M. Chipot, I. Shafrir, G. Vergara Caffarelli

A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2008_9_1_1_197_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/
A Nonlocal Problem Arising in the Study of Magneto-Elastic Interactions

M. Chipot - I. Shafrir - V. Valente - G. Vergara Caffarelli

Dedicated to the memory of Guido Stampacchia

Sunto. – Si studia il funzionale non convesso che descrive l’energia di un materiale magneto-elastico. Sono considerati tre termini energetici: l’energia di scambio, l’energia elastica e l’energia magneto-elastica generalmente adottata per cristalli cubici. Si introduce un problema penalizzato monodimensionale e si studia il flusso di gradiente dell’associato funzionale del tipo Ginzburg-Landau. Si prova l’esistenza e unicità di una soluzione classica che tende asintoticamente, per sottosuccessione, a un punto stazionario del funzionale dell’energia.

Abstract. – The energy of magneto-elastic materials is described by a nonconvex functional. Three terms of the total free energy are taken into account: the exchange energy, the elastic energy and the magneto-elastic energy usually adopted for cubic crystals. We focus our attention to a one dimensional penalty problem and study the gradient flow of the associated type Ginzburg-Landau functional. We prove the existence and uniqueness of a classical solution which tends asymptotically for subsequences to a stationary point of the energy functional.

1. – Introduction.

The paper deals with the analysis of the equation

\[
\frac{du}{dt} = -\nabla F(u)
\]

where \(F(u)\) is a type Ginzburg-Landau functional, associated to the energy of a magneto-elastic material, which contains a nonlinear nonlocal term. The derivation of the energy functional \(F(u)\) is detailed in the next section starting from a general 3D-model depending on the displacements and the magnetization and assuming some simplifications. In particular in one-dimensional case the energy functional can be expressed in terms of the magnetization variable alone, and the equation (1.1) reduces to the fol-
lowing one

\begin{equation}
(1.2) \quad u_t = u_{xx} - \varepsilon^{-1}|u|^2 - 1)u + \mu A(u)[A(u) \cdot u - \int_0^1 A(u) \cdot u \, dx],
\end{equation}

where \(u = (u_1, u_2) \) and \(A(u) = (u_2, u_1) \).

The parameter \(\mu \) couples the elastic and magnetic processes and \(\varepsilon \) is a small positive parameter introduced to relax the constraint \(|u| = 1\).

We assume that the equation (1.2) is associated with the boundary and initial conditions

\begin{equation}
(1.3) \quad u_x(0, t) = u_x(1, t) = 0, \quad u(x, 0) = u_0(x).
\end{equation}

The paper is organized as follows. In Section 2 we introduce the general 3D model, and present the reduction to the simplified one dimensional model. In Section 3 we study the minimization problem involving the energy functional \(F_{\mu, \varepsilon}(u) \) associated with (1.2), namely

\[
F_{\mu, \varepsilon}(u) = \frac{1}{2} \int_0^1 |u_x|^2 \, dx + \frac{\varepsilon^{-1}}{4} \int_0^1 (|u|^2 - 1)^2 \, dx
\]

\[
- \mu \left[\int_0^1 (A(u) \cdot u)^2 \, dx - \left(\int_0^1 A(u) \cdot u \, dx \right)^2 \right].
\]

We show that there exists a critical value of \(\mu \), explicitly given by \(\mu^* = \pi/2 \), such that:

(i) for \(\mu < \mu^* \) and \(\varepsilon \) small enough the only minimizers for \(F_{\mu, \varepsilon} \) are constant functions \(u \equiv \alpha \in S^1 \).

(ii) for \(\mu > \mu^* \) the minimizer for \(F_{\mu, \varepsilon} \) is nontrivial.

A similar bifurcation phenomenon was observed by Bethuel, Brezis, Coleman and Hélein in [2] in their study of nematics between cylinders. Finally, Section 4 is devoted to the study of the gradient flow. We prove existence and uniqueness of the solution \(u \) to (1.2), (1.3). Then we show that \(\lim_{t \to \infty} u(t) = u_\infty \) exists and that the function \(u_\infty \) is a stationary point of the energy functional.

2. – The model.

The behaviour of a magnetoelastic material is described by a system of differential equations in the two unknowns: the displacement vector and the magnetization vector. Let \(\Omega \subset \mathbb{R}^3 \) be the volume of the magnetoelastic material and \(\partial \Omega \) its boundary, the unknown magnetization vector \(m \) is a map from \(\Omega \) to \(S^2 \).
(the unit sphere of \mathbb{R}^3). The magnetization distribution is well described by a free energy functional which we assume composed of three terms namely the exchange energy E_{ex}, the elastic energy E_{el} and the elastic-magnetic energy E_{em}. Let \mathbf{v} be the displacement vector, then the total free energy E for a deformable magnetoelastic material is given by

$$E(\mathbf{m}, \mathbf{v}) = E_{\text{ex}}(\mathbf{m}) + E_{\text{em}}(\mathbf{m}, \mathbf{v}) + E_{\text{el}}(\mathbf{v}).$$

We neglect here other contributions to the free energy due, for example, to anisotropy and demagnetization energy terms.

We refer to the books [3], [4]; moreover among the papers on this subject we quote [5], [6], [7], [8]. In the sequel we detail the three energetic terms and derive the governing differential equations. Some drastic hypotheses allows us to reach a reduced one dimensional problem and to carry out the variational analysis for the associated energy functional.

2.1 – The general 3D model.

Let x_i, $i = 1, 2, 3$ be the position of a point \mathbf{x} of Ω and denote by

$$v_i = v_i(\mathbf{x}), \quad i = 1, 2, 3$$

the components of the displacement vector \mathbf{v} and by

$$\varepsilon_{kl}(\mathbf{v}) = \frac{1}{2}(v_{k,l} + v_{l,k}), \quad k, l = 1, 2, 3$$

the deformation tensor where, as a common praxis, $v_{k,l}$ stands for $\frac{\partial v_k}{\partial x_l}$.

Moreover we denote by

$$m_j = m_j(\mathbf{x}), \quad j = 1, 2, 3$$

the component of the unit magnetization vector \mathbf{m}. In the sequel, where not specified, the Latin indices vary in the set $\{1, 2, 3\}$ and the summation of the repeated indices is assumed. We define

$$E_{\text{ex}}(\mathbf{m}) = \frac{1}{2} \int_{\Omega} a_{ij} m_{k,i} m_{k,j} \, d\Omega,$$

where (a_{ij}) is a symmetric positive definite matrix which is supposed diagonal for most materials with all diagonal elements equal to a positive number a. The magneto-elastic energy for cubic crystals is assumed. This implies

$$E_{\text{em}}(\mathbf{m}, \mathbf{v}) = \frac{1}{2} \int_{\Omega} \lambda_{ijkl} m_{i,j} m_{j,k} \varepsilon_{kl}(\mathbf{v}) \, d\Omega,$$
where \(\lambda_{ijkl} = \lambda_1 \delta_{ij} \delta_{kl} + \lambda_2 \delta_{ik} \delta_{jl} + \lambda_3 (\delta_{ik} \delta_{jl} + \delta_{ij} \delta_{kl}) \) with \(\delta_{ijkl} = 1 \) if \(i = j = k = l \) and \(\delta_{ijkl} = 0 \) otherwise. Finally we introduce the elastic energy

\[
E_{el}(\mathbf{v}) = \frac{1}{2} \int_{\Omega} \sigma_{klmn} \varepsilon_{kl}(\mathbf{v}) \varepsilon_{mn}(\mathbf{v}) d\Omega
\]

where \(\sigma_{klmn} \) is the elasticity tensor satisfying the following symmetry property

\[
\sigma_{klmn} = \sigma_{mnlk} = \sigma_{jkmn}
\]

and moreover the inequality

\[
\sigma_{klmn} \varepsilon_{kl} \varepsilon_{mn} \geq \beta \varepsilon_{kl} \varepsilon_{kl}
\]

holds for some \(\beta > 0 \).

We consider the energy functional \(E \) given by

\[
E(\mathbf{m}, \mathbf{v}) = E_{ex}(\mathbf{m}) + E_{em}(\mathbf{m}, \mathbf{v}) + E_{el}(\mathbf{v})
\]

We introduce two tensors \(S = (\sigma_{ijkl} \varepsilon_{ij}) \) and \(\mathcal{L} = (\lambda_{ijkl} m_i m_j) \), moreover we denote by \(\mathbf{p} \) the vector \(\mathbf{p} = (\lambda_{ijkl} m_i m_j \varepsilon_{kl}) \).

The system of differential equations associated to the functional (2.4) reads

\[
\begin{cases}
\text{div} \left(S + \frac{1}{2} \mathcal{L} \right) = 0 & \text{in } \Omega \\
\alpha A \mathbf{m} - \mathbf{p} + (\alpha |\nabla \mathbf{m}|^2 + \mathbf{p} \cdot \mathbf{m}) \mathbf{m} = 0 & \text{in } \Omega
\end{cases}
\]

with boundary conditions

\[
v = 0, \quad \frac{\partial \mathbf{m}}{\partial v} = 0 \quad \text{on } \partial \Omega
\]

where \(v \) is the outer unit normal at the boundary \(\partial \Omega \).

An alternative form for describing the magnetoelastic interactions (2.5) is

\[
\begin{cases}
\text{div} \left(S + \frac{1}{2} \mathcal{L} \right) = 0 & \text{in } \Omega \\
\mathbf{m} \times (\alpha A \mathbf{m} - \mathbf{p}) = 0, \quad |\mathbf{m}| = 1 & \text{in } \Omega
\end{cases}
\]

The dynamical systems associated to the problems (2.5), (2.7) are respectively

\[
\begin{cases}
\rho \mathbf{v}_{tt} = \text{div} \left(S + \frac{1}{2} \mathcal{L} \right) & \text{in } \Omega \times (0, T) \\
\mathbf{m}_t + \gamma (\mathbf{m}_t \times \mathbf{m}) = \alpha A \mathbf{m} - \mathbf{p} + (\alpha |\nabla \mathbf{m}|^2 + \mathbf{p} \cdot \mathbf{m}) \mathbf{m} & \text{in } \Omega \times (0, T)
\end{cases}
\]

and

\[
\begin{cases}
\rho \mathbf{v}_{tt} - \text{div} \left(S + \frac{1}{2} \mathcal{L} \right) = 0 & \text{in } \Omega \times (0, T) \\
\gamma \mathbf{m}_t = \mathbf{m} \times (\alpha A \mathbf{m} - \mathbf{m}_t - \mathbf{p}) & \text{in } \Omega \times (0, T)
\end{cases}
\]
with γ and ρ two positive constants. For results concerning the existence of weak solutions to the dynamical problems related to (2.8), (2.9), we refer the reader to [1], [9].

2.2 – The proposed 1D problem.

A simplified model and a simplified energy functional can be obtained assuming that Ω is a subset of \mathbb{R} and neglecting some components of the unknowns v and m. More precisely we consider the single space variable x and assume $\Omega = (0, 1)$, $v = (0, w, 0)$ and $m = (m_1, m_2, 0)$. Then one has

(2.10) \[\varepsilon_{kl}(v) = \varepsilon_{12}(v) = \varepsilon_{21}(v) = \frac{1}{2} w_x, \]

(2.11) \[\lambda_{ijkl} = \lambda_{i1j2} = \lambda_3 (\delta_{i1} \delta_{j2} + \delta_{i2} \delta_{j1}) = \lambda_{i1j2}, \]

and the different energies are now

(2.12) \[E_{ex}(m) = \frac{1}{2} \int_0^1 |m_x|^2 \, dx, \quad ((a_{ij}) = \alpha Id = Id), \]

(2.13) \[E_{em}(m, v) = \frac{\lambda}{2} \int_0^1 \left(m_1 m_2 + m_2 m_1 \right) w_x \, dx \quad (\lambda_3 = \lambda), \]

(2.14) \[E_{el}(v) = \frac{1}{2} \int_0^1 w_x^2 \, dx \quad (\sigma_{1221} = 1). \]

To deal with the constraint $|m| = 1$, especially when having in mind numerical computations, we introduce the penalization

(2.15) \[\frac{1}{4\varepsilon} \int_0^1 (|m|^2 - 1)^2 \, dx. \]

If for $m = (m_1, m_2)$ we define the linear operator A by $A(m) = (m_2, m_1)$, then the problem of minimization of the energy reduces to minimize

(2.16) \[E_e(m, w) \]

\[= \frac{1}{2} \int_0^1 |m_x|^2 \, dx + \frac{1}{4\varepsilon} \int_0^1 (|m|^2 - 1)^2 \, dx + \frac{\lambda}{2} \int_0^1 (A(m) \cdot m) w_x \, dx + \frac{1}{2} \int_0^1 w_x^2 \, dx, \]

over functions satisfying the boundary conditions

(2.17) \[m_x = 0, \quad w = 0, \quad \text{on} \quad \partial \Omega = \{0, 1\}. \]
The corresponding Euler equation reads, for $m = m^\varepsilon$,

\begin{align}
 \begin{cases}
 m_{xx}^\varepsilon - \lambda A(m^\varepsilon)w_x - \varepsilon^{-1}(|m^\varepsilon|^2 - 1)m^\varepsilon = 0 \\
 w_{xx}^\varepsilon + \frac{\lambda}{2} (A(m^\varepsilon) \cdot m^\varepsilon)_x = 0.
 \end{cases}
\end{align}

(2.18)

Integrating the second equation leads to

\begin{equation}
 w_x = -\frac{\lambda}{2} (A(m^\varepsilon) \cdot m^\varepsilon) + C.
\end{equation}

(2.19)

The constant C is obtained by integrating the above equation on $(0, 1)$ and using the boundary condition, i.e.,

\begin{equation}
 C = \frac{\lambda}{2} \int_0^1 (A(m^\varepsilon) \cdot m^\varepsilon) \, dx.
\end{equation}

(2.20)

Then replacing w_x by its value in the first equation of (2.18) and setting $\mu = \lambda^2 / 2$ we obtain the following penalty nonlocal equation

\begin{equation}
 m_{xx}^\varepsilon - \varepsilon^{-1}(|m^\varepsilon|^2 - 1)m^\varepsilon + \mu A(m^\varepsilon)[A(m^\varepsilon) \cdot m^\varepsilon - \int_0^1 A(m^\varepsilon) \cdot m^\varepsilon \, dx] = 0,
\end{equation}

(2.21)

with boundary conditions

\begin{equation}
 m_x^\varepsilon(0) = m_x^\varepsilon(1) = 0.
\end{equation}

(2.22)

This is the problem we would like to address, as well as its parabolic analogue, i.e.,

\begin{equation}
 \begin{cases}
 u_t = u_{xx} - \varepsilon^{-1}(|u|^2 - 1)u + \mu A(u)[A(u) \cdot u - \int_0^1 A(u) \cdot u \, dx] \quad \text{in } \Omega \times (0, \infty) \\
 u_x = 0 \quad \text{on } \partial \Omega \times (0, \infty), \quad u(x, 0) = u_0.
 \end{cases}
\end{equation}

3. – The minimization problem.

The equation (2.21) is the Euler-Lagrange equation of the energy functional

\begin{equation}
 F_{\mu,\varepsilon}(m) = \frac{1}{2} \int_0^1 |m_x|^2 \, dx + \frac{\varepsilon^{-1}}{4} \int_0^1 (|m|^2 - 1)^2 \, dx
 \begin{aligned}
 - \frac{\mu}{4} & \left[\int_0^1 (A(m) \cdot m)^2 \, dx - \left(\int_0^1 A(m) \cdot m \, dx \right)^2 \right]
 \end{aligned}
\end{equation}

(3.1)
Let us consider the minimization problem
\[(3.2) \quad F_{\mu,\varepsilon} = \inf_{m \in H^1(0,1)} F_{\mu,\varepsilon}(m).\]

Above we used the notation $H^1(0,1)$ for $H^1((0,1), \mathbb{R}^2)$.

Theorem 3.1. For each μ and for each positive ε small enough, i.e., such that $\varepsilon^{-1} - \mu > 0$, the minimum of the functional $F_{\mu,\varepsilon}(m)$ is achieved by a function $m^\varepsilon = m^{\mu,\varepsilon} \in H^1(0,1)$. Furthermore, m^ε is a solution (2.21)–(2.22) and is therefore of class C^∞.

Proof. First of all we observe that by the Cauchy-Young inequality it holds, for any $\delta > 0$,
\[(3.3) \quad \left(\int_0^1 A(m) \cdot m \, dx \right)^2 \leq \int_0^1 (A(m) \cdot m)^2 \, dx \leq \int_0^1 |m|^4 \, dx \]
\[= \int_0^1 (|m|^2 - 1 + 1)^2 \, dx \leq \left(1 + \frac{1}{\delta} \right)^2 + (1 + \delta) \int_0^1 (|m|^2 - 1)^2 \, dx.\]

So we have:

(i) If $\varepsilon^{-1} - \mu > 0$ then for δ small enough $\varepsilon^{-1} - (1 + \delta)\mu \geq 0$ and the functional $F_{\mu,\varepsilon}(m)$ is bounded from below. Indeed,

\[F_{\mu,\varepsilon}(m) \geq \frac{1}{2} \int_0^1 |m_x|^2 \, dx + \frac{\varepsilon^{-1} - (1 + \delta)\mu}{4} \int_0^1 (|m|^2 - 1)^2 \, dx - \left(1 + \frac{1}{\delta} \right)^2 \frac{\mu}{4} \geq - \left(1 + \frac{1}{\delta} \right)^2 \frac{\mu}{4}
\]

(ii) The functional $F_{\mu,\varepsilon}(m)$ is coercive, i.e.,

\[F_{\mu,\varepsilon}(m) \to +\infty, \quad \text{as} \quad ||m||_{H^1(0,1)} \to \infty.
\]

This follows easily from the inequality $(|m|^2 - 1)^2 \geq |m|^2 - 5/4$.

(iii) The functional is weakly lower semicontinuous, that is: if $\{m_n\}$ is a sequence of functions in $H^1(0,1)$ such that $m_n \rightharpoonup m$ weakly in $H^1(0,1)$, then

\[
\liminf_{n \to \infty} F_{\mu,\varepsilon}(m_n) \geq F_{\mu,\varepsilon}(m).
\]

Indeed, for such a weakly convergent sequence we have

\[
\int_0^1 |m_x|^2 \, dx \leq \liminf_{n \to \infty} \int_0^1 |(m_n)_x|^2 \, dx,
\]

$|m_n|^2 \to |m|^2$ and $A(m_n) \cdot m_n \to A(m) \cdot m$ strongly in $L^2(0,1)$.

A NONLOCAL PROBLEM ARISING IN THE STUDY ETC.
Since the functional (3.1) is C^1, it follows that the stationary points of $F_{\mu,\varepsilon}$ are solutions to the Euler-Lagrange equations (2.21)–(2.22), and it is easily verified that any solution to this one-dimensional problem is of class C^∞. □

Remark 3.1. – The result is sharp since for $\varepsilon > \frac{1}{\mu}$, $F_{\mu,\varepsilon}$ is unbounded from below. Indeed, suppose that $1 - \frac{1}{\mu\varepsilon} > 0$. Consider the function $f = (\delta - x)^+$. One has
\[
\left(\int_0^1 f^2 \right)^2 \int_0^1 f^4 = \left(\int_0^\delta (\delta - x)^2 \right)^2 \int_0^\delta (\delta - x)^4 = \frac{\delta^6}{9} / \frac{\delta^5}{5} = \frac{5}{9} \delta < 1 - \frac{1}{\mu\varepsilon}
\]
for δ small enough. So we may choose δ small enough such that
\[
\left(\int_0^1 f^2 \right)^2 < \left(1 - \frac{1}{\mu\varepsilon} \right) \int_0^1 f^4.
\]

Next, consider $m^{(\alpha)} = \alpha f(x) \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right)$. We have
\[
F_{\mu,\varepsilon}(m^{(\alpha)}) = \frac{1}{2} \alpha^2 \int_0^1 f'(x)^2 + \frac{1}{4\varepsilon} \int_0^1 (x^2 f'(x)^2 - 1)^2 - \frac{\mu}{4} \int_0^1 f^4 + \frac{\mu}{4} \left(\int_0^1 x^2 f' \right)^2
= \frac{1}{2} \alpha^2 \int_0^1 f'(x)^2 + \frac{\alpha^4}{4\mu} \left\{ \frac{1}{\varepsilon\mu} \int_0^1 \left(f^2 - \frac{1}{x^2} \right)^2 - \int_0^1 f^4 + \left(\int_0^1 f^2 \right)^2 \right\}.
\]

For α large enough the quantity
\[
\frac{1}{\varepsilon\mu} \int_0^1 \left(f^2 - \frac{1}{x^2} \right)^2 - \int_0^1 f^4 + \left(\int_0^1 f^2 \right)^2
\]
is close to $\left(\frac{1}{\varepsilon\mu} - 1 \right) \int_0^1 f^4 + \left(\int_0^1 f^2 \right)^2 < 0$ and thus $F_{\mu,\varepsilon}(m^{(\alpha)}) \to -\infty$ when $\alpha \to +\infty$.

The functional $F_{\mu,\varepsilon}(m)$ has some obvious symmetry properties. We have clearly $F_{\mu,\varepsilon}(S_i(m)) = F_{\mu,\varepsilon}(m)$ for each S_i in the group
\[
G = \{ S_0, \ldots, S_7 \}
\]
generated by the rotation by $\pi/2$ and the complex conjugation.
LEMMA 3.1. Let m be a solution of the problem (2.21)--(2.22) satisfying
$$F_{\mu,\varepsilon}(m) \leq 0,$$
for some $\varepsilon < \frac{1}{\mu}$. Then, the following a-priori estimate holds,

$$(3.5) \quad |m|^2 \leq K := \frac{\varepsilon^{-1} + \mu}{\varepsilon^{-1} - \mu} \sqrt{\frac{\varepsilon^{-1}}{\varepsilon^{-1} + \mu}}.$$

PROOF. By the assumption on m we have

$$\frac{\varepsilon^{-1}}{4} \int_0^1 (|m|^2 - 1)^2 \, dx + \frac{\mu}{4} \left(\int_0^1 A(m) \cdot m \, dx \right)^2 - \int_0^1 (A(m) \cdot m)^2 \, dx \leq 0.$$

Combining this with (3.3) yields

$$\frac{\varepsilon^{-1}}{4} \int_0^1 (|m|^2 - 1)^2 \, dx + \frac{\mu}{4} \left(\int_0^1 A(m) \cdot m \, dx \right)^2 - (1 + \delta) \frac{\mu}{4} \int_0^1 (|m|^2 - 1)^2 \, dx \leq \left(1 + \frac{1}{\delta} \right) \frac{\mu}{4}.$$

Therefore, for $\varepsilon^{-1} > \mu$ and any δ such that $\varepsilon^{-1} - (1 + \delta)\mu \geq 0$, i.e., $\frac{1}{\delta} \geq \frac{\mu}{\varepsilon^{-1} - \mu}$, we have

$$(3.6) \quad \left(\int_0^1 A(m) \cdot m \, dx \right)^2 \leq 1 + \frac{1}{\delta}.$$

Now we multiply the Euler equation (2.21) by m and write the equation for $|m|^2$:

$$-\frac{1}{2} \frac{d^2}{dx^2} |m|^2 + |m|^2 + \varepsilon^{-1} (|m|^2 - 1) |m|^2 - \mu (A(m) \cdot m)^2 + \mu A(m) \cdot m \int_0^1 A(m) \cdot m \, dx = 0.$$

Using (3.6) we obtain

$$-\frac{1}{2} \frac{d^2}{dx^2} |m|^2 + \varepsilon^{-1} (|m|^2 - 1) |m|^2 - \mu |m|^4 - \mu \sqrt{1 + \frac{1}{\delta}} |m|^2 \leq 0,$$

that is

$$-\frac{1}{2} \frac{d^2}{dx^2} |m|^2 + (\varepsilon^{-1} - \mu) |m|^2 \left(|m|^2 - \frac{\varepsilon^{-1} + \mu \sqrt{1 + \frac{1}{\delta}}}{\varepsilon^{-1} - \mu} \right) \leq 0.$$
Choosing \(\frac{1}{\delta} = \frac{\mu}{\varepsilon - \mu} \) and setting \(K = \left(\varepsilon^{-1} + \mu \sqrt{\frac{\varepsilon^{-1}}{\varepsilon - \mu}} \right) / (\varepsilon - \mu) \) gives
\[
\frac{-1}{2} \frac{d^2}{d\varepsilon^2} (|\mathbf{m}|^2 - K) + (\varepsilon^{-1} - \mu) |\mathbf{m}|^2 (|\mathbf{m}|^2 - K) \leq 0.
\]
By the maximum principle, applied to the function \(h = |\mathbf{m}|^2 - K \), we get that \(h \leq 0 \), i.e., \(|\mathbf{m}|^2 \leq K \).

Let us denote by \(\lambda_2 \) the first nontrivial eigenvalue for the Neumann problem:
\[
\begin{aligned}
-\frac{f''}{x} &= \lambda f \quad \text{in } (0, 1), \\
f_x(0) &= f_x(1) = 0.
\end{aligned}
\]
It is well known that \(\lambda_2 = \pi^2 \) and that it yields the optimal constant in the following Poincaré inequality,
\[
\int_0^1 |g_x|^2 \, dx \geq \lambda_2 \int_0^1 (g(x) - \frac{1}{0} \int_0^1 g(t) \, dt)^2 \, dx, \quad \forall g \in H^1(0, 1).
\]
Next, we analyze the minimization problem (3.2) restricted to \(S^1 \)-valued maps. When applied to maps \(\mathbf{m} \in H^1((0, 1); S^1) \), all the functionals \(\{ F_{\mu, x} \}_{x > 0} \) take the same value, that we shall now use to define a new functional on \(H^1((0, 1); S^1) \):
\[
E_{\mu}(\mathbf{m}) = \frac{1}{2} \int_0^1 |\mathbf{m}_x|^2 \, dx - \frac{\mu}{4} \left[\int_0^1 (A(\mathbf{m}) \cdot \mathbf{m})^2 \, dx - \left(\int_0^1 A(\mathbf{m}) \cdot \mathbf{m} \, dx \right)^2 \right].
\]
In the next proposition we shall apply a bifurcation analysis similar to the one used in [2] in a study of minimizing harmonic maps on an annulus.

Proposition 3.1. Put
\[
I(\mu) = \inf_{\mathbf{m} \in H^1((0, 1); S^1)} E_{\mu}(\mathbf{m}).
\]
Then:

(i) For \(\mu \leq \lambda_2 / 2 \) we have \(I(\mu) = 0 \) and the minimum is attained only by constant functions, \(\mathbf{m} \equiv \mathbf{x} \in S^1 \).

(ii) For \(\mu > \lambda_2 / 2 \) we have \(I(\mu) < 0 \) and the minimum is attained by \(\mathbf{m}^0 = e^{i\varphi^0} \) where \(\varphi^0 \) is a nontrivial solution of the problem
\[
\begin{aligned}
-\varphi_{xx} &= \mu \left(\sin 2\varphi^0 - \int_0^1 \sin 2\varphi^0 \, dt \right) \cos 2\varphi^0 \quad \text{in } (0, 1), \\
\varphi_x(0) &= \varphi_x(1) = 0.
\end{aligned}
\]
PROOF. – Each \(m \in H^1((0, 1); S^1) \) can be written as \(m = e^{i\phi} \) for some \(\phi \) in \(H^1((0, 1); \mathbb{R}) \). For such \(m \) we may rewrite the energy in (3.1) as

\[
E_\mu(m) = \frac{1}{2} \int_0^1 |\phi_x|^2 \, dx - \frac{\mu}{4} \int_0^1 \left(\sin 2\phi - \int_0^1 \sin 2\phi \, dt \right)^2 \, dx.
\]

The function \(f = \sin 2\phi \) satisfies \(f_x = 2(\cos 2\phi)\phi_x \), so that

\[
|\phi_x| = \frac{|f_x|}{2|\cos 2\phi|} \geq \frac{|f_x|}{2}.
\]

Write the r.h.s. of (3.11) as a sum of two integrals to obtain

\[
E_\mu(m) = \int_0^1 \left(\frac{1}{2} \phi_x^2 - \frac{1}{8} f_x^2 \right) \, dx \\
+ \int_0^1 \left(\frac{1}{8} f_x^2 - \frac{\mu}{4} \left(\sin 2\phi - \int_0^1 \sin 2\phi \, dt \right)^2 \right) \, dx := I_1 + I_2.
\]

Clearly, for \(\mu < \lambda_2/2 \) and any \(f \neq \text{const} \) we have by (3.12) and (3.8) that \(I_1 > 0 \) and \(I_2 > 0 \). For \(\mu = \lambda_2/2 \) and \(f \neq \text{const} \) we have still \(I_1 > 0 \) while \(I_2 \) is non-negative. This yields assertion (i) of the proposition.

Assume next that \(\mu > \lambda_2/2 \). From the optimality of \(\lambda_2 \) in (3.8) follows the existence of \(\tilde{f} \in H^1((0, 1); \mathbb{R}) \) with

\[
\int_0^1 \left(\frac{1}{8} |\tilde{f}_x|^2 - \frac{\mu}{4} \tilde{f}_x^2 \right) \, dx = -c < 0 \quad \text{and} \quad \int_0^1 \tilde{f} \, dx = 0.
\]

For \(t > 0 \) small enough set \(\psi(t) = \frac{1}{2} \arcsin (t\tilde{f}) \) and then \(m(t) = e^{i\psi(t)} \). Using (3.13) we get

\[
E_\mu(m(t)) = -ct^2 + O(t^4) < 0, \quad \text{for } t \text{ small enough}.
\]

This yields \(I(\mu) < 0 \), and the existence of a minimizer, \(m^0 = e^{i\phi^0} \) with \(\phi^0 \) a non-trivial solution of (3.10) is obvious. \(\square \)

A more precise description of the minimizers in the case \(\mu > \lambda_2/2 = \pi^2/2 \) is given by the next proposition.

Proposition 3.2. – In the case \(\mu > \lambda_2/2 \) the minimizer \(m^0 = e^{i\phi^0} \) is unique modulo the operation of the symmetry group \(\mathcal{G} \) (see (3.4)), namely, up to performing the operations:

\[
\phi^0 \leftarrow \phi^0 + k\pi/2 \quad \text{or} \quad \phi^0 \leftarrow -\phi^0 + k\pi/2, \quad k \in \mathbb{Z}.
\]

Such a unique representative of the minimizers can be chosen which is a strictly
increasing function on $[0, 1]$ that satisfies

\begin{equation}
\phi_0(x) = -\phi_0(1 - x) \quad x \in [0, 1].
\end{equation}

Proof. Setting

\[a = \int_0^1 \sin 2\phi_0 \, dx, \]

we can rewrite (3.10) as

\begin{equation}
\begin{cases}
-\phi_{xx} = \mu(\sin 2\phi_0 - a) \cos 2\phi_0 & \text{in } (0, 1), \\
\phi_x(0) = \phi_x(1) = 0.
\end{cases}
\end{equation}

The rest of the proof is divided into several steps.

Step 1: ϕ^0 is strictly monotone.

Replacing ϕ^0 by its increasing rearrangement $(\phi^0)^*$ will decrease the first term on the r.h.s. of (3.11) (strictly, if ϕ^0 is not a monotone function), without changing the second term on the r.h.s. of (3.11). Since we may replace ϕ^0 by $-\phi^0$, we can assume in the sequel that $\phi^0 \geq 0$ in $[0, 1]$. We next claim that actually we have:

\begin{equation}
\phi_x^0 > 0 \quad \text{on } (0, 1).
\end{equation}

Indeed, the function $\psi = \phi_x^0$ satisfies

\begin{equation}
\begin{cases}
-\psi_{xx} = 2\mu(\cos 4\phi_0 + a \sin 2\phi_0)\psi & \text{in } (0, 1), \\
\psi \geq 0 \quad \text{in } (0, 1), \quad \psi(0) = \psi(1) = 0.
\end{cases}
\end{equation}

Since $\psi \neq 0$ we deduce (3.17) from the maximum principle.

Step 2: $|\sin 2\phi^0| < 1$ in $(0, 1)$ and $\sin 2\phi^0$ is strictly monotone increasing on $[0, 1]$.

Looking for contradiction, assume for example that $\sin 2\phi^0(x_0) = 1$ for some x_0 in $(0, 1)$. By (3.14) we may assume that $\phi(x_0) = \pi/4$. Set \(\tilde{\phi}(x) = \pi/2 - \phi^0(2x_0 - x) \). It is easy to verify that $\tilde{\phi}$ satisfies the equation in (3.16), and also $\tilde{\phi}(x_0) = \phi^0(x_0)$, $\tilde{\phi}_x(x_0) = \phi_x^0(x_0)$. By the uniqueness theory for ODE we deduce that $\tilde{\phi} = \phi^0$, i.e., $\phi^0(x) = \pi/2 - \phi^0(2x_0 - x)$. For the boundary conditions in (3.16) to hold, the only possibility is that $x_0 = 1/2$. We thus conclude that

\begin{equation}
\phi^0(x) = \pi/2 - \phi^0(1 - x), \quad x \in (0, 1).
\end{equation}

The relation (3.19) implies that

\[a = \int_0^1 \sin 2\phi^0 \, dx = 2 \int_0^{1/2} \sin 2\phi^0 \, dx = \int_0^{1/2} \sin 2\phi^0 \, dx. \]
Defining the following functional on $H^1((0, 1/2); S^1)$,

\[
E^{(1/2)}_\mu(e^{i\phi}) = \frac{1}{2} \int_0^{1/2} |\phi_x|^2 \, dx - \frac{\mu}{4} \int_0^{1/2} \left(\sin 2\phi - \int_0^1 \sin 2\phi \, dt \right)^2 \, dx ,
\]

we conclude that

\[(3.20) \quad E_\mu(e^{i\phi^0}) = 2E^{(1/2)}_\mu(e^{i\phi^0}) .\]

Set, analogously to (3.9),

\[(3.21) \quad I_{1/2}(\mu) = \inf_{m \in H^1((0, 1/2); S^1)} E^{(1/2)}_\mu(m) .\]

The minimum in (3.21) is achieved by some function $\phi^1 \in H^1(0, 1/2)$. Since $\phi^0_x(1/2) > 0$, the restriction of ϕ^0 to $(0, 1/2)$ is not a minimizer and therefore,

\[(3.22) \quad E^{(1/2)}_\mu(e^{i\phi^1}) < E^{(1/2)}_\mu(e^{i\phi^0}) .\]

We can extend ϕ^1 to a function $\tilde{\phi}^1 \in H^1(0, 1)$ by setting

\[
\tilde{\phi}^1(x) = \phi^1(1 - x) \quad \text{for} \quad x \in [1/2, 1) .
\]

Combining it with (3.22) and (3.20) we deduce that $E_\mu(e^{i\phi^1}) < E_\mu(e^{i\phi^0})$. This contradiction completes the proof of the assertion $|\sin 2\phi^0| < 1$ in $(0, 1)$.

In view of the above and Step 1 we conclude that the function $\sin 2\phi^0$ is strictly increasing on $[0, 1]$. By adding an integer multiple of $\pi/4$, see (3.14), we may assume that the image of the interval $(0, 1)$ by ϕ^0 is contained in $(-\pi/4, \pi/4)$. The uniqueness for that representative of the phase of the minimizer will be established in the sequel.

Step 3: $a = 0$.

Multiplying the equation in (3.16) by ϕ^0_x and integrating yields

\[(3.23) \quad (\phi^0_x)^2 = c^2 - \frac{\mu}{2} (\sin 2\phi^0 - a)^2 \quad \text{on} \quad [0, 1] ,
\]

for some constant $c > 0$. Write the roots of the polynomial $p(t) = c^2 - (\mu/2)(t - a)^2$ as $a - b$ and $a + b$ for some $b > 0$, i.e., $p(t) = (\mu/2)(a + b - t)(t - a + b)$. By Steps 1 and 2, (3.23), and the boundary condition in (3.16) it follows that

\[(3.24) \quad \sin 2\phi^0(0) = a - b \quad \text{and} \quad \sin 2\phi^0(1) = a + b .
\]

Assume by negation that $a \neq 0$. Next, we exploit the following two iden-
tities. First,

\begin{equation}
1 = \int_{0}^{1} dx = \int_{\frac{1}{2}\sin^{-1}(a+b)}^{\frac{1}{2}\sin^{-1}(a-b)} \frac{d\phi}{p^2\sin 2\phi} = \int_{a-b}^{a+b} \frac{dt}{\sqrt{2\mu(a+b-t)(t-a+b)(1-t^2)}}
\end{equation}

\begin{equation}
= \int_{-b}^{b} \frac{ds}{\sqrt{2\mu(b-s)(b+s)(1-(a+s)^2)}}.
\end{equation}

Similarly,

\begin{equation}
a = \int_{0}^{1} \sin 2\phi^0(x) dx = \int_{\frac{1}{2}\sin^{-1}(a+b)}^{\frac{1}{2}\sin^{-1}(a-b)} \frac{\sin 2\phi d\phi}{p^2\sin 2\phi}
\end{equation}

\begin{equation}
= \int_{-b}^{b} \frac{(s+a)ds}{\sqrt{2\mu(b-s)(b+s)(1-(a+s)^2)}}.
\end{equation}

From (3.25) and (3.26) we deduce that

\begin{equation}
0 = \int_{-b}^{b} \frac{sds}{\sqrt{2\mu(b-s)(b+s)(1-(a+s)^2)}}
\end{equation}

\begin{equation}
= \int_{0}^{b} \frac{s}{\sqrt{2\mu(b-s)(b+s)}} \left(\frac{1}{\sqrt{1-(a+s)^2}} - \frac{1}{\sqrt{1-(a-s)^2}} \right) ds.
\end{equation}

But it is clear that the r.h.s. of (3.27) is strictly positive for \(a > 0 \) and strictly negative for \(a < 0 \), so in either case we are led to a contradiction.

STEP 4: Conclusion.

Going back to (3.23) we can now write

\begin{equation}
(\varphi^0)^2 = c^2 - \frac{\mu}{2} \sin^2 2\phi^0 = \frac{\mu}{2} (b - \sin 2\phi^0)(b + \sin 2\phi^0) \quad \text{on } [0, 1],
\end{equation}

with \(b = c\sqrt{2/\mu} \). The equation (3.25) now reads

\begin{equation}
\sqrt{2\mu} = \int_{-b}^{b} \frac{ds}{\sqrt{(b-s)(b+s)(1-s^2)}} = \int_{-\pi/2}^{\pi/2} \frac{d\theta}{\sqrt{1-b^2 \sin^2 \theta}}.
\end{equation}

Since we assume that \(\mu > \frac{\pi^2}{2} \), it follows that there is a unique \(b > 0 \) for which (3.28) holds.
Next, there is a unique point \(x_0 \in (0, 1) \) where \(0 = \tilde{\varphi}^0(x_0) = \sin 2\varphi^0(x_0) \). At that point, \(\dot{x}_x^0(x_0) = b \sqrt{\mu/2} \). The function \(\dot{x}(x) = -\varphi^0(2x_0 - x) \) solves the equation
\[\dot{x}_x = \mu \sin 2\dot{x} \cos 2\dot{x} \quad \text{in} \ (0, 1), \]
with the initial conditions
\[\dot{x}(x_0) = \dot{x}^0(x_0) = 0 \quad \text{and} \quad \dot{x}_x(x_0) = \dot{x}_x^0(x_0) = \sqrt{\mu b} \cdot\]
Since there is a unique solution to (3.29)–(3.30), it follows that \(\varphi^0 = \dot{x} \). Since \(\dot{x}_x(2x_0) = 0 \) we must have \(x_0 = 1/2 \) and the symmetry property (3.15) holds. The uniqueness assertion of the proposition follows from the uniqueness for the initial problem (3.29)–(3.30) for \(x_0 = 1/2 \).

Next we present a convergence result that will be used in our main theorem.

Proposition 3.3. For each \(\mu > 0 \), any sequence of minimizers \(\{m_{\varepsilon_n}\} \), with \(\varepsilon_n \to 0 \), has a subsequence which converges in \(H^1(0, 1) \) and in \(C[0, 1] \) to \(m^0 \in C^\infty([0, 1]; S^1) \) which is a minimizer for \(I(\mu) \).

Proof. Note that \(F_{\mu, \varepsilon}(m^\varepsilon) \leq F_{\mu, \varepsilon}(x) = E_\mu(x) = 0 \) for any constant \(x \in S^1 \).

Using (3.5) we conclude that for \(\varepsilon < \frac{1}{2\mu} \), we have
\[\int_0^1 |m_x^\varepsilon|^2 \, dx \leq C \quad \text{and} \quad \frac{1}{\varepsilon} \int_0^1 (1 - |m^\varepsilon|^2)^2 \, dx \leq C,\]
for some constant \(C \) (which is independent of \(\varepsilon \)). Since \(H^1(0, 1) \) is compactly embedded in \(C[0, 1] \), we can extract a subsequence, still denoted by \(\{m_{\varepsilon_n}\} \), that converges weakly in \(H^1(0, 1) \) and strongly in \(C[0, 1] \) to a limit \(m^0 \in H^1(0, 1; S^1) \).

Since for each \(\varepsilon_n \) and each \(m \in H^1((0, 1); S^1) \), \(F_{\mu, \varepsilon_n}(m^\varepsilon) \leq E_\mu(m) \), we get that
\[\limsup_{\varepsilon_n \to 0} F_{\mu, \varepsilon_n}(m^\varepsilon) \leq E_\mu(m), \quad \forall m \in H^1((0, 1); S^1).\]

On the other hand, the weak lower-semicontinuity of the \(L^2 \)-norm of the gradient, combined with the uniform convergence of \(\{m_{\varepsilon_n}\} \) towards \(m^0 \), yields
\[E_\mu(m^0) \leq \liminf_{\varepsilon_n \to 0} F_{\mu, \varepsilon_n}(m^\varepsilon).\]

Combining (3.31) with (3.32) we deduce that \(E_\mu(m^0) \leq E_\mu(m), \forall m \in H^1((0, 1); S^1) \), i.e., \(m^0 \) is a minimizer for \(I(\mu) \). It also follows that the convergence \(m^\varepsilon \to m^0 \) is actually strong in \(H^1(0, 1) \).

We are now in position to state our main result for the minimization problem (3.2).
Theorem 3.2. –

(i) For each $\mu < \lambda_2/2$ there exists $\varepsilon_0(\mu) > 0$ such that for $\varepsilon \leq \varepsilon_0(\mu)$ we have $F_{\mu, \varepsilon} = 0$ and the only minimizers for (3.2) are constant functions $m^\varepsilon = \alpha \in S^1$.

(ii) For $\mu > \lambda_2/2$ we have $F_{\mu, \varepsilon} < 0$ for every $\varepsilon > 0$. For each $\varepsilon > 0$ we may choose a representative for the minimizer m^ε (by replacing m^ε with $S_1(m^\varepsilon)$, see (3.4)) such that $\lim_{\varepsilon \to 0} m^\varepsilon = m^0$ in $H^1(0, 1)$ and in $C[0, 1]$, where $m^0 \in C^\infty([0, 1]; S^1)$ is a non-trivial minimizer for $I(\mu)$.

(iii) In the limiting case $\mu = \lambda_2/2$, we have for a subsequence, $\lim_{\varepsilon \to 0} m^\varepsilon = \alpha$ in $H^1(0, 1)$ and in $C[0, 1]$, for some constant $\alpha \in S^1$.

Proof. – (i) By Proposition 3.3 we have, in particular, that $\lim_{\varepsilon \to 0} |m^\varepsilon| = 1$, uniformly on $[0, 1]$. Hence, for any $\delta > 0$ we have, for $\varepsilon \leq \varepsilon_1(\delta)$,

$$1 - \delta \leq |m^\varepsilon(x)| \leq 1 + \delta, \quad x \in [0, 1].$$

In particular, if $\delta \leq 1/2$, say, then we may write $m^\varepsilon = \rho e^{i\phi}$, with $\rho = |m^\varepsilon|$. A simple computation gives

$$F_{\mu, \varepsilon}(m^\varepsilon) = \frac{1}{2} \int_0^1 (\rho^2 |\phi_x|^2 + |\rho_x|^2) dx + \frac{1}{4\varepsilon} \int_0^1 (1 - \rho^2)^2 dx$$

$$- \frac{\mu}{4} \int_0^1 \left(\rho^2 \sin 2\phi - \int_0^1 \rho^2 \sin 2\phi dt \right)^2 dx.$$

By the Cauchy-Schwarz inequality we get,

$$\int_0^1 \left(\rho^2 \sin 2\phi - \int_0^1 \rho^2 \sin 2\phi dt \right)^2 dx$$

$$= \int_0^1 \left(\left(\sin 2\phi - \int_0^1 \sin 2\phi dt \right) + (\rho^2 - 1) \sin 2\phi - \int_0^1 (\rho^2 - 1) \sin 2\phi dt \right)^2 dx$$

$$\leq (1 + \delta) \int_0^1 \left(\sin 2\phi - \int_0^1 \sin 2\phi dt \right)^2 dx$$

$$+ \left(1 + \frac{1}{\delta} \right) \left(\int_0^1 (\rho^2 - 1)^2 \sin^2 2\phi dx - \left(\int_0^1 (\rho^2 - 1) \sin 2\phi dx \right)^2 \right)$$

$$\leq (1 + \delta) \int_0^1 \left(\sin 2\phi - \int_0^1 \sin 2\phi dt \right)^2 dx + \left(1 + \frac{1}{\delta} \right) \int_0^1 (1 - \rho^2)^2 dx.$$
Combining (3.35) with (3.34) and (3.33) yields

\[(3.36) \quad F_{\mu, \varepsilon}(m^\varepsilon) \geq \frac{(1 - \delta)^2}{2} \frac{1}{0} \int |\phi_x|^2 - \frac{\mu(1 + \delta)}{4} \frac{1}{0} \left(\int \sin 2\phi - \int \sin 2\phi dt \right) \left(\frac{1}{4\varepsilon} - \frac{\mu}{4} \left(1 + \frac{1}{\delta} \right) \right) \frac{1}{0} (1 - \rho^2)^2 dx. \]

Since \(\mu < \lambda_2/2 \) we can fix \(\delta \) small enough so that

\[\tilde{\mu} := \frac{1 + \delta}{(1 - \delta)^2} \mu < \frac{\lambda_2}{2}. \]

For \(\varepsilon \) small enough such that \(\frac{1}{8\varepsilon} \geq \frac{\mu}{4} (1 + 1/\delta) \) we obtain from (3.36)

\[(3.37) \quad 0 \geq F(m^\varepsilon) \geq (1 - \delta)^2 \left\{ \frac{1}{2} \frac{1}{0} \int |\phi_x|^2 dx - \frac{\tilde{\mu}}{4} \frac{1}{0} \left(\int \sin 2\phi - \int \sin 2\phi dt \right) \frac{1}{0} \left(\frac{1}{4\varepsilon} - \frac{\mu}{4} \left(1 + \frac{1}{\delta} \right) \right) \frac{1}{0} (1 - \rho^2)^2 dx \geq 0. \]

By Proposition 3.1 strict inequality holds for the last inequality on the r.h.s. of (3.37), unless \(m^\varepsilon \) equals identically a constant of modulus one, hence the result.

(ii) By Proposition 3.1 we have in this case,

\[F_{\mu, \varepsilon} \leq I(\mu) < 0. \]

The convergence assertion follows from Proposition 3.3 and the uniqueness follows from Proposition 3.2.

(iii) This part is a direct consequence of Proposition 3.3 and Proposition 3.1.

\[\square \]

Remark 3.2. – We do not know whether in the the limiting case \(\mu = \lambda_2/2 \) (case (iii)) the minimizer \(m^\varepsilon \) is necessarily a constant for \(\varepsilon \) small enough, as in case (i).

4. – The analysis of the gradient flow equation.

Let \(T \) be a positive number, we define \(Q_T = \Omega \times (0, T) \) and \((\cdot, \cdot) \) the scalar product in \(L^2(\Omega) \) and in \(L^2(\Omega) \). Consider the initial boundary value problem

\[(4.1) \quad u_t = u_{xx} - \varepsilon^{-1}(|u|^2 - 1)u + \mu A(u) \left[A(u) \cdot u - \int_0^1 A(u) \cdot u \, dx \right], \]
with the boundary conditions
\begin{equation}
\begin{aligned}
\mathbf{u}_x(0, t) = \mathbf{u}_x(1, t) = 0, & \quad t \in (0, T), \\
\end{aligned}
\end{equation}
and the initial condition
\begin{equation}
\begin{aligned}
\mathbf{u}(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), & \quad \mathbf{x} \in \Omega \equiv (0, 1).
\end{aligned}
\end{equation}
Provided the solution \(\mathbf{u}(t)\) of (4.1), (4.2), (4.3) exists for all \(t\), we show that \(\lim_{t \to \infty} \mathbf{u}(t) = \mathbf{u}_\infty\) exists and, for suitable choice of the initial datum \(\mathbf{u}_0\), the function \(\mathbf{u}_\infty\) is a negative energy solution to (2.21), (2.22).

The following existence and uniqueness theorem holds.

Theorem 4.1. Let \(\mathbf{u}_0(\mathbf{x}) \in \mathbf{H}^1(\Omega)\) and \(\varepsilon^{-1} > 2\mu\) and set
\begin{equation}
N(\mathbf{u}) = -\varepsilon^{-1}(|\mathbf{u}|^2 - 1)\mathbf{u} + \mu A(\mathbf{u})[A(\mathbf{u}) \cdot \mathbf{u} - \int_0^1 A(\mathbf{u}) \cdot \mathbf{u} \, dx].
\end{equation}

Then, there exists a unique solution \(\mathbf{u} \in \mathbf{L}^\infty(Q_T)\) such that
\begin{equation}
\left\{
\begin{aligned}
\mathbf{u} & \in \mathbf{L}^2(0, T; H^1(\Omega)), & \mathbf{u}_t & \in \mathbf{L}^2(0, T; H^1(\Omega)'), \\
\|\mathbf{u}\|_{L^\infty(Q_T)} & \leq B, & (B \text{ independent of } T), \\
\frac{d}{dt} \langle \mathbf{u}, \mathbf{v} \rangle + \int_{\Omega} \mathbf{u}_x \cdot \mathbf{v}_x \, dx = \langle N(\mathbf{u}), \mathbf{v} \rangle, & \forall \mathbf{v} \in \mathbf{H}^1(\Omega), & \text{in } \mathcal{D}'(0, T), \\
\mathbf{u}(0) & = \mathbf{u}_0.
\end{aligned}
\right.
\end{equation}
Then \(\mathbf{u}\) is a weak solution of (4.1)-(4.3) and since \(N(\mathbf{u})\) is bounded this is also a strong solution.

Proof. We use the Galerkin method. We consider \(w_1, \ldots, w_n\) an orthogonal basis in \(L^2(\Omega)\) of eigenvectors for the Neumann problem
\begin{equation}
\left\{
\begin{aligned}
-\lambda w & = \lambda w \quad \text{in } \Omega, \\
w_x(0) & = w_x(1) = 0.
\end{aligned}
\right.
\end{equation}
We consider then
\begin{equation}
\mathbf{u}_n = (u_{n,1}, u_{n,2}), \quad u_{n,j} = \sum_{i=1}^n y_{i,j}(t)w_i, \quad j = 1, 2,
\end{equation}
solution to the Cauchy problem
\begin{equation}
\left\{
\begin{aligned}
\mathbf{u}'_n & = (\mathbf{u}_n)_{xx} + N(\mathbf{u}_n) & t & \in (0, T), \\
u_{n,j}(0) & = \sum_{i=1}^n \langle w_i, u_{0,j} \rangle w_i, & j & = 1, 2.
\end{aligned}
\right.
\end{equation}
It is clear that (4.8) is a nonlinear system of ode’s with $2n$ unknowns. It has a unique solution locally.

Claim 1: $\mathbf{u}_n(0)$ is bounded in $H^1(\Omega)$. Indeed for $j = 1, 2$ one has

\[
\int_0^1 \left| (\mathbf{u}_{n,j}(0))_{x_1} \right|^2 \leq \sum_{i=1}^{\infty} \left| \langle w_i, u_{0,j} \rangle \right|^2 \leq \sum_{i=1}^{\infty} \left(\langle w_i, u_{0,j} \rangle \right)^2 \lambda_i \\
\int_0^1 \left| \mathbf{u}_{n,j}(0) \right|^2 = \sum_{i=1}^{n} \left(\langle w_i, u_{0,j} \rangle \right)^2 \leq \int_0^1 \left| (u_{0,j})_{x_1} \right|^2.
\]

(4.9)

To simplify our notation we do not write the measures of integration.

Claim 2: \mathbf{u}_n is bounded in $L^\infty(\Omega \times (0, t))$ by a constant independent of n and t.

We multiply the first equation of (4.8) by \mathbf{u}_n' and integrate on $Q_t = \Omega \times (0, t)$ to get

\[
\int_{Q_t} \left| \mathbf{u}_n' \right|^2 = \int_{Q_t} (\mathbf{u}_n)_{x_1} \cdot \mathbf{u}_n' - \epsilon^{-1} \int_{Q_t} \left(\left| \mathbf{u}_n \right|^2 - 1 \right) \mathbf{u}_n \cdot \mathbf{u}_n' \\
+ \mu \int_{Q_t} (\mathbf{A}(\mathbf{u}_n) \cdot \mathbf{u}_n') \mathbf{A}(\mathbf{u}_n) \cdot \mathbf{u}_n - \frac{1}{2} \mathbf{A}(\mathbf{u}_n) \cdot \mathbf{u}_n.
\]

We remark then that

\[
\mathbf{u}_n \cdot \mathbf{u}_n' = \left(\frac{1}{2} \left| \mathbf{u}_n \right|^2 \right)', \\
\mathbf{A}(\mathbf{u}_n) \cdot \mathbf{u}_n' = \left(u_{n,1} u_{n,2} \right)' = \frac{1}{2} \left(\mathbf{A}(\mathbf{u}_n) \cdot \mathbf{u}_n \right)'.
\]

Then we obtain

\[
\int_{Q_t} \left| \mathbf{u}_n' \right|^2 = -\frac{1}{2} \left(\int_{\Omega} \left| \mathbf{u}_{n,x_1} \right|^2 \right)' - \frac{\epsilon^{-1}}{4} \int_{Q_t} \left(\left| \mathbf{u}_n \right|^2 - 1 \right)^2' \\
+ \frac{\mu}{4} \int_{Q_t} \left(\int_{\Omega} \left(\mathbf{A}(\mathbf{u}_n) \cdot \mathbf{u}_n \right)^2 \right)' - \frac{\mu}{4} \int_{Q_t} \left(\int_{\Omega} \left(\mathbf{A}(\mathbf{u}_n) \cdot \mathbf{u}_n \right)^2 \right)'.
\]

By integration we obtain

\[
\int_{Q_t} \left| \mathbf{u}_n' \right|^2 = F(\mathbf{u}_n)(0) - F(\mathbf{u}_n)(t)
\]

(4.10)
where we have set
\[F(u_n) = \frac{1}{2} \int_{\Omega} |(u_n)_x|^2 + \frac{\varepsilon^{-1}}{4} \int_{\Omega} (|u_n|^2 - 1)^2 - \frac{\mu}{4} \int_{\Omega} (A(u_n) \cdot u_n)^2 + \frac{\mu}{4} \left(\int_{\Omega} A(u_n) \cdot u_n \right)^2. \]

By the Claim 1, \(u_n(0) \) is bounded in \(H^1(\Omega) \), and then also in \(L^\infty(\Omega) \), by a constant independent of \(n \). It follows that \(F(u_n)(0) \) is bounded by a constant \(A \) independent of \(n \), so from (4.10) we derive
\[F(u_n)(t) \leq A. \]

Now we have
\[\int_{\Omega} (A(u_n) \cdot u_n)^2 \leq \int_{\Omega} |u_n|^4 = \int_{\Omega} (|u_n|^2 - 1)^2 \leq 2 \int_{\Omega} (|u_n|^2 - 1)^2 + 2. \]

Then, from (4.11) and the definition of \(F(u_n) \) we get
\[\frac{1}{2} \int_{\Omega} |(u_n)_x|^2 + \frac{\varepsilon^{-1} - 2\mu}{4} \int_{\Omega} (|u_n|^2 - 1)^2 - \frac{\mu}{2} + \frac{\mu}{4} \left(\int_{\Omega} A(u_n) \cdot u_n \right)^2 \leq A. \]

Since \(\varepsilon^{-1} - 2\mu > 0 \) it follows that
\[\int_{\Omega} |(u_n)_x|^2 \leq 2A + \mu, \quad \int_{\Omega} (|u_n|^2 - 1)^2 \leq \frac{4A + 2\mu}{\varepsilon^{-1} - 2\mu}. \]

Due to the inequality \(\int_{\Omega} (|u_n|^2 - 1) \leq \left(\int_{\Omega} (|u_n|^2 - 1)^2 \right)^{1/2} \) we have that \(u_n \) is bounded in \(H^1(\Omega) \) by a constant independent of \(n \) and \(t \) and the Claim 2 follows from the imbedding of \(H^1(\Omega) \) into \(L^\infty(\Omega) \).

As a consequence of the Claim 2 the solution to (4.8) is global on \((0, T)\). It is also unique due to the fact that for \(u \) bounded, \(N(u) \) is Lipschitz continuous. Moreover \(u_n \) is also smooth in \(x \) and \(t \).

Let us denote by \(B \) the constant which bounds, uniformly in \(n \) and \(t \), the function \(u_n \) and set
\[K = \{ v \in L^2(Q_T) \mid |v| \leq B \text{ a.e. in } Q_T \}. \]

It is clear that \(K \) is a closed convex set of \(L^2(Q_T) \). Due to the preceding analysis and the equation (4.8) it follows that for some constant \(C \) independent of \(n \) and \(T \) we have
\[\|u_n\|_{L^\infty(0,T;H^1(\Omega))} \leq C, \quad \|(u_n)_t\|_{L^\infty(0,T;H^1(\Omega))} \leq C, \quad \|u_n\|_{L^\infty(0,T;L^2(\Omega))} \leq C. \]
Since the imbedding
\[\{ v \mid v \in L^2(0, T; H^1(\Omega)), v_t \in L^2(0, T; H^1(\Omega)') \} \subset L^2(0, T; L^2(\Omega)) \]
is compact – up to a subsequence – there exists \(u \) in \(L^2(0, T; H^1(\Omega)) \) such that
\[
\begin{align*}
&u_n \to u \quad \text{in } L^2(0, T; H^1(\Omega)), \\
&u_n \to u \quad \text{in } L^2(0, T; L^2(\Omega)), \\
&(u_n)_t \to u_t \quad \text{in } L^2(0, T; H^1(\Omega)').
\end{align*}
\]
Of course \(u \in K \). Going back to (4.4) we have
\[
N(u) = N_1(u) + N_2(u),
\]
where we have set
\[
\begin{align*}
N_1(u) &= -\varepsilon^{-1}|u|^2 - 1)u + \mu(A(u) \cdot u)A(u) \\
N_2(u) &= -\mu(A(u) \int_{\Omega} (A(u) \cdot u) \, dx.
\end{align*}
\]
Since \(N_1(u) \) is a smooth function we have for some constant \(L_1 \)
\[|N_1(u) - N_1(v)| \leq L_1 |u - v|, \quad \forall u, v \in \mathbb{R}^2, \text{ bounded.} \]
Moreover for \(u, v \in K \)
\[|N_2(u) - N_2(v)| = \left| -\mu(A(u) \int_{\Omega} (A(u) \cdot u) + \mu(A(v) \int_{\Omega} (A(v) \cdot v) \right| \\
= \left| -\mu(A(u) - A(v)) \int_{\Omega} (A(u) \cdot u) + \mu A(v) \int_{\Omega} (A(v) \cdot v - A(u) \cdot u) \right| \\
\leq C_1 |u - v| + C_2 \left\{ \int_{\Omega} |u - v|^2 \, dx \right\}^{1/2}. \]
From these estimates it follows that
\[N(u_n) \to N(u) \quad \text{in } L^2(0, T; L^2(\Omega)). \]
We take now \(v \in H^1(\Omega) \) to get from (4.8)
\[
\frac{d}{dt} \langle (u_n, v) \rangle = -\int_{\Omega} u_{nx} \cdot v_x + \int_{\Omega} N(u_n) \cdot v, \quad \forall t \in (0, T).
\]
Passing to the limit in \(n \) we get easily the third equation of (4.5).
Let now \(v \in H^1(\Omega) \) and let \(\varphi \) be a smooth function such that
\[\varphi(0) = 1, \quad \varphi(T) = 0. \]
From (4.5) we have
\[
\int_0^T \frac{d}{dt} \langle u, v \rangle \varphi = - \int_{Q_T} u_x \cdot v_x \varphi + \int_{Q_T} N(u) \cdot v \varphi
\]
\[
= \lim_{n} \int_{Q_T} u_n x \cdot v_x \varphi + \int_{Q_T} N(u_n) \cdot v \varphi = \lim_{n} \int_0^T \frac{d}{dt} \langle u_n, v \rangle \varphi
\]
\[
= \lim_{n} \int_0^T \frac{d}{dt} \left[\langle u_n, v \rangle \varphi \right] - \int_0^T \langle u_n, v \varphi \rangle' = - \lim_{n} \langle u_n(0), v \rangle - \int_0^T \langle u, v \rangle \varphi' =
\]
\[
= - \langle u_0, v \rangle - \int_0^T \langle u, v \rangle \varphi'.
\]

Integrating the left hand side of this equality we arrive to
\[
\langle u(0), v \rangle = \langle u_0, v \rangle, \quad \forall v \in H^1(\Omega),
\]
which completes the existence result.

For uniqueness, starting from two solutions \(u_1, u_2\) we have
\[
\frac{d}{dt} (u_1 - u_2) = (u_1 - u_2)_{xx} + N(u_1) - N(u_2).
\]

Multiplying by \((u_1 - u_2)\) and integrating in \(\Omega\) we get by (4.13), (4.14)
\[
\frac{1}{2} \frac{d}{dt} \int_{\Omega} \left| u_1 - u_2 \right|^2 \leq C \int_{\Omega} \left| u_1 - u_2 \right|^2,
\]
and the result follows. \(\Box\)

Corollary 4.1. Let \(u\) be the solution of the problem (4.1), (4.2), (4.3). Then,
\[
\int_{Q_t} \left| u_t \right|^2 = F(u)(0) - F(u)(t).
\]

Moreover, there exists a positive constant \(\bar{A}\) independent of \(t\), such that
\[
\int_{Q_t} \left| u_t \right|^2 + \int_{\Omega} \left| u_x \right|^2 + \int_{\Omega} \left(\left| u \right|^2 - 1 \right)^2 \leq \bar{A}.
\]

Proof. The equality (4.15) easily follows from (4.10). Moreover, we have
\[
F(u) \geq \frac{1}{2} \int_{\Omega} \left| u_x \right|^2 + \frac{\varepsilon^{-1} - 2\mu}{4} \int_{\Omega} \left(\left| u \right|^2 - 1 \right)^2 - \frac{\mu}{2} + \frac{\mu}{4} \left(\int_{\Omega} A(u) \cdot u \right)^2
\]
for \(\varepsilon^{-1} - 2\mu \geq \bar{a} > 0\). We get then the estimate (4.16). \(\Box\)
Lemma 4.1. – Let u be the solution of the problem (4.1), (4.2), (4.3). Then, there exists a positive constant K such that the following estimate holds

\begin{equation}
\int_0^T \left| \frac{d}{dt} \|u_t\|_{L^2(0,1)}^2 \right| dt \leq K.
\end{equation}

Proof. – We look at the equation (4.1) in the form

\[u_t = u_{xx} + N(u). \]

Differentiating with respect to t and multiplying by u_t we obtain

\begin{equation}
\frac{1}{2} \frac{d}{dt} \int_0^1 |u_t|^2 dx + \int_0^1 |u_{xt}|^2 dx = \int_0^1 \frac{d}{dt} N(u) \cdot u_t dx.
\end{equation}

Recall that $N(u) = N_1(u) + N_2(u)$ where N_1 is a C^∞-function and

\[N_2(u) = -\mu A(u) \int_\Omega (A(u) \cdot u) dx. \]

From this we deduce

\[\frac{d}{dt} N_2(u) = -\mu A(u_t) \int_\Omega (A(u) \cdot u) dx - 2\mu A(u) \int_\Omega (A(u) \cdot u_t) dx, \]

and thus

\[\left\| \frac{d}{dt} N_2(u) \right\| \leq C \|u_t\|. \]

Hence from (4.18), Theorem 4.1 and Corollary 4.1

\[\int_0^T \left| \frac{d}{dt} \|u_t\|_{L^2(0,1)}^2 \right| dt \leq C \left(\int_0^T \|u_t\|_{L^2(0,1)}^2 dx \right) \leq K, \]

and the proof of the lemma easily follows. \hfill \Box

Now we can prove the following theorem

Theorem 4.2. – Let u be the solution of the problem (4.1), (4.2), (4.3) for $T = \infty$. Then, there exists a sequence $t_k \to \infty$ such that

\begin{equation}
 u(x, t_k) \to u_{\infty}(x) \quad \text{in} \quad H^1(0,1),
\end{equation}

where $u_{\infty}(x)$ is a stationary point of (4.1). Moreover, all the weakly convergent sequences converge to stationary points.
PROOF. – Let \(u^k = u(\cdot, t_k) \) be the given solution of (4.1), (4.2), (4.3) at time \(t_k \). From the estimate (4.16) it follows that, passing to a subsequence if necessary,

\[
\begin{align*}
(4.20) & \quad u^k \to u_\infty \quad \text{weakly in } H^1(0, 1), \\
(4.21) & \quad u^k \to u_\infty \quad \text{strongly in } L^2(0, 1), \\
(4.22) & \quad u^k \cdot A(u^k) \to u_\infty \cdot A(u_\infty) \quad \text{strongly in } L^2(0, 1), \\
(4.23) & \quad |u^k|^2 \to |u_\infty|^2 \quad \text{strongly in } L^2(0, 1).
\end{align*}
\]

Now we have to prove that \(u_\infty \) is a solution of the stationary problem. For this we multiply the equation (4.1) by \(v \in H^1(0, 1) \) and integrate to get

\[
\begin{align*}
(4.24) & \quad \int_0^1 u_t^k \cdot v \, dx = -\int_0^1 u_x^k \cdot v_x \, dx - \varepsilon^{-1} \int_0^1 |u^k|^2 - 1 \, u^k \cdot v \, dx \\
& \quad + \mu \int_0^1 A(u^k) \cdot v \left[A(u^k) \cdot u^k - \int_0^1 A(u^k) \cdot u^k \, dx \right]
\end{align*}
\]

From Lemma 4.1 we have that \(||u_t^k|| \) is a Cauchy sequence (see (4.17)) and the limit can only be 0 since \(\int_0^\infty ||u_t||^2 \) is bounded. From the convergence established above it follows that \(u_\infty \) is a weak solution of the stationary problem. \(\square \)

COROLLARY 4.2. – Let \(u_0 \) be a function verifying the hypotheses of Theorem 4.1. If \(F(u_0) < 0 \) then the limit function \(u_\infty(x) \) defined in Theorem 4.2 is a negative energy stationary point of (3.1).

PROOF. – The proof easily follows from the energy estimate (4.15). Indeed since the system is dissipative we have

\[
F(u_\infty) \leq F(u_0)
\]

\(\square \)

Acknowledgments. The work of V.V. has been partially supported by the European Community under the contract HPRN-CT-2002-00284 “Smart Systems” and by the CNR/MIUR project: “Materiali compositi per applicazioni strutturali di rilevante interesse industriale”. M.C. acknowledges the support of the Swiss National Science Foundation under the contracts #20-105155/1 and #20-113287/1. The research of L.S. was partially supported by the Research Training Network “Fronts-Singularities” (RTN contract: HPRN-CT-2002-00274).
REFERENCES

Michel Chipot: University of Zürich, Institute of Mathematics
Winterthurerstr. 190, CH-8057 Zürich, Switzerland
E-mail: m.m.chipot@math.unizh.ch

Itai Shafrir: Technion - I.I.T.
Department of Mathematics, 32000 Haifa, Israel
E-mail: shafrir@math.technion.ac.il

Vanda Valente: Istituto per le Applicazioni del Calcolo “M. Picone”
CNR, V.le del Policlinico 137, 00161 Roma, Italy
E-mail: valente@iac.rm.cnr.it

Giorgio Vergara Caffarelli: University of Roma “La Sapienza”
Department MeMoMat, V. A. Scarpa 16, 00161 Roma, Italy
E-mail: vergara@dmmm.uniroma1.it

Received November 6, 2007 and in revised form December 3, 2007.