; to+e,,,j=1,...,e—1,and £¢;, to ;. The cycle (i; . ..7,) is called po-
sitive if w(e;,) = ¢;,, and negative if w°(e;,) = —¢;,. The lengths of these cycles
together with their signs give a set of positive or negative integers called the
signed cycle-type of w.

DEFINITION 1. — We call positive (negative) cycle of the form (¢; .. .1%.) each
element w belonging to W(By) satisfying the following: w sends +e;; to +&,,
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j=1,...,e where i,11:=11, leaving unchanged &, for each hé¢ {i,... %},
1 <& < d and moreover uw®(e;,) = ¢;, (resp. w’(e;,) = —é;). The integer e is called
the length of the cycle w. Two cycles in W(Bg) of the form (i ... 1,) and (hy ... k)
are disjoint if (iy . . . %) and (hy . . . k) are disjoint cycles of Sg.

A positive cycle of the form (¢; .. .1%,) corresponds in Sy to a product of two
disjoint e-cycles, ss’, which move the indexes {+ 41, ..., + %, } and are such that if s
sends i; to i1 (ij to — ;1) then s’ sends —i4; to —i;4; (resp. —i; to ¢j,1), where
+ 4.1 := *1;. Instead a negative cycle of the form (i; . . . 4,) corresponds in Sy, to
a 2e-cycle of type (i1 £z ... % —1% Fiz ... Flg).

Each element of W(B;) can be expressed as a product of disjoint positive and
negative cycles. So it is easy to see that two elements of W(B,) are conjugate if
and only if they have the same signed cycle-type.

Let (Zz)d be the set of the functions from {1,...,d} into Z,. Here we consider
(Z5)" endowed with the sum operation and we denote by z;; the function of (Zs)"
so defined

2ij(1) =25()) =2z and z;(h) = 0 foreach h+#4,j andzeZ,.

Moreover we denote by 1; ;, the function of (Z5)" that sends to 1 only the indexes
i,...,h. Let @ be the homomorphism from S; in Aut((Zg)d) which assigns to
t e Sq dt) € Aut((Z2)") where

(D) 2] (5) :=2'(j") foreach 2 € (Zs)".

Let (Zg)d x* S4 be the semidirect product of (Zz)d and S; through the homo-
morphism @. Given (2'; 1), (2";t2) € (Zy)" x* S, we let

(#;t) @' t2) == (7' + P(t1)2"; tite).

It is easy to check that it is possible to define an isomorphism ¥ from W(B,) into
(Z5)" x5 S; which sends S5 10 (05 (1 1)), 8¢, to (1;;d) and 5,4, to (1y5; (i 5).

In particular the isomorphism ¥ sends a positive (negative) cycle of the form
(iriz...%) to an element of type (1; ;;(i1is...1.)) where {iy,... i} C
{i1,%2,...,%} and §{iy, ..., i} is even (resp. odd).

From now on we will denote by W(D,) the subgroup of W(B,;) generated by
the reflections with respect to the long roots ¢; — ¢; and &1 + ¢; with 2 <17 < d. So
W(Dy) is isomorphic to the subgroup of (Z5)? x* Sy generated by the elements
0;(1 %)) and (1;; (1 7)), 2 < i < d. Note that positive cycles and products of an
even number of negative cycles are elements of W(D,).

1.2 - Let e = (ey,...,e,) be a partition of d where e¢; > --- > e,. Let w be an
element belonging to W(B,) that determines on the indexes 1, ...,d a permuta-
tion with cycle type given by e. So w is product of r disjoint positive and negative
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cycles which have lengths ey, . .., e,. Let [ be the number of the negative cycles.
Since disjoint cycles commute we can place positive and negative cycles in
decrescent order of length. Moreoverife; = - - - = e,, and fi negative cycles have
length e;, we can place to the first f; places the negative cycles. The same thing we
can doife, 1 = --- = e,,, and there are f; negative cycles of length e,,;. Let us
denote by {71, ...,7:} the subset of {1,...,r} such that

n=L1. 05 =i =n+1.. gy =1+ .. 0 =70+ [

In this way we associated to w one partition e of d and a subset {ji,...,7;} of
{1,...,7r}. Now we use ¢" to denote the partition (¢;,, . .., e;,) and use ¢” to denote
the partition (ef41,...,€r,...,6j41,...,€:) determined by the lengths of the
positive cycles.

DEFINITION 2. - A double partition of size d, (a,b), is an ordered pair of
partitions a = (a1,...,a;) and b= (by,...,bs) such that a;+---+a;+
b1+ -+ bs = d. Land s are called respectively the length of @ and the length of b.

The ordered pair (e”, ¢”) is the double partition of size d that gives the signed
cycle-type of w.

Conversely, let (e",e?) be a double partition of size d such that
e’ =(a1,...,a;) and e’ = (by,...,by). Let [ + s = r. If we place the a; and the b;
in decrescent order and every time a; = b; we first place a;, we determine a
partition e = (e1,...,e,) of d and a subset {ji,...,5;} of {1,...,7} such that

er>--->e, e =(e,...,¢), & =(e1,...,¢,...,6,...,¢) and if (j; —1)¢
{j1,...,51} then e;_; >e;,. So an element of W(By) with signed cycle-type
given by the double partition (¢”,¢”) induces on the indexes 1,...,d a per-

mutation whose cycle type is given by the partition e.
We call e and {j1,...,5:} respectively the partition of d and the subset of
{1,...,7} associated to (", eP).

DEFINITION 3. - We denote by C the conjugate class of (Zs)" x5 8, containing
elements of type (z;;; (1)) and by Cen o0y the conjugate class of (Zs)! x* Sq = W(By)
containing elements with signed cycle-type given by the double partition of size d
(e",eP). We denote by (a'; &) an element of (Zs)" x5 8, belonging to Cen ).

Note that ¢ is the permutation that (a’; &) determines on the indexes 1, ..., d.
Moreover if the partition ¢” has length [, the function o’ sends to 1 an odd number
of indexes moved by each of the [ negative cycles of which is product &.

From now on every time we will write an element of W(Bg) as product of
disjoint positive and negative cycles, we will suppose these cycles placed in
decrescent order of length and so that if a positive cycle has same length of a
negative cycle, the negative cycle comes first positive one.



92 FRANCESCA VETRO
2. — The Hurwitz spaces Hg ,, (o 0 (Y).

In this section we define the Hurwitz spaces that will be object of our study.
Let d > 3 be an integer.

DEFINITION 4. — An ordered sequence (ta, . .., tu; A1, ly, - - -, Ag, 1) Of elements
of (Zo)! x38g ~W(By) such that t; # (0;id) for each i1=1,....n and
t1--tn = [A, 101 g, ,ug] is called a Hurwitz system with values in
(Zs)? x5 Sy. The subgroup of (Zs)" x* Sq generated by t;, I, wewithi=1,...,n
and k=1,...,g s called the monodromy group of the Hurwitz system.

Note that if g = 0 the Hurwitz systems (t1, ..., ty; 41,44, - - -, Ag, 44,) are of the
form (t1,...,t,) and ¢y - - -, = (0;2d).

DEFINITION 5. — Two Hurwitz systems with values in (Zz)d x5 Sg ~ W(By),
(oo sbus A1, sy Agy fg) G (il,...,in;;h,ﬁl,...,Zg,ﬂg), are called equiva-
lent if there exists s € (Zs)' x5Sy such that t; =s1t;s, A =s"1 s and
I, =st s for each i=1,....m, k=1,...,9. The equivalence class con-
taining (ty,. .. ,,ug) 1s denoted by [t1, . . . 7/zg].

Let X, X’ and Y be smooth, connected, projective complex curves of
genus > 0. Let n; and ny be positive integers and let ¢ = (e1,...,¢.) be a
partition of d where e; > ... > e,. In this paper we will work with sequences

of coverings X = X’ ER Y satisfying the following:

(%) misadegree2 branched covering with ny branch points and f is a degree
d covering, with monodromy group S, branched inng + 1 points, ne of which are
points of simple branching while one is a special point c whose local monodromy
has cycle type e. Moreover the branch locus D, of 7 is contained in f~1(c).

OBSERVATION 1. — From Hurwitz formula it follows that n; is even so n; > 2
and consequently » = § f~1(c) > 2.

DEFINITION 6. — Two  sequences of coverings X RN X ER Y and
Xz EXé £ Y are called equivalent if there exist two biholomorphic maps
p: X1 —Xo and p': X] — X}, such that p’'omn = opf(md, foop' =fi. The
equivalence class containing the covering X - X' Y is denoted by
x5 x Lyl

A sequence of coverings, X KN ¢ EN Y, that satisfies the conditions (x) is a
degree 2d branched covering of ¥ with branch locus D = Dy where D; denotes
the branch locus of f. Let by € Y — D and let m : iy(Y — D, by) — Sgq be the
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monodromy homomorphism associated to X = X’ ER Y. The images via the
monodromy homomorphism m of a standard generating system for 7;(Y — D, by)
determine an equivalence class [t1,...,tu, 115 41,44, - -5 Ag, 4] of Hurwitz sys-
tems with values in (Zz)d x5Sy satlsfymg the followmg

(xx) mz among the t; belong to C and one belongs to a class of type Cien o) (see
Definition 3) where (€", eP) is a double partition of size d such that e" has length
ny and the partition of d assoctated to (e",e’) is e. Moreover if t; = (*;t]/»),
A = (x5 Ak) Ly = (x5 ,u]) withj=1,....,n9+1and k=1,...,g, the group gen-
erated by s Ay 1, is all Sy.

Let (¢",¢P) be a double partition of size d such that the partition ¢" has
length given by an even integer > 2. Let us denote by Hg, ,, () (¥) the
Hurwitz space that parameterizes equivalence classes of coverings
xZx Ly satisfying the conditions (*), with monodromy group con-
jugated to G and having one branch point whose local monodromy belongs to
Ce o). Let us denote by AG ()9 the set of all the equivalence classes,
(B0, s bugi15 415 g, - - -5 Agsy 1], of Hurwitz systems with value in (Z)" x *8a,
satlsfylng the condltlons (* x), whose monodromy group is conjugated to G.

Let Y™ De the n-fold symmetric product of Y and let 4 be the codimension 1
locus of Y™ consisting of non simple divisors. Let

O:Hg uy ey ¥) — Y02D_ g

be the map which assigns to each equivalence class [X = X’ ER Y] the branch
locus D of X 5 X’ 5 Y. By Riemann’s existence theorem we can identify the
fiber of ¢ over D with Ag , (o &) g- There is an unique topology on Hg, y,, (¢ er) (Y)
such that J is a topological covering map (see [8]). Therefore the braid group
71 (Y"2tD — 4 D) acts on AG ny (e e)g- The orbits of this action are in one-to-one
correspondence with the connected components of Hg, 1,, (¢n ¢y (¥). So in order to
determine the connected components of Hg, ,,,, (¢n ey (Y) it is sufficient to find the
orbits of the action of 7;(Y"2+V — 4, D) on Ag , (¢ o) g-

REMARK 2.1. — Let Y be a smooth, projective complex curve of genus > 1. The
generators of the braid group 7;(Y®™ — 4, D) are the elementary braids g; with
j=1,...,mn — 1 and the braids p;;,, 7 with1 <7 <mand1 <k < g (see [2], [6],
[19]). The elementary move aj’, relative to the elementary braid g;, bring (see [11])
[tl, .. ] 1, t],t]+1, . ,tn; ).1,/11, . ,;Lg,,ltg] to

[tlv . ] 1,tt]+1t7 at]:"'vtn;)“lmula'"7;Lg7/‘g]'

Therefore its inverse a " bring [t1, ... b 1,881, ey Ay i, -5 Ags ] tO
[tly-- ] 17t]+1:t]+1tt]+17 . t’i’tailwul?" /Lg;ﬂg]
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Here as in [14], we associate to each generator p;;, T a pair of braid moves
Pes Pl = ()" and 7, ), = (¢},)" respectively.
We use the following result.

ProprosITION 1 ([14] Theorem 1.8). — Let [t1, ..., tu; 1,44, - -, Ags 1] be an
equivalence class of Hurwitz systems. Let uy, = [A1, 1]+ [, pp ]l fork=1,...,¢
and let vy = id. The following formulae hold:

i) Forpj wherel <i<m, 1<k<g:
t]’- = tj for each j # 1, A = X for each |, 1) = p; for each 1 # k
(i) — (1) = (ay'tiaq, (by't; b)) where
ar =t ti) " we g ug) iy t) T b= (b)) w1 e
ii) Forplj wherel <i<n, 1<k<g:
t] =1 for each j # i, X = J for each |, y = 1 for each 1 # k
iy 1) — X, 1) = (ag'tiaz, (by'tibe)y,) where
ag = tiv1 -t ug) A ) Mt b =ty -t )
iii) For ), wherel <i<mn, 1<k<g:
t; =t; for each j # i, 2 = Xy for each L # k, 1y = p for each |
(ti, ) — @t 1) = (c;Mtier, (di* t;d1)Ay) where
e1 = tip1 - b ug) Mg ) Mty dy o=ty g )
iv) Fortj wherel <i<m, 1<k <g:
t] =t; for each j # i, 2 = Xy for each L # k, 1 = 1y for each 1
(i ) — (@, 2) = (c3'tica, (dy't;'dp)ly) where

e =t ti ) w1t tu) i)Y, da = (e ti) g

3. — Irreducibility of Hyp,), n,, @ er) (¥)-

Let (¢", eP) be a double partition of size d such that the partition ¢” has even
length > 2. Let us denote by n; the length of ¢". Let e =(ey,...,e,) and
{J1,- - +Jn, } be the partition of d and the subset of {1,...,r} associated to (¢, e")
(see Section 1, paragraph 1.2). Here we associate to ¢ the following element in S
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having cycle type e
(1) (A2...e1)e1 +1...¢e1 +62)~'-((61 ++er,1)+1d)
N
and by |e| we denote Y (¢; — 1).
i=1

DEFINITION 7. - We call two Hurwitz systems with wvalues n
(Zg)d x* Sq ~ W(By) braid-equivalent if one is obtained from the other by a finite

sequence of braid moves a;, pl, ?ék’ U-;'/Z Pl T Where1 <j<n—-11<i<n
and 1 < k < g. We denote the braid equivalence by ~.

DEFINITION 8. — Two ordered m-tuples (or sequences) of elements in
(Zg)d x5 Sq =~ W(By), (t1,...,t,) and (t1,...,t,), are called braid-equivalent if

(t1, ..., 1) is obtained from (t1, . . ., t,) by a finite sequence of braid moves of type
aj’, 0']/-/. Note that if t,---t, = sthent;---t, =s.

LEMMA 1. - Let (t1,...,t;,ti1,-.-,tn) be a sequence of elements in
(Z5)" x5 S, such that tiv1 =17 1 Then, acting with elementary moves a]’» and their
mwverses, we can move to the left and to the right the pair (t;,t;,1) leaving un-
changed the other elements of the sequence.

PrOOF. — The lemma follows from the braid equivalences (t,%;,%;11) ~
(tiv tlilt ti7 ti+l) ~ (tia ti+17 t) and (ti7 ti+17 t) ~ (ti7 ti+1t t17+117 ti+1) ~ (t7 tiv ti+1)' O

From now on let us denote the permutation (1) by
e = (11 21...(e)1)2 25...(e2)2) - - (1 2, ... (1))
and by ¢; we denote the cycle (1,2; ... (¢;);). Let nz and g be positive integers.

PROPOSITION 2. — If ny + |e| > 2d each equivalence class [t1, ..., tn,+1;,
His - - o5 Ags fhg] belONging to Ag p, (o ) 4 18 braid-equivalent to a class of the form

[(0;(1121)),  (0;(1181)),...,  (O;(Lien)r)),  (0;(122p)),...,  (0;(1z(e2)2)),. .-,
01, 20, ;A (e))), G2y ; (1 1), (@)L s (W2), ., G5 (4L ),
@Dy, Qiley), @qs L), .o, (@), (n 1), (y,..1,, 367"
(c1;1d), (dy;d), . . ., (cg; id), (dy; id)]

where ifj € {j1,- - Ju }

2) (@1 ML), (@)1 L)) = (T (1), 0: (141))

if instead j& {1, . ) 2<j<m,

3) (@), (LI (Y35 (L) = (O: (L1, (0; (1L,
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Moreover ((z" ﬁlﬁ (111,)) = (0; (111,)) for each m = 2, ...l and the c;, and the d
are equal to either 0 or 1, depending on wether /. and 1y, belong to the subgroup
of (Zz)d x5 Sq 1somorphic to W(Dy) or not.

PROOF. — Step 1. Let Ay = (ax; 4), = (bg; 1)), 4 = (@3] = &) for some 1
and ¢; = (x; t;) for each j # [. Let Y be a smooth, connected, projective complex
curve of genus > 1. By Riemann s existence theorem the equivalence class of
Hurwitz systems [t} ..., 6, ; My ,u;] corresponds to an equivalence class of
degree d > 3 coverings of Y, with monodromy group Sy, branched in ng + 1
points, ng of which are points of simple branching while one is a special point
whose local monodromy has cycle type e. Since 12 + |e| > 2d the Hurwitz space
HY ~ (Y), parameterizing equivalence classes of coverings as above, is irre-

dng, e
duc1b1e (see [21], Theorem 1). So it is possible, acting by braid moves o/, pl,., 7},
and their inverses, to replace [, ..., ,ug] with [¢],...,t} ,& e Lid @d] In this
way our class [t1,. .., u,+15 41, 14y, - - Ag, ,ug] results braid- equlvalent to a class of

the form [y, .. tnz,(b e b); (al,zd) (b1;id), . . . , (@g; id), (by; id)].
Note that

Ay @567 = [(@;id), (by;id)] - - - [@g; id), (by; id)] = (0;id),

and thus (¥';¢!) belongs to the group generated by #, ..., t,,.

[, ... 75,7,2, (b';e71)] is a equivalence class of Hurwitz systems satisfying the
following: 2 among the ij belong to C, one belongs to Cr vy and (t7, . .. , T, ) = Sa.
Therefore the equivalence class [, .. tnz,(b ¢ 1)] corresponds to an equiva-
lence class of coverings X = X’ L pt satisfying the conditions (* ) and having
one branch point whose local monodromy belongs to C .. Since the Hurwitz
spaces that parameterize sequences of coverings X — X’ L pt as above are ir-
reducible (see [22], Theorem 8), it is possible, conjugating by elements of type
(1;_;4d) and using elementary moves a;-, aj’" with 1 <7 < mng — 1 (see [22], Proof
of Theorem 8), to transform our class into the form

4) [(0;(1121)), (0;(1131)),...,(0; A1(en1)), (0;(1222)),..., (0;(12(e2)2)), - .,
0;(1,2,)), ..., (0; (X(er))), (Zilz;(lllz)) ((22)1112; (1112)), (2§113'(1113));
((23)%113; ~(1113)),-~-7 (21,1,5 (Nlllr))7 ((ZT)l 1, (111), (11 ;e h);

(a1 1d), (b1;1d), . . ., (ay; id), (by; id)]
where the pairs ((271 y ; (111))), ((zf)111 ;(111))), 2 < j < 7, satisfy either (2) or (3)

depending on whether j jbelongsto {1, ...,Jn, } or not. Moreover ((z’”)lllr, 1:1,) =
(0;(111,)) foreachm = 2,...,1.

]111

Step 2. By Step 1 we can transform [y, . . sbug415 A1, fhys - - -5 Ag, gl into (4). So
if the d; and the by are equal to either 0 or 1;, fpr each k, the proposition is
proved. Let a; be a function different from 0 and 1;.



CONNECTED COMPONENTS OF HURWITZ SPACES OF COVERINGS ETC. 97

Let i andj be two indexes sent to 1 by @;. Observe that if, acting by braid moves of
type o}, 07,1 <1 < mp — 1, we can obtain a class braid-equivalent to ours in which
there are both (11,, (7)) and (0; (Zj)) then our class is braid-equivalent to a class of the
form [tl, ey tny, (11 1, € 1y (Gq;4d), (bl, ), ..., (ag;id), (bg, id)] where a; is

a function which sends to 1 the same indexes sent to 1 by a; except ¢ and j. In fact,
using elementary moves g} we can bring to the first place one of two elements of
type (24;(i)) and then we apply the move 7, that transforms (a;id) in
(23 (zj))(al, 1id). Now we move to the first place the other element of type (zl], @),
where 2/ =11if 2 =0 and 2/ = 0 if z = 1 and we again act by ;. In this way
we replace (2 (i))ar;id) with (2); (@) (25 (i) (G id) = (127, id) (ay;id) =
(lu + ay;id) where a; = lu + @y is a function which sends ¢ and j in 0.

At first we verify that (4) is braid-equivalent to a class of the form
by, sty (L, 56705 (@3id), (br3id), .., (g3 id), (bys id)]. If in (4) there is
already the pair ((1;; (7)), (0; (i)))), it is sufficient to proceed as above to bring our
class to the required form. Then we analyze the case ¢ = 1; and j¢{1;,...,1;, }
(in a similar manner one affronts the case ¢ = 1, for some * € {ji,..., jm} #1,
and j # 1;). If j is an index moved by some cycle g. with * € {j1,...,Ju, }, * # 1,
since j # 1, in (4) there is the element (0;(1.7)). Let 2 and & + 1 be the places
occupied by the elements of the pair ((1111*; (111,)),(0;(111,))). Using moves of
type o, we move (0;(1,7)) to the place 4 — 1 and we apply the moves o}, _;, g,
obtaining

((0; (1), (A1,1,5 (11 1)), (05 (11 1)) ~ ((Ay, 5 (11)), (0; (119)), (0; (1))

In this way we obtained a class braid-equivalent to (4) determined by a system
in which there is the pair ((111]—; (117)),(0;(117))), so (4) can be transformed into
the required form. If instead j is an index moved by ¢; in (4) there is already
(0;(117). Using moves of type g/ we move (0; (117)) to the first place and then
we apply 7}, which transforms (a;;¢d) in (0; (1;5))(@1;1d). Note that the move
7}, also acts on (0;(1;7)) conjugating it with c» = (El;id)(O; (117) (see
Proposition 1). If b; sends the indexes 1; and j both either to 1 or to 0,
cgl (0;(117) ce = (0;(119)). If instead 131 sends one of two indexes to 0 and
another to 1, cgl 0;(117) c2 = (L]j; (117)). In the second case it is sufficient to
apply 7 to replace (a1;(117)) with (G1;4d). In the first case instead we move
(0; (11)) to the left of one pair of type ((1111 :(111,)),(0; (171,)). If b and 2 + 1
are the places occupied by the elements of this pair, we apply 4, _,, g, to
obtain

((0; A1), (1,5 (111,)), (05 (14 1,)))
~ (L1, L)), A, ), Qg L)

Now it is sufficient to move (11, ;; (11))) to the first place and then to apply 7}
to transform (a;; (117)) in (ay; id).



98 FRANCESCA VETRO

Note that if j is an index moved by a cycle ¢, witha # 1 and a ¢ {j1,...,ju, },
then in (4) there are both (0; (1, 7)) and ((0; (1;1,)), (0;(111,))). By Lemma 1 we
can move the pair ((0;(1;1g)),(0;(111,))) to the right of (0; (1, j)) leaving un-
changed each other element of (4). Acting with one suitable o; we replace
((0;(1a 7)), (0;(1114)), (0;(1114))) with ((0;(11 7)), (0514 7)), (0;(1114))). In this
way we obtain a class braid-equivalent to (4) in which there is the element
(0; (11 7)) and one pair of type ((1111*;(111*)),(0;(111*))). So from what we ob-
served above it follows that our class is braid-equivalent to a class of the re-
quested type.

In the end we analyze the case in which the indexes ¢,j do not belong to
{1,...,1;, , 11}. If iis one index moved by ¢1 and j one index moved by some cycle
g with x € {J1,...,Jn, }, * # 1, in addition to the pair ((11,1,;(111,)), (0;(111.))),in
(4) there are (0; (11%)) and (0; (1..5)). With elementary moves of type ¢; we bring
(0; (119)) and (0; (1,.5)) to the left of the pair (11,1, ; (11 1,)), (0; (11 1,))). If now (0; (1;7))
and (0; (1..))) occupy respectively the place & — 2 and & — 1, we act by a;_;, g),_,,
O},_15 Oh_g: O, 0},_1 obtaining

((0; (1y ), (0;(Ls ), (y,1,;(11 1)), (0;(11 1))
~ ((Ly; @ ), (03 G ), (05 (5 1)), (0; (11 D))).

In this way we replace our class by a class in which there is the pair
(135 G 9)), (0; (i ), then (4) is braid-equivalent to a class of the requested type.
Observe that one proceeds in the same way when 7 and j are indexes moved by
two different cycle g, and ¢, such that either a,b € {ji,... 5.} — {1} or
a<{ji,...,Jn}and b&{1,71,....Jn, }-

If instead the indexes 7,5 are moved both by ¢; (analogously one reasons when
1 and j are moved both by a cycle g, with € {j1,...,jn, }, * # 1) in (4) there are
both (0; (1; 7)) and (0; (11 7). Let ¢ < j. Acting by inverses of elementary moves a}
we move (0; (11 7)) to the right of (0; (1; ¢)) and then we use a suitable ¢ to replace
((0; (112)), (0; (11.5))) with ((0; (3)), (0; (117))). We move (0; (#)) to the first place and
then we apply 7{; which transforms (a;;id) in (a1; (3)). If {; transforms (0; (%))
into (1;; (/) applying again t}; we conclude. Otherwise acting by moves of type
o, we place (0; (4)) near to (0; (1:%)) and then we move both to the left of one pair
of type (11, 1.;(11 1)), (0; (11 1,))). If now (0;(ij)) and (0;(1;4)) occupy respec-
tively the place & — 2 and h — 1, it is sufficient to apply ¢}, _, },_s, 0}, G} _1: )_2
to obtain that

((0; (G 7)), (0; (11 ), (14, 1.5 (11 1)), (0; (11 1))
~ (A5 G ), Ao, (G 1)), (05 1), (05 Ay 9))).

We move (1;; (ij)) to the first place and then we apply 7}, to transform (@y; (i)
in (ay;1d).
Observe that if ¢ and j are indexes moved by the same cycle g, with
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a¢{1,51,...,Jn > in addition to the pair ((0; (111,)), (0; (111y))), in (4) there are
the elements (0; (1, %)) and (0; (1, 7)). Acting by elementary moves o, we place
(0; (14 7)) to the left of (0; (1, 7). Now by Lemma 1 we can move on the left the
pair ((0; (111,)), (0; (111,))) leaving unchanged each other element of the system
and obtaining [ ..., (0; (14 2)), (0; (1114)), (0; (1114)), (0; (A4 7)), . . . ]. If now the ele-
ment (0; (1, 7)) occupies the place & — 1, acting with o}, _;, o}, 41 One has

((0; Qg 7)), (05 (11 1)), (0; (11 1a)), (05 (1o 1))
~ ((0; (11 9)), (0; (Xq 2), (05 (11 7)), (0; (11 1a))).

We obtained a class braid-equivalent to (4) in which there are the elements
(0; (11 7)), (0; (11 7)) and one pair of type ((Lll*; (111,)),(0;(111,))), so we can
conclude that our class is braid-equivalent to a class of the required type. At the
same conclusion one arrives when the indexes ¢ and j are moved by two different
cycles g, and g, so that both ¢ and b do not belong to {1,j1,...,ju, }.

We verified that (4) is bliaid—equivalent to a class of the form
[, ..., inZ,(iljl,,,lml ;e 1) (@r;id), (by;id), . .., (@g; id), (by; id)]. Now by Step 1 we
can bring this class to the form

B [0;(1120), 0;(1131), ..., (0;L1(en)y), (0;(1922)),. .., (0; (1a(ez))), - . -,
©; (1,2,),...,0; (e, (31,5 (l2), ()5 (l2), (4 (11ls),
(@Ny; Wi,y @y ML), (@s (ML), (T, 567
(15d), (by;id), ..., @y id), (by; id)]

where the pairs ((z’illy_; (111;)), ((27)111]_; (111))), 2 < j < 7, satisfy either (2) or (3)
depending on whether j belongs to {ji,...,jn,} or not. Moreover
((zy)ﬁly; (111,)) = (0; (111,)) for each m =2, ... 1.

Note that (5) is different from (4) only by the element of place ng + 2. So one
can proceed for each pair of indexes which a; sends to 1 as by the pair (¢,7). In
this way, after a finite number of steps, we are able to replace (5) with a class of
the form either [f, ..., 5., (Iy, 1, ;&7 0;id), (b;id), .., (g3 id), (by; id)] or
[Er. . (Lo, 1y, 56 Ay gsid) (1sid), (b id), . gy id), (by;id)] depending
on whether 1; belongs to W(D,) or not.

If @, is equal to either 0 or 1; and b is a function different from 0 and 1 to
replace (51; 1d) with (d;;id) one proceeds in the same way but using the braid
move p};. Analogously one reasons when dy, is different from 0 and 1; and @, b
are equal to 0 or 1; for each ! < k — 1, but one use the braid move 7. In the end if
by, is different from 0 and 1; and @, by, @i, [ < k — 1, are equal to 0 or 13, to
replace (by; id) with (d; id) one applies the braid moves Pipe

Once checking that (4) is braid-equivalent to a class of type
[E1s- -y by (il7'1<-<1.7')11 ;e D); (er;id), ..., (dy;id)], by Step 1 the proposition is
proved. O
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Let ng + |e| > 2d and let (11 A5 € he Cie» »)- From now on we will denote
by Z the Hurwitz system with Values in (Z2)? x* 8y

©) (0;(112)),..., (0: (Lale)), - ., (05 (1,2), ..., (0 (Lylen))), (@2, (L112)),
((z?)hh, (1112, @ WLy, (@) Wl @y s (L)),
(@1, ML), Ay, )

Jny
where the pairs ((z1 ’ ; (1115)), ((,27)111 ;(111)), 2 < j < 7, satisfy either (2) or (3)
depending on Whether j belongs to {ji,-.-,jn,} or mnot. Moreover
((z’”)i'zlr, (111,)) = (0; (111,)) for each m =2, ..., 1.

OBSERVATION 2. — The monodromy group H of the Hurwitz system Z is iso-
morphic to W(Dy). In fact, since the transpositions (1; 2;), (1; 3,),...,(1; (),
(1 1),i=1,...,7j=2,...,r generate all Sy and H contains at least one pair of
type ((11,1,; (11 1))),(0;(1; 1;))), H contains both the elements ((1;; (2 k)) and
(0; (b k)), foreach b,k € {1,...,d}, h # k. Therefore H contains all the generators
of W(Dy). Since C and C,» o) are contained in W(Dg), H is isomorphic to W(Dy).

COROLLARY 1. - Let na+le] > 2d and let [t1,... w1541, M, --- ,},g,yg]
belonging to Ag u, (o ) g- Then G is isomorphic either to W(Dg) or to W(Bg).

PROOF. - Sineng + |e| > 2d,by Proposition2, [ty ..., tu11; 41, f,- -+, Ags 1]
is braid-equivalent to a class of the form [Z; (cy;id), (d1;1d), . . ., (cg; id), (dy; td)]
where the c;, and the d, are equal to either 0 or 1; depending on wether /; and
belong to the subgroup of (Zs)® x* Sy isomorphic to W(Dy) or not. Moreover the
group generated by elements of Z is isomorphic to W(D;) (see Observation 2).
Therefore if all the ¢, and the d;, are equal to 0 the Hurwitz systems belonging to
[t tup15 41, f4, - - -, g, 4yl have monodromy group isomorphic to W(Dg) and
SO G is isomorphic to W(Dy). If instead one 4; or gy, is equal to 1;, the Hurwitz
systems in our class have monodromy group isomorphic to W(B;) and so G is
isomorphic to W(By). O

THEOREM 1. — Let Y be a smooth, connected, projective complex curve of
genus > 1. Ifng + |e| > 2d, the Hurwitz space Hywp,, n, (e o) (Y) 18 trreducible.

ProoF. — Since the Hurwitz space Hywp,), n, (e (Y) is smooth to prove its
irreducibility it is sufficient to prove that it is connected. In Section 2 we observed
that the connected components of Hywp,)u, e (Y) are in one-to-one corre-
spondence with the orbits of the action of 7; (Y2 *V — 4, D) on Awp,) s (e e).g- SO
if this action is transitive Hy(p,)n, e ¢ (Y) is connected. In order to prove the
transitivity of the action of 7;(Y=*V — 4, D) on AW(D ey it is sufficient to
verify that, acting with braid moves of type a; . P Ty and their inverses, it is
possible to transform each equivalence class in AW(D Daes(ene)g iNtO @ given class.
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By Proposition 2, under the hypothesis ns + |e| > 2d, each equivalence class in
AW(D,)ms e o) g 18 braid equivalent to the class [Z; (0;id), ..., (0;td)]. So the the-
orem is proved. |

4. — The connected components of Hyyz,) 1, (o e)(Y)-

Let (¢", €”) be a double partition of size d such that the partition ¢” has length
even. Let us denote by ¢ = (ey, . . ., e,) the partition of d associated to (¢”, e”). Let
Y be a smooth, connected, projective complex curve of genus > 1. In the previous
section we proved the irreducibility of the Hurwitz space Hyp,), n, (e ) (¥) for
1 + |e| > 2d. Now we fix our attention on Hwg,)nu, e (¥). In Section 2 we
observed that to determine the connected components of Hyy(g,)u, @0 (¥) it is
sufficient to find the orbits of action 7;(Y"2+V — 4, D) on Aw,) u, (e er)g-

Let n2 + |e| > 2d. Note that:

the following equivalence classes
[Z; 71 = (1y;id), gy = (0;4d), (0;4d), (0;4d), .. ., (0; id), (0; id)],
[Z; 71 = (0;id), Ty = (1y;id), (0;id), (0;id), ..., (0;id), (0; id)]

where Z is the Hurwitz system defined in (6), belong t0 Aw ) n, (e e)g and they
are not braid-equivalent.

In fact the only braid moves which change 4;, /; are 7/}, t;; and sequences of
braid moves of this type. Acting by the braid moves t};, t/; we replace ; and /;
respectively by (di'tid)ii, (dy't;lde)ly and (di'tidi)is, (dg'tild)ii (see
Proposition 1). Note that (d;'t;dy) and (d;'t; 'd2) belong to the same conjugate
class of t;, i.e, they belong either to C or to C(, .») and so they are elements of the
subgroup of (Z5)? x* Sy isomorphic to W(D,) (recall that the partition ¢” has
even length). So acting by ¢}, 7, one cannot replace (0;id) by (1y;id). Observe
that at the same conclusion one arrives if one reasons on i; and f;.

Let {h1,...,hs} and {k1, ..., k;} be two subsets of {1,..., ¢} such that at least

equivalence class
[Z7 /lla:ula teey }vgnug]

where the /;, and the yy, with b € {h1,...,hs} and k € {k1, ..., ks} are equal to
(11; id) while all others are equal to (0; id). Note that there are 2% — 1 equivalence
equivalence classes [ ¢ ]{hl,‘,‘,hs.},{k;:’.,k,} belong to different orbits of the action of
m (YD — A, D) on Awg,)u e eg- Since if 1z + |e| > 2d, by Proposition 2, each
equivalence class in Ay g,)n, e 1S braid-equivalent to one class of the form
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THEOREM 2. — Letng + |e| > 2d. The number of the connected components of
Hyw@pmenery (V) is 229 — 1. The connected components of Hw s,y n, @ en(Y) are
i one-to-one correspondence with the orbits of the equivalence classes
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