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A Nonlocal Problem Arising in the Study
of Magneto-Elastic Interactions

M. CHIPOT - I. SHAFRIR - V. VALENTE - G. VERGARA CAFFARELLI

Dedicated to the memory of Guido Stampacchia

Sunto. — Si studia il funzionale non convesso che descrive l'energia di un materiale
magneto-elastico. Sono considerati tre termini energetici: lenergia di scambio,
Uenergia elastica e lenergia magneto-elastica generalmente adottata per cristalli
cubici. St introduce un problema penalizzato monodimensionale e si studia il flusso
di gradiente dell’associato funzionale del tipo Ginzburg-Landau. Si prova lesistenza
e unicita di una soluzione classica che tende asintoticamente, per sottosuccessione, a
un punto stazionario del funzionale dell’energia.

Abstract. — The energy of magneto-elastic materials is described by a nonconvex
functional. Three terms of the total free energy are taken into account: the
exchange energy, the elastic energy and the magneto-elastic energy usually
adopted for cubic crystals. We focus our attention to a one dimensional penalty
problem and study the gradient flow of the associated type Ginzburg-Landau
functional. We prove the existence and uniqueness of a classical solution which
tends asymptotically for subsequences to a stationary point of the energy
functional.

1. — Introduction.

The paper deals with the analysis of the equation

(1.1) Z—l: = —grad F(u)

where F(u) is a type Ginzburg-Landau functional, associated to the energy
of a magneto-elastic material, which contains a nonlinear nonlocal term.
The derivation of the energy functional F(u) is detailed in the next section
starting from a general 3D-model depending on the displacements and the
magnetization and assuming some simplifications. In particular in one-di-
mensional case the energy functional can be expressed in terms of the

magnetization variable alone, and the equation (1.1) reduces to the fol-
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lowing one

1
(1.2) U = Uy, — e’l(|u|2 — Du + uA@)[Aw) - u ff Aw) - udx],
0

where u = (uy, u2) and A(u) = (ug, uy).

The parameter u couples the elastic and magnetic processes and ¢ is a small
positive parameter introduced to relax the constraint |u| = 1.

We assume that the equation (1.2) is associated with the boundary and initial
conditions

(1.3) u;0,t) =u,1,t) =0, u(x,0) = upx).

The paper is organized as follows. In Section 2 we introduce the general 3D
model, and present the reduction to the simplified one dimensional model. In
Section 3 we study the minimization problem involving the energy functional
F,.(u) associated with (1.2), namely

1 1
1 et
Fow) =5 [ e de+ 5 [ (uf =1
0 0

We show that there exists a critical value of g, explicitly given by p* = n/2,
such that:

(@) for u < u* and & small enough the only minimizers for F,, are constant
functions u = o € S*.
(i) for p > u* the minimizer for F, is nontrivial.

A similar bifurcation phenomenon was observed by Bethuel, Brezis, Coleman
and Hélein in [2] in their study of nematics between cylinders. Finally, Section 4
is devoted to the study of the gradient flow. We prove existence and uniqueness
of the solution u to (1.2), (1.3). Then we show that tllglo u(t) = u., exists and that

the function u, is a stationary point of the energy functional.

2. — The model.

The behaviour of a magnetoelastic material is described by a system of dif-
ferential equations in the two unknowns: the displacement vector and the
magnetization vector. Let 2 C R? be the volume of the magnetoelastic material
and 0 its boundary, the unknown magnetization vector m is a map from Q to S?
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(the unit sphere of R?). The magnetization distribution is well described by a free
energy functional which we assume composed of three terms namely the ex-
change energy Eey, the elastic energy E¢ and the elastic-magnetic energy Eep,.
Let v be the displacement vector, then the total free energy E for a deformable
magnetoelastic material is given by

E(m,v) = Ex(n) + Eon(m,v) + Eq(v).

We neglect here other contributions to the free energy due, for example, to
anisotropy and demagnetization energy terms.

We refer to the books [3], [4]; moreover among the papers on this subject we
quote [5], [6], [7], [8]. In the sequel we detail the three energetic terms and derive
the governing differential equations. Some drastic hypotheses allows us to reach
a reduced one dimensional problem and to carry out the variational analysis for
the associated energy functional.

2.1 — The general 3D model.

Let x;, © = 1,2,3 be the position of a point x of 2 and denote by
v = /Ui(x)a i= 1:273

the components of the displacement vector v and by

1
() = é(vk,l + vk, k1=1,23

(%k

the deformation tensor where, as a common praxis, v;; stands for e
, vl

Moreover we denote by
m; = m;(x), j=123

the component of the unit magnetization vector m. In the sequel, where not
specified, the Latin indices vary in the set {1,2,3} and the summation of the
repeated indices is assumed. We define

1
(2.1) Eex(m) =3 f i iy, j A€2
Q

where (a;) is a symmetric positive definite matrix which is supposed diagonal for
most materials with all diagonal elements equal to a positive number a. The
magneto-elastic energy for cubic crystals is assumed. This implies

1 .
(2.2) Een(m,v) = 5 fﬂijklmimﬁkl(v)df?,
2
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where ;uijkl = )vléijkl + /1251']'5]91 + )ng(&ikéﬂ + 6il5jk) with 51']'“ =1if ¢ :j =k=1
and d;; = 0 otherwise. Finally we introduce the elastic energy

1
(2 3) Eq) = é ! O letmn &1l (V)& (0)AE2

where oy, is the elasticity tensor satisfying the following symmetry property

Oklmn = Omnkl = Ollkmn
and moreover the inequality
OklmnEllémn > Perierl

holds for some f§ > 0.
We consider the energy functional £ given by

(2.4) E(@m,v) = Eex(m) + Een(m,v) + Eq(v)

We introduce two tensors S = (gyue;) and £ = (A rm;m;), moreover we
denote by p the vector p = (i m; &)

The system of differential equations associated to the functional (2.4) reads
div(8+1£>:0 in Q
(2.5) 2
adm —p +(a\Vm|2 +p-mm=0, inQ
with boundary conditions

om
2.6 =0 —=
(26) v=0, =
where v is the outer unit normal at the boundary 9Q.

An alternative form for describing the magnetoelastic interactions (2.5) is

0 on 0R

diV(S+%£) =0 in Q

mx(adm —p)=0, Im|=1 in Q

(2.7)

The dynamical systems associated to the problems (2.5), (2.7) are respectively

poy = div (S + L £> in 2 x(0,7)
(2.8) 2
m; + y(m; x m) = adm —p + (a|Vm|2 +p-m)m, in Qx(0,7T)
and
1
29) { s — div (s +5 £) —0  inQxT)
ymy =m x (adm —m; —p), in Q x (0,T)
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with y and p two positive constants. For results concerning the existence of
weak solutions to the dynamical problems related to (2.8), (2.9), we refer the
reader to [1], [9].

2.2 — The proposed 1D problem.

A simplified model and a simplified energy functional can be obtained as-
suming that Q is a subset of R and neglecting some components of the unknowns
v and m. More precisely we consider the single space variable x and assume
Q=(0,1), v =(0,w,0) and m = (mq,mg,0). Then one has

1
(2.10) e (v) = e12(v) = e (v) = 5 W
(2.11) Akt = Zijiz = 23(0i10j2 + 0i20j1) = igan,

and the different energies are now

1
2.12) Eox(m) = % f ma2de,  (ay) = ald = Id),
0
p 1
(2.13) Een(m,v) = é f (mimz + mempw, dx (13 = A),
0
1 1
(2.14) Bu) =3 f wBde (o = 1).
0

To deal with the constraint |m| = 1, especially when having in mind numerical
computations, we introduce the penalization

1
(2.15) i f (m) — 1) de.
0

If for m = (m;, mg) we define the linear operator A by A(m) = (mg, m1), then the
problem of minimization of the energy reduces to minimize

(2.16) E.(m,w)
1 ! 1 : A ' 1 '
1 2 1 2 12 A , 1
2Of|mx| dx+4g!(|m 1) dx—i—z !(A(m) m)wwolac—i—2 bfwzxdx,

over functions satisfying the boundary conditions

(2.17) m,; =0, w =0, on 0Q={0,1}.
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The corresponding Euler equation reads, for m = m?,

mé,, — AAmnw, — e (jmefF — Dmé =0
(2.18) 2
we, + 5 (AGn?®) - m?),, = 0.
Integrating the second equation leads to

(2.19) w, = —g (Am®) -m?) + C.

The constant C' is obtained by integrating the above equation on (0, 1) and using
the boundary condition, i.e.,

1
(2.20) C :g Of (A(m?) - m?) d.

Then replacing w, by its value in the first equation of (2.18) and setting x = 4%/2
we obtain the following penalty nonlocal equation

1
(221) m:, - e (Ime P — m® + p AmO)[AGm?) - m* —f Am?) -midx] =0,
0

with boundary conditions
(2.22) m’(0) =mi(1)=0.

This is the problem we would like to address, as well as its parabolic analogue,
ie.,

1
e = gy — e (uf — Du + p A@)A@) - u ff A@) -udz] in Q x (0,00)
0

u, =0 on 0Q2x(0,00), u(x,0) =u.

3. — The minimization problem.

The equation (2.21) is the Euler-Lagrange equation of the energy functional

1 1
1 -1
(31) F.(m) =§f|mm\2dac+%f(\m|z—l)2dac
0 0

1 1 2
— f(A(m) -m)?dx — (f/l(m) -mdx)

RS
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Let us consider the minimization problem

(32) ]:;u, = inf F[L,L‘(m)'
meH"(0,1)

Above we used the notation H1(0, 1) for H((0,1), R?).

THEOREM 3.1. — For each u and for each positive ¢ small enough, 1.e., such
that &' — >0, the minimum of the functional F,.(m) is achieved by a
function m* = m"* ¢ H 1(O7 1). Furthermore, mé is a solution (2.21)—(2.22) and
is therefore of class C*.

Proor. — First of all we observe that by the Cauchy-Young inequality it holds,
for any 0 > 0,

1 2 1
(3.3) (f A(m) -mdac) < f (A(m) - m)*de < f im|* d
0 0 0

1

1
:f(|m|2 —1+41)%dx < (1 +%> + (1+5)f(|m|2 —1)%de.
0 0

So we have:

(@) Ife! — x> 0 then for 6 small enough ¢! — (1 + )i > 0 and the funec-
tional F';, ,(m) is bounded from below. Indeed,

1 1
1 2, &l —(14+0u 2 12 1\ u 1\ u
F,t,g(m)>§0fmx| dx+f!(|m| ~de—(145) 5= —(1+5)4

(i) The functional ', .(m) is coercive, i.e.,
F,.(m) — +o0, as  |mlg gy — oo.
This follows easily from the inequality (jm|* — 1)> > [m|* — 5/4.

(iii) The functional is weakly lower semicontinuous, that is: if {m,} is a se-
quence of functions in H 1(O7 1) such that m,, — m weakly in H 1(0, 1), then

liminf F, ,(m,) > F .(m) .

N—00
Indeed, for such a weakly convergent sequence we have

1

1
[ imo?de < timinf [ jn,), [ do,
Nn—0o0
0 0

|mn|2 — |m|2 and A(m,,) - m, — A@m) - m strongly in L*(0,1).



204 M. CHIPOT - I. SHAFRIR - V. VALENTE - G. VERGARA CAFFARELLI
Since the functional (3.1) is C, it follows that the stationary points of ¥, are

solutions to the Euler-Lagrange equations (2.21)—(2.22), and it is easily verified
that any solution to this one-dimensional problem is of class C*°. O

1
REMARK 3.1. — The result is sharp since for ¢ > =, F,, is unbounded from

below. Indeed, suppose that 1 — % > 0. Consider the function f = (6 — x)". One

has
1 \2 1 P 2 5
( fZ)/ff“—( <5m>2> /f(é—x>4—5—/5——§ <1-L
0 0 0 0 He

for ¢ small enough. So we may choose ¢ small enough such that

(0f1f2)2< (1 —i) 0f1f4.

Next, consider m® = af (oc)( ) We have

V2’2
1 1 1 1 1 1 2
Fom®) = 5o Of Fef+ Of f@f -1 =4 f At 4 Of o<2f2)
1
2 ff(x)z 4”{ f<f2 ocz) ff4 (fo)}

0

For o large enough the quantity

L4 e 1 \?2
s (f)

1 1 2
is close to <(Olﬂ—1) S+ ( ffz) <0 and thus F,.(m®)— —oo when
2 0

o — 4 00. 0

The functional F,.(m) has some obvious symmetry properties. We have
clearly I, ,(S;(m)) = F, .(m) for each S; in the group
(34) g = {S(), e 787}

generated by the rotation by 7/2 and the complex conjugation.
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LEMMA 3.1. — Let m be a solution of the problem (2.21)—(2.22) satisfying

1 . Lo
F,.(m) <0, for some ¢ < — Then, the following a-priort estimate holds,
' 2

RS B
’ e+
(3.5) mP <K= 1° T8

el —u

ProOF. — By the assumption on m we have
o1 p 1 2
2 2 2
Tf(|m| ~Dde+ (f/l(m)-mdx) —f(A(m)-m) dz| <0.
0 0 0
Combining this with (3.3) yields

1 1 2 1
€ 2 2 4 % 2 9 1\ 1
Tqum ~1 dac—i—Z(OfA(m)-mdx) _(1+5)Zof(|m| ~1) dxg(l—i—g)z.

u
el—pu’

1
Therefore, for ¢! > 1 and any J such that &1 — (1 + d)u > 0, i.e., 5 >
we have

1 2
1
(3.6) (Of/l(m)~mdw> <1+5.

Now we multiply the Euler equation (2.21) by m and write the equation
for [m|*:

1 d?

1
~5 97 Im|*+ |m, > +&  (jm[? = )|m[* — u(AGm) - m)*+ pAGm) - mfA(m) -m dx=0.
0

Using (3.6) we obtain

1
mf* + & (mf* — Djm P — plm|* — iy [1+ < |m[* <0,

8_1—1-/1\/14-1
V. d <y,

el —pu -

1
2 da?
that is

1 &2

—3 W\m\Q + " = mf* | mf* —
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1 [ o1
Choosing 5= 871'“_ . and setting K = (sl +u sj . ) /(e — p) gives

1 & 2 1 202

Z _ -1 _ _ <0.

5 gzml =K+ @ = m[" (jm|" - K) <0
By the maximum principle, applied to the function 7 = \m\z — K, we get that
h<0,ie., mf* <K. O

Let us denote by A3 the first nontrivial eigenvalue for the Neumann problem:
—fe=4f 1n(0,1),
f2(0) =f:(1) = 0.

It is well known that J; = % and that it yields the optimal constant in the fol-
lowing Poincaré inequality,

(3.7)

1

1 1
(3.8) f o2 d > 7 f (g() — f g dt) de, g e H'(0,1).
0 0 0

Next, we analyze the minimization problem (3.2) restricted to S!-valued maps.
When applied to maps m € H'((0,1);S1), all the functionals {Fy:},~o take the
same value, that we shall now use to define a new functional on H((0,1); S1):

1 1 1 2
E(m) :%Of \mx|2dac—§ 0f(A(m)-m)2 dee — (OfA(m).mdx)

In the next proposition we shall apply a bifurcation analysis similar to the one
used in [2] in a study of minimizing harmonic maps on an annulus.

ProrosiTION 3.1. — Put

3.9 I(w) = inf E, .
( ) (ﬂ) meH‘l(I(IO,l);Sl) /(m)

Then:

(@) For u < 23/2 we have I(1) = 0 and the minimum is attained only by
constant functions, m = o € S.

(i) For > 22/2 we have I(1) <0 and the minimum s attained by
m® = ¢’ where ¢ is a nontrivial solution of the problem

1
_ = : 0 ; 0 0 .
(3.10) 2 ”(Sm 2¢ Of sin 2¢ dt) cos2¢’ in (0,1),

#0) = ¢)(1) = 0.
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PRrROOF. — Each m € H((0,1); S?) can be written as m = e for some ¢ in
H'((0,1); R). For such m we may rewrite the energy in (3.1) as

1

1 1 2
1 . .
(3.11) E#(m)_20f|¢x|2dx—’zof(stg’o—fstgbdt) dz.

0
The function /' = sin 2¢ satisfies f, = 2(cos 2¢)¢,, so that

(3.12) 8, =% =

Write the r.h.s. of (3.11) as a sum of two integrals to obtain

(313) E (m):f(lqbz—le) da
- 2 PREC R

0
1 1 2
_|_f (gﬁ2 —%(sin2¢—fsin2¢dt> ) de =11+ 1.
0 0

Clearly, for u < 29/2 and any f # const we have by (3.12) and (3.8) that I; > 0
and Ip > 0. For = 13/2 and f # const we have still /; > 0 while /5 is non-
negative. This yields assertion (i) of the proposition.

Assume next that u > J3/2. From the optimality of 1y in (3.8) follows the
existence of f € H1((0,1); R) with

1

f(é[ﬁc|2—§f2)dx:fc<0 and flfdac—o.
0

0

1 ~ . .
For t > 0 small enough set z//(t) = éarcsin (tf) and then m® = ¢v". Using (3.13)

we get
E,m®) = —ct? + 0@t*) <0, for ¢t small enough.

This yields /(1)) < 0, and the existence of a minimizer, m® = ¢/’ with ¢’ a non-
trivial solution of (3.10) is obvious. O

A more precise description of the minimizers in the case u > J/2 = 72/2 is
given by the next proposition.

PROPOSITION 3.2. — In the case u > Js)2 the minimizer m® = €% is unique
modulo the operation of the symmetry group G (see (3.4)), namely, up to
performing the operations:

(3.14) ¢ — +kn/2 or ¢ — - +kn/2, keZ.

Such a unique representative of the minimizers can be chosen which is a strictly
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mcereasing function on [0, 1] that satisfies
(3.15) ¢o@) =—¢,(1 —z) =e<l0,1].

PRrOOF. — Setting
1
a :fsin2¢0 de
0

we can rewrite (3.10) as
{ — @), = u(sin2¢” —a)cos2¢’ in (0,1),
¢ (0) = £1) =0.

The rest of the proof is divided to several steps.

(3.16)

StEP 1: ¢’ is strictly monotone.

Replacing ¢0 by its increasing rearrangement (¢0)* will decrease the first term
on the r.h.s. of (3.11) (strictly, if 450 is not a monotone function), without changing
the second term on the r.h.s. of (3.11). Since we may replace ¢0 by — ¢0 we can
assume in the sequel that qﬁg > 01in [0,1]. We next claim that actually we have:

(3.17) >0 on(0,1).

Indeed, the function y = 4" satisfies

{ — Wy = 2u( c0s4¢’ + asin2¢’)y  in (0,1),

(3.18)
y > 0in (0,1), w(0) =w(1)=0.

Since y # 0 we deduce (3.17) from the maximum principle.

STEP 2: | sin 2¢0| <1in(0,1) and sin 2¢0 is strictly monotone increasing on [0,1].

Looking for contradiction, assume for example that sin 2(,’0 (29) = 1 for some %,
in (0,1). By (3.14) we may assume that 45 (x9) = m/4. Set z,b(ac) = n/2 45 21y — ).
It is easy to verify that qb satisfies the equation in (3.16), and also gb(aco) = ¢ (20),
gb (xg) = gb (20). By the uniqueness theory for ODE we deduce that gb gb ie.,
¢g(ac) =n/2 — ¢ (229 — x). For the boundary conditions in (3.16) to hold, the only
possibility is that xyp = 1/2. We thus conclude that

(3.19) @) =n/2—-¢0—-x), xe,1).
The relation (3.19) implies that

1/2 1/2

= | sin2¢ dx =2 sin2¢” dx = sin2¢° dac .
f #ie=2 [ sin2gde = f sinzg

0
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Defining the following functional on H'((0,1/2); S1),

1/2 1/2 1/2

EE}/Z)(eiéﬁ):%f |¢x|2dx—§f (Sin2¢— J[sin2¢dt)2dx,
0 0

0
we conclude that

(3.20) E (%) =2E12(?).
Set, analogously to (3.9),

3.21 I = inf EY2m).
(3.21) 172(10) meHl(l(l(}l/Q);Sl) 2 m)

The minimum in (3.21) is achieved by some function q51 € H'(0,1/2). Since
¢g(1 /2) > 0, the restriction of ¢ to (0,1/2) is not a minimizer and therefore,

(1/2) ¢ id (1/2)( i’
(3-22) E{Pe?) < BYP@?).
We can extend ¢1 to a function g~bl € H(0,1) by setting
Pw)=¢'1—x) foraxell/21).

Combining it with (3.22) and (3.20) we deduce that E,(¢%¥) < E,(¢#"). This
contradiction completes the proof of the assertion | sin 2¢°| < 1in (0,1).

In view of the above and Step 1 we conclude that the function sin2¢’ is
strictly increasing on [0, 1]. By adding an integer multiple of z/4, see (3.14), we
may assume that the image of the interval (0,1) by qbo is contained in
(—n/4,7/4). The uniqueness for that representative of the phase of the mini-
mizer will be established in the sequel.

STEP 3: @ = 0.
Multiplying the equation in (3.16) by ¢g and integrating yields

(3.23) (@2 =% — g(sin 2¢° —a) on[0,1],

for some constant ¢ > 0. Write the roots of the polynomial p(t) = ¢ — (u/2)(t — )
asa — banda + bforsomeb > 0,i.e,p®) = (1/2)(a + b — )t — a + b). By Steps 1
and 2, (3.23), and the boundary condition in (3.16) it follows that

(3.24) sin2¢’0)=a—b and sin20°A)=a+b.

Assume by negation that a # 0. Next, we exploit the following two iden-
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tities. First,

Lsin!(a+d) a+b

1 d¢ dt
(3.25) 1:0fdx= f M:aj; Veua+b—t)(t—a+b)(1—1t2)

lsin™(a—b)

f ds
b 20— )b+ 5)(1— (@t 7).

Similarly,

1 Lsin~!(a+b)

e sin2gdg
(326) a= bf sin2¢"(w)dx = { ) PHsin2g)

_ (s+a)ds
20— )b+ 8) A~ (a+5)?)

From (3.25) and (3.26) we deduce that

b
ds
(327) 0= &
fb \/zu(b —8)(b+5)(1 - (a+5)?)

—fb 5 ( ! - ! >ds.
] V2u(b —s)(b+s) \/17(a+s)2 \/17(a78)2

But it is clear that the r.h.s. of (3.27) is strictly positive for @ > 0 and strictly
negative for a < 0, so in either case we are led to a contradiction.

STEP 4: Conclusion.

Going back to (3.23) we can now write

@)% = @ —Lsin?2¢ = g(b — sin2¢")(b + sin24”) on [0,1],

2
with b = ¢4/2/u. The equation (3.25) now reads

b n/2

ds do
3.28 Ve = = N TRy
(3.28) a fb Vb — )b+ 9 — 52) Jz V1 - b2sin0

Since we assume that x4 > —, it follows that there is a unique b > 0 for which

(3.28) holds. 2
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Next, there is a unique point xy € (9, 1) where 0 = qbo(aco) = sin 2¢0(x0). At that
point, qﬁg(aco) = by/1/2. The function ¢(x) = 7¢0(2x0 — &) solves the equation
(3.29) — ¢, = usin 24 cos 2¢ in (0,1),
with the initial conditions

(3.30) Pla) = ") =0 and ¢, (w) = ¢(xo) = \/'gb,

Since there is a unique solution to (3.29)—(3.30), it follows that q50 = g% Since
&x@oco) = 0 we must have xy) = 1/2 and the symmetry property (3.15) holds. The
uniqueness assertion of the proposition follows from the uniqueness for the in-
itial problem (3.29)—(3.30) for xp = 1/2. O

Next we present a convergence result that will be used in our main theorem.

PRrOPOSITION 3.3. — For each u > 0, any sequence of minimizers {m,,}, with
&, — 0, has a subsequence which converges in H'Y0,1) and in C[0,1] to
m° € C>([0, 1]; SY) which is a minimizer for I(u).

Proor. — Note that F,(m*) < F, (a) = E, () = 0 for any constant o € St

1
Using (3.5) we conclude that for ¢ < ﬂ we have

1 1
f m:fde<C and % f(l ~m*PRde < C,
0 0

for some constant C (which is independent of &). Since H'(0,1) is compactly
embedded in C[0, 1], we can extract a subsequence, still denoted by {m.,}, that
converges weakly in H'(0, 1) and strongly in C[0, 1] to a limit m® € H'((0,1); SY).
Since for each ¢, and each m € H'((0,1); S1), F,.(m*) < E,(m), we get that

(3.31) limsup F,,,(m*) < E,(m), Vm c H'((0,1);S").

£,—0

On the other hand, the weak lower-semicontinuity of the L?-norm of the gra-
dient, combined with the uniform convergence of {m*} towards m’, yields

(3.32) E,(m") <lim ing,w (m®) .
£, —
Combining (3.31) with (3.32) we deduce that E,(m°) < E,(m), Vm € H*((0,1); SY),

i.e., m® is a minimizer for I(u). It also follows that the convergence m® — m? is
actually strong in H'(0,1). O

We are now in position to state our main result for the minimization
problem (3.2).
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THEOREM 3.2. —
(i) Foreach i < 12/2 there exists ey(u) > 0 such that for ¢ < g(w) we have
F e = 0 and the only minimizers for (3.2) are constant functions m* = o € S 1
(i) Forp > A2/2 we have F,, < 0 for every ¢ > 0. For each ¢ > 0 we may
choose a representative for the minimaizer m* (by replacing m* with S;(m®), see
(8.4)) such that Pi% m? = m%in H(0,1) and in C[0, 1], where m° € C=([0,1]; SY) is
a non-trivial minimaizer for I(w).

(iii) Inthelimiting case u = J2/2, we have for a subsequence, lim m* = «in
HY0,1) and in C[0,1], for some constant o € S. o

ProoF. — (i) By Proposition 3.3 we have, in particular, that lim |m¢| = 1, uni-
formly on [0, 1]. Hence, for any ¢ > 0 we have, for ¢ < & (9), o

(3.33) 1-6<|m@)| <1+, xel0,1].

In particular, if 6 < 1/2, say, then we may write m* = pe’?, with p = |m?|. A
simple computation gives

1 1
e 71 2 2 2 i 22
(834) Fo(m’) =3 Of (P16 + P+ - Of (1- ) da

1 1 2
—g f (/)2 sin2¢ — f P sin2¢dt) dz.
0 0

By the Cauchy-Schwarz inequality we get,

1

1 2
(3.35) f (,P sin2¢ — f P sin2¢dt> dz
0

0

1 1 1 2
:f ((sin2¢—fsin2¢dt) + (p* — 1)sin2¢—f(p2 -1) sin2¢dt> dx
0 0 0
1 1 2
<+af (sin2¢— i sin2q5dt) dx

0 0

+ (1 + %) (fl( 2 — 1)%sin® 2¢dx — (f(pz -1) sin2¢dx)2>

0 0
1

2
< (1+5)f(sin2¢—fsin2¢dt) dx + <1+%>f(1 —p*)Pdu.

0 0 0
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Combining (3.35) with (3.34) and (3.33) yields
1

1 1 2
(336) F,.(m") > (1_25)2 Il |¢m|2—“(144r %) I (sin2¢— i sin2¢dt>
0 0

0
1
1 u 1 212
+(E—Z<1+5>>Of(1—p) da.
Since u < 22/2 we can fix J small enough so that
149 o

F=a sl 2

For ¢ small enough such that é > g(l + 1/6) we obtain from (3.36)

1 1 1 2
1 -
g w2t 2 _ E . _ .
(337) 0> Fm®) > (1—0) {2 f 6, do — 1 f (sm2¢ fsm2¢dt> doc}
0 0 0
1
1
— | A=p»*de>0.
+o Of (1— 2P de >0
By Proposition 3.1 strict inequality holds for the last inequality on the r.h.s. of
(3.37), unless m* equals identically a constant of modulus one, hence the result.
(ii) By Proposition 3.1 we have in this case,

Fue <I(w) <0.

The convergence assertion follows from Proposition 3.3 and the uniqueness fol-
lows from Proposition 3.2.

(iii) This part is a direct consequence of Proposition 3.3 and Proposition 3.1.
|

REMARK 3.2. — We do not know whether in the the limiting case u = 12/2 (case
(iii)) the minimizer m? is necessarily a constant for ¢ small enough, as in case (i).

4. — The analysis of the gradient flow equation.

Let T be a positive number, we define Qr = 2 x (0,7) and ((+,-)) the scalar
product in L2(Q) and in L*(Q). Consider the initial boundary value problem

1
(4.1) U = Uy, — 8‘1(|u|2 — Du + uA(u) {A(u) -u —f Aw) -u dac] ,
0
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with the boundary conditions

(4.2) u;(0,t) =u,(1,t) =0, te,1),
and the initial condition

(4.3) u(x,0) = up(x), xeQ2=(0,1).

Provided the solution u(t) of (4.1), (4.2), (4.3) exists for all ¢, we show that
tlim u(t) = u., exists and, for suitable choice of the initial datum u,, the function

U, is a negative energy solution to (2.21), (2.22).
The following existence and uniqueness theorem holds.

THEOREM 4.1. — Let uo(x) € H'(Q) and ¢! > 2u and set
1
(4.4) Nu) = —s’l(\u|2 —Du + udw)[A@w) - u —f Aw) - u dx].
0

Then, there exists a unique solution u € L= (Qr) such that
u e L0, T; H\(Q), uy € L*0,T; H(Q)),
lwllp <@, < B, (B independent of T),

(4.5)

%((u,v)) v f w, -vode = (N@),v), Yo e HY(Q), in DO,T),
Q

u(0) = uy.

Then u is a weak solution of (4.1)-(4.3) and since N(u) is bounded this is also a
strong solution.

Proor. — We use the Galerkin method. We consider wy, ..., w, an orthogonal
basis in L2(Q) of eigenvectors for the Neumann problem

{—wmziw in Q

(4.6) wy(0) = w,(1) = 0.

We consider then
n

(4.7) Wy = (1, Un2), =Y YijOW; j=1.2,
=1

solution to the Cauchy problem

u, = Wn)y +Nw,) t€(0,7),

4.8 n
“8) U j(0) = > (wi, uo j)w;, J=1,2.
i
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It is clear that (4.8) is a nonlinear system of ode’s with 2% unknowns. It has a
unique solution locally.

CLAIM 1: ,,(0) is bounded in H(Q). Indeed for j = 1,2 one has

1
f (0 JODP* = S 0)? [ ol = 3= i)
0 N )
(49) < 3 (i o )P = [ o
i=1 0
1 n 1 " 1
J s OF = 301 00)? [ i = 3 i) < [ o
0 = 0 = 0

To simplify our notation we do not write the measures of integration.

CLAIM 2: u,, is bounded in L=(Q x (0,t)) by a constant independent of » and ¢.

We multiply the first equation of (4.8) by u/, and integrate on @; = 2 x (0,1)
to get

2 — 2
f|u;z| :f(un)am : u;L —é& lf(‘un| —Du,, - u;L

Q: Q Q:
+u f Awy,) - u), {A(un) uy, — f Auy,) - un].
Q

We remark then that
I 1 2 ' r I 1 I
Uy -u, = é‘un| ) A(un) ‘u, = (7/{/77,‘17/(/77,,2) - é(A(un,) : un) .

Then we obtain

Juf = f ( [ ) f (e = 1)’
@
g[(f(A(un) un)) Z_lf (fA(u7z)'u1z>

Q Q

!

By integration we obtain

(4.10) [ 1 = Fa,)0) - Fa
Qr
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where we have set

2
1 2 & 2 o M 2 M
F) =5 Qf @)+ Qf (o = 1 =5 Qf (A, - w,) +4( Qf A(un>-un).

By the Claim 1, u,,(0) is bounded in H 1 (2), and then also in L*(Q), by a constant
independent of n. It follows that F(u,)(0) is bounded by a constant A in-
dependent of n, so from (4.10) we derive

(4.11) Fa,)t) < A.

Now we have

f(A(un) : un)z Sf |un|4 :f(lun|2 -1+ 1)2 < 2]('”71‘2 - 1)2 +2.
Q Q Q Q

Then, from (4.11) and the definition of F(u,) we get

2
1 -1_2
§f|(un)m|2+£ 4 ﬂf(‘un|2 - 1)2 _g Z(f/l(un) un) <A.
Q Q

Since ¢! — 2u > 0 it follows that

@12 [l <24 f (- 17 < 52
Q

Due to the inequality f(\un| 1< {f(\uw| 1)2}1/2 we have that u, is

bounded in H'(Q) by a constant mdependent of n and t and the Claim 2 follows
from the imbedding of A L(Q) into L>(Q).

As a consequence of the Claim 2 the solution to (4.8) is global on (0, 7). It is
also unique due to the fact that for u bounded, N(u) is Lipschitz continuous.
Moreover u, is also smooth in x and ¢.

Let us denote by B the constant which bounds, uniformly in »n and ¢, the
funection u,, and set

K={vel’Qr | |v|<B ae. inQr}.

It is clear that K is a closed convex set of L%(@Qr). Due to the preceding analysis
and the equation (4.8) it follows that for some constant C independent of » and T
we have

lwnll~ormey <C N@illp~ormey <C  nllL~or.L2e) <C.
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Since the imbedding
{v | vel’0,T;H(Q), v, € L*0,T; H(Q))} < L*0,T;L*Q))
is compact — up to a subsequence — there exists u in LZ(O, T: H'(Q)) such that
u, — u in L*0,T; H(Q)),
w, — u in L*0,T;L*(Q)),
@), — wy in L*0, T; H'(Q)).
Of course u € K. Going back to (4.4) we have
N@) =N:) + Nzu),
where we have set

Ni@) = —'(juf* — Du + u(A@) - w)Aw)
No(u) = —/4A(u)f(/1(u) -u) dx.
Q
Since N1(u) is a smooth function we have for some constant 1,1

(4.13) IN1(u) — N1(v)| < Lilu —v|, Vu,ve R? bounded.

Moreover for u,v € K

(4.14)  [No@) — No@)| = ’ — ) [ (@) w) + pdw) [ (@) -v)
Q Q

- ‘—#(A(u) — 4@) [ @ w) + pd@ [ () -0 - M@ -w
Q Q

1/2
§C’1|u—v\+02{f|u—v\2dac} .
Q

From these estimates it follows that
N@u,) — N@) in L0, T;L*(Q)).
We take now v € H (Q) to get from (4.8)

d
%((un,v)) = —[[un Uy +!N(un) v, Vte(,T).

Passing to the limit in n we get easily the third equation of (4.5).
Let now v € HY(Q) and let » be a smooth function such that

90)=1, oT)=0.
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From (4.5) we have

fTC(lit(uv :_fux Uw(/)+fN(”) vy
0 Qr Qr

T
711m Uy, vr(p—ka(uw) v(p*h fdi (un,v
T 0

Q Qr
T

= lim f di (e, 0 fT (n.vp)" = —lim (u,(0),v) f _
0 0

’ T
—((uo,v f(u v)¢
0

Integrating the left hand side of this equality we arrive to
(u(0),v)) = (uo,v)), Vv e H'(Q),

which completes the existence result.
For uniqueness, starting from two solutions u;, us we have

d
$(u1 —uz) = (U1 — ug)y, + Ny — Nuz).

Multiplying by (11 — u2) and integrating in Q we get by (4.13), (4.14)

1d 2 2
- _ < _
2 dt |u1 UQ‘ < Cf \ul u2| s
Q Q
and the result follows. O

COROLLARY 4.1. — Let u be the solution of the problem (4.1), (4.2), (4.3). Then,

(4.15) f s = F)©0) — Fa)®).
Q

Moreover, there exists a positive constant A ndependent of t, such that
(4.16) f|ut|2 +f|ux|2 +f(|u\2 —~1¥ <A.
@ Q Q
ProoF. — The equality (4.15) easily follows from (4.10). Moreover, we have

1 2 & —2u 2_q_ KK
F<u>z§!|ux+ ) Qf<|u|—1> -4 Z(fA(”’ )

for &1 — 21 > a > 0. We get then the estimate (4.16). O
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LEMMA 4.1. — Let u the_solution of the problem (4.1), (4.2), (4.3). Then, there
exists a positive constant K such that the following estimate holds

T

(4.17) |

0

dt < K.

d, 2
%HutHLZ(O,l)

Proor. — We look at the equation (4.1) in the form
Ut = Uy + Nu).

Differentiating with respect to ¢t and multiplying by u; we obtain

1d

(4.18) 5

1 1 1
d
2 2, @ )
f |uy|” doe +f |t |“doe _fdtN(u) u; da.
0 0 0
Reecall that N(u) = N1(u) + No(u) where Ny is a C>®°-function and
No(w) = —pud@) [ (A@) -w) de.
Q

From this we deduce

d

Vo) = —pt) Qf (@) - w) de — 2pA(w) Qf (@) - uy) da,
and thus

d
H%sz) < Cllugl|.

Hence from (4.18), Theorem 4.1 and Corollary 4.1

[

and the proof of the lemma easily follows. O

<K,

d 2
at Hut||L2(o,1)

dt < c‘ f|ut|2dx
Qr

Now we can prove the following theorem

THEOREM 4.2. — —Let u the solution of the problem (4.1), (4.2), (4.3) for T = oc.
Then, there exists a sequence t;, — oo such that
(4.19) ulx,t) — ux) in HY0,1),

where u..(x) is a stationary point of (4.1). Moreover, all the weakly convergent
sequences converge to stationary points.
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PRrROOF. — Let u* = u(-,t;) be the given solution of (4.1), (4.2), (4.3) at time
tr. From the estimate (4.16) it follows that, passing to a subsequence if ne-
cessary,

(4.20) vt —u,  weakly in HY0,1),

(4.21) ub —u, strongly in L%(0,1),

(4.22) uf AW*) > uo - Aw.)  strongly in L%(0,1),
(4.23) b ? = |uoo? strongly in L%(0,1).

Now we have to prove that u, is a solution of the stationary problem. For this we
multiply the equation (4.1) by v € H*(0,1) and integrate to get

1 1 1
(424) fuéc vdx = _fu]; cvyde — 871[ (|uk|2 _ 1)uk . vdee
0 0 0

1 1
(4.25) Y f AW v | AW") - ut — f A" - udee
0 0

From Lemma 4.1 we have that ||u¥|® is a Cauchy sequence (see (4.17)) and the
limit can only be 0 since [ |ju;|* is bounded. From the convergence established

0
above it follows that u., is a weak solution of the stationary problem. O

COROLLARY 4.2. — Let ug be a function verifying the hypotheses of Theorem
4.1. If F(ug) < 0 then the limit function u..(x) defined in Theorem 4.2 is a
negative energy stationary point of (3.1).

Proor. — The proof easily follows from the energy estimate (4.15). Indeed
since the system is dissipative we have

Fus) < F(uo)
O
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