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Remarks on the Fractal Dimension of Bi-Space Global
and Exponential Attractors

JAN W. CHOLEWA - RADOSLAW CZzAJA (*) - GIANLUCA MOLA (¥%)

Sunto. — In questo lavoro sono considerate le nozioni di attrattori globali ed esponenziali
“bi-space” per sistemi dinamici continui, e discusse limitazioni relative alla loro
dimensione frattale in spazi di funzioni opportuni. Di particolare interesse é il caso
in cui il sistema presenta un parziale effetto regolarizzante, ed alcuni esempi con
questa proprietd sono mostrati.

Abstract. — Bi-space global and exponential attractors for the time continuous dynamical
systems are considered and the bounds on their fractal dimension are discussed in the
context of the smoothing properties of the system between appropriately chosen
Sfunction spaces. The case when the system exhibits merely some partial smoothing
properties is also considered and applications to the sample problems are given.

1. — Introductory notes.

Attractors for the dynamical systems governed by partial differential equations
in infinite dimensional Banach spaces have been considered by several authors
within past few decades; see [3, 8, 11, 16, 18, 29, 1, 10, 12, 14, 21] and references
therein. A general approach leading to the description of their topological dimension
have essentially been developed, allowing to obtain much of the relevant information
about the asymptotic behavior of the systems corresponding to a number of physical
equations in both Hilbert and Banach function space setting.

In this article we reconstruct the results of [1, 3, 11, 12] concerning the bi-space
global and exponential attractors and provide simultaneously certain bounds on
their fractal dimension, which are a straightforward consequence of the smoothing
properties of the dynamical system acting between appropriately chosen function
spaces. These mentioned properties are typical for problems that fall into a class of

(*) The author was supported by the fellowship of project POCI 2010/FEDER by
CAMGSD, Instituto Superior Técnico, Lisbon.

(**) The author was supported by the Postdoctoral Fellowship of the Japan Society for
the Promotion of Sciences (No. PE06067).
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abstract parabolic equations in Banach spaces. Nonetheless, a situation that some
partial smoothing occurs in a system can be observed in a much wider class of
evolutionary problems. The specific ‘dissipative and smoothing mechanism’ can be
then described, that leads to the existence of the global and exponential attractors
and provides the bounds on their fractal dimension.

The article is organized as follows. In Section 2 we obtain some estimate
concerning fractal dimension of a precompact negatively invariant set. We re-
construct the existence of a bi-space global attractor, derive a bound for its
fractal dimension and investigate the existence of a (finite dimensional) ex-
ponential attractor. Next, in Section 3, we consider global attractors with
bounded fractal dimension for a semigroup {S(t)} governed by an abstract
semilinear parabolic equation u; + Au = F(u) in a Banach space X. We consider
then some specific applications. These concern a strongly damped wave equa-
tion, including the case when the resolvent operators corresponding to a linear
operator A are non-compact and nonlinear term satisfies a critical growth con-
dition, reaction-diffusion equations with subquadratically growing gradient
term, and the higher order parabolic problems involving 2m—th order elliptic
operators in the main part and fast growing nonlinearities. Another specific
application involving a (non-parabolic) evolution problem is also discussed in the
context of a conserved phase-field system with thermal memory.

Acknowledgement. This work was carried out while the first author visited
Centro de Analise Matematica, Geometria e Sistemas Dindmicos at Instituto
Superior Técnico in Lisbon, Portugal. He wishes to acknowledge the hospitality
of the people from this Institution.

2. — Fractal dimension of negatively invariant sets and bi-space attractors.

In this section we estimate fractal dimension of a precompact negatively in-
variant set proving a certain generalization of [21, Lemma 1.3]. We discuss next
the existence of a suitable notion of attractor and obtain some bounds of its
fractal dimension.

Throughout this section V' denotes a metric space. Recall that § #C C V is
precompact in V iff each sequence of elements from C possesses a Cauchy sub-
sequence or, equivalently, for any ¢ > 0there exist certainn € Nandwuy,...,u, € C

n

such that C c |J BY (u;, &), where BY (u;, £) are open balls centered at u; of radius e.
i=1

Recall also thalt if C # () is precompact in V then its fractal dimension is

dy (C) = lim sup log: Ny (C),
&—0 ¢

where NZ(C) denotes the smallest number of e-balls in V needed to cover C.
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Note that d}’(C) = d}’(clVC) and let
dy (C) = limsup log; N (C),

e—0

where NZ(C) denotes the smallest number of ¢-balls in V' with centers in C
needed to cover C. Since N (C) < N}(C) < NY(C), then for a nonvoid set C
precompact in V we have

4/(©) = 3 (©),

Furthermore, if a subset Vy C V is considered with the inherited metric and
C C Vy C V, then C is precompact in Vj, and

4 (C) = df ().
The following result is a generalization of [21, Lemma 1.3].
LEMMA 2.1. — Let V, W be normed spaces such that V is compactly embedded
in W and let C # 0 be a precompact subset of W, negatively invariant under

map S, i.e. C C S(C). Assume that for each uy € C the map S has the following
decomposition

(2.1) S = P(ug) + M(ug), where P(ug): C — W, M(ug): C — V,
and
(2:2)  Focsey a0 YaganeC,fur—uoly <so [ P@o)ur — Pluto)uollyy < 0lfur — uollyy,

(23) Fies0 vuo,ulECHM(uO)ul - M(MO)MOHVS KHul - uOHW'

1
Under the above assumptions we have for any v € (O, 5~ (5)
(2.4) 4’ (C) < log 3 N."(B(0,1)).

1

ProoF. — For v € (0,7 - 6) let N = NY(B"(0,1)) and consider 0 < ¢ < &.
2 3

Note that

cc |J B"ie with certain u,... ugwe € C.
1<i<NP(C)

If w € C, then u € BY (u;, &) and from (2.3) we obtain
|Muu — Mupul|y < K|l — willy< xe,
ensuring that

L My~ My € B'0, D | BY (wj, 0 > .
K& ’

1<j<N K
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Thus we have || M (u;)u — M(u;)u; — ;ceijW< ve and we use (2.2) to get
| PCuiyu — Py +|| M (uidu — M(ui)u; — rcew||, < (5 + v)e.
Since (2.1) holds and C c S(C), what was said above ensures that
Cc U U BY(S(u;) + Kew;, (0 + v)e).

1<i<NY (€) 1<<N
If we now increase the radius of the balls twice we will obtain

Cc U U BW(@Z-]-,2(5 +v)e) with centers w;; € C,
1<i<NW(C) 1<j<N

which shows that for every 0 < ¢ < gy we have

(2.5) NY;. (0 <NV (©)-N.
Induction argument ensures that for any k € N

AT w k
Ny 26+ )]‘so(c)—N ©- N

Sinee for small ¢ € (0, &] there is & € N such that [2(0 + v)]" ey < & < [2(5 + v)T¥e,
the estimate (2.4) now follows from the relation

loglN C)<log . NW(C) N+ O

[2(6+0; ]

In what follows {S(¢)} denotes a family of maps such that
(26) S@®: V- V,t> 0, S0)=1Id and S)S(s) =S+ s) for s,t > 0.

It is reasonable to consider the situation when orbits of bounded sets eventually
enter another metric space W and discuss some minimal smoothness conditions
on {S(¢)} that lead to the existence of an attracting compact invariant set.

We denote by py, (resp. dw) the metrie (resp. the Hausdorff semidistance) in
W. If there is By bounded in V which absorbs bounded subsets of V, that is

S#)B c By for each B bounded in V and all £ > tg > 0,
then following [1] we will consider the two asymptotic smoothness conditions:

@) any sequence {S(t,)v,} with ¢, — oo and {v,,} C By
' has a subsequence convergent in the metric of W,
for each sequence {S(t,)v,} with t,, — oo, {v, } C By there
(2.8) is a subsequence {S(t,,)vy, } and a certain point w e VNW

such that klim PwSOSEy, vn, , SOw) = 0 for all ¢ > 0.
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ProposITION 2.2 ([1]). — Suppose By is bounded in V, absorbs bounded
subsets of V and W is a metric space containing By.

() If (2.7) holds, then there is a nonvoid set A C clw By, compact in W and
attracting sets bounded in V with respect to the Hausdorff semidistance dy.

(i) If (2.8) holds, then A s additionally a subset of V invariant under
{S@®}. Moreover, A is closed in V provided that

{wn} CV W, pyn, w) — 0 and pyw,,, w) — 0 tmply w = w.

Proor. — Following [1], the result is a consequence of the definition of
29) A={weW:8t,)v, — win W for some {v,} C By and ¢, — oc0}. O

Coming back to [3] (see also [1] and references therein) we recall that a
nonvoid set A C V N W, which is invariant under {S(¢)}, closed in V, compact in
W and attracts bounded subsets of V with respect to the Hausdorff semidistance
dy is called a global (V — W) attractor for {S(t)}. Proposition 2.2 then implies

COROLLARY 2.3.—Let W be a metric space such that VCW and
Py (Wi, w) — 0 implies py (W, w) — 0. Suppose that By is bounded in V, By
absorbs bounded subsets of V and (2.8) holds.

Under these assumptions there exists a global (V. — W) attractor A for {S(t)}
and if, in addition, V is a reflexive Banach space and W is a normed space, then
A is bounded in V.

ProoF. — By Proposition 2.2 the set A in (2.9) is a (V — W) global attractor
and A is bounded in V as a consequence of weak convergence properties. O

If V = W, then a global (V — V) attractor is a notion of a global attractor in
[16] and of a compact invariant B-attractor in [18]. In this case Proposition 2.2
implies

COROLLARY 2.4. — Suppose By is bounded in V and absorbs bounded subsets
of V.
() If(2.8) holds with W =V, then there exists a global attractor (a compact
invariant B-attractor) for {S)}.
(i) If 2.7) holds with W =V and the map V>3v— St)v eV is con-
tinuous () for each t € [0,00), then there is a global attractor (a compact in-
variant B-attractor) A for {S@)}.

(*) See [26], where continuity assumption is replaced by the requirement that S(¢) is a
closed map.
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With further assumptions on {S(#)} fractal dimension of A can also be esti-
mated and boundedness of A in V will follow even if V is not reflexive. In the
light of Lemma 2.1 and Corollary 2.3 the following results hold.

THEOREM 2.5. — If V. W are normed spaces and the assumptions of
Corollary 2.3 hold, then there exists a global (V — W) attractor A.
If; in addition, V is compactly embedded in W and there exists ty > 0 such

that
S(to) = Pto)(uo) + M(to)(wo), uo € A,

where P(ty)(uo): A — W, M(ty)(ug): A — V satisfy

(2.10) Vato au1 €A, s —ang [y <eo 1P (E0) (@0)rr — P(to) (oo ||y < Ollur — uollyy
(2.11) Vg e Al M @) (wo)us — M (Eo)(uo)uolly, < xl|ur — uol|y,

. 1 1
with some 0 < 0 < > & > 0 and k > 0, then for every v € (O’i — 6) we have

(2.12) dY(A) < 1ogmNgV (BY(0,1)).

COROLLARY 2.6. — If V. W are normed spaces and the assumptions of
Corollary 2.3 hold, then there exists a global (V — W) attractor A.
If; in addition, V is compactly embedded in W and

(213) EIt0>0 EI/c>() Vul,uze.A”S(to)ul - S(to)'MZHVS KH%l — ?,LzHW,

then A is compact in V and satisfies

(2.14) df (A) < df(A) < logy N"(BY(0,1), v (o%)

In the similar vein, following the ideas of [9, 12, 24], we prove
PropPOSITION 2.7. — Let V be a Banach space compactly embedded in a
Banach space W. Assume that Vi is a subset of V and let By be a bounded set

of Vo absorbing bounded subsets of V. Suppose that there exists ty > tp, such
that

(2.15) S(to) = Pto) + M(t),

. . 1
where P(ty): By — W, M(ty): By — V satisfy with some(0 < 6 < > k>00<0<1
and u > 0 the following estimates

(216) vuml,geBo ||P(t())’l/L1 —P(to)u2”W§ 5”%1 - u2|IW7
(2.17) Vg ugeB, [ ME)ur — MEo)usy < xljur — Uz,

(2.18) Vi noetto 2101 Vuraneny S ur — Sto)uslyy < plty — to|”+ s — uzlyp)-
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Then for any v € (O, 5 — 5 there exists a monvoid set M — /\//TU C By,
positively invariant under {S(t)}, precompact in W and satisfying conditions

() 205075 sounded in v, i edy(SHB, M) =0,

i) dff (M) <, (1+ log_ NI (BY(0, 1)))

1
Proor. — Fix v € (0,7 - 5) and note that S#)By C By for t > ty. Since By

is bounded in W, from [12, Proposition 1] we deduce that there is a nonvoid
set M= M,) C By, precompact in W satisfying S(to)/\/l C M dW(M) <
log 1 NW(BV(() 1)) and such that, for certain C, ¢ >0, We have
dW(S(nto)Bo, M) < Ce=¢* for each n € N. Setting M =M, = |J S(s)M C By

s€lto,2to]

we then have that S(t)M c M for t > (. As a result of (2.18) the set M is also
precompact in W and

0 (VD) < 5Vt 2001 x M) < 71+ dF (VD).

If B is a bounded subset of V}, then S(tg)B C By. If furthermore ¢t > tg + 3t,
then t — tg = nty + 2ty + 7, with certain r; € [0, %], 7; € N, and via (2.18) we get
dw(SHB, M) = dw(S(t — tp)S(tp)B, M) < dyw(S(t — t5)By, M)
< dw(S(t0)S(uto)Bo, Sto)M) < iy (S(nato)Bo, M) < Ce ¥,
which completes the proof. O

Generalizing the notion of an exponential attractor in [11] we will say that

a nonvoid set M C V N W is an exponential (V — W) attractor for {St)} if M is
positively invariant under {S(¢)}, closed in V, compact in W, d}V(M) < oo and

(2.19) 3050 bounded in V tlg?o e“'dw (St)B, M) = 0.

COROLLARY 2.8. — If V 1s reflexive, the assumptions of Proposition 2.7 hold
with Vo =V and S@) : W D clwBy — W is continuous for each t > 0, then, for

1
vE (0,5— 5),

@ M, = clw/\//t\v is an exponential (V — W) attractor bounded in V,
(i) there exists a finite dimensional global (V — W) attractor A C M,.

COROLLARY 2.9. — Let V be a Banach space compactly embedded in a Banach
space W and let By be a bounded and closed set in V absorbing bounded subsets
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of V. Suppose that (2.18) holds and
(2.20) Vis0 Jiwr>0 Vupusen, 1SOu1 — SOuz ||y < x@®)||ur — uz|ly-

Then for any v € (0, %)
(i) there exists an exponential (V — V) attractor M, C By satisfying
1
. v < Z L l:V Vv
(2.21) dy (M) <5 (1 + logy NY(BY (0, 1))),

where Ky = k(ty),
(ii) there exists a finite dimensional global (V — V) attractor A contained
m M,.

ProoF. — (i) The argument is the same as in the proof of Proposition 2.7, but
we also set M, := clVS(l)/\//l\,) and observe by (2.20) that M, C clyBy = By is
compact in V and positively invariant under {S(¢)}. Moreover, d}/(MU) < d}’v(/\//l\u)
and for ¢ > tg + 3ty + 1 we also have

dy(S@®)B, M,) = dy(SWS(t — DB, SMM,) < kDdw(S(t — 1B, M,),

which ensures that (2.19) holds with V' = W. This completes the proof of (i).
Part (ii) now follows easily via Corollary 2.4. O

3. — Applications.

In this section we present the results concerning bi-space attractors with
bounded fractal dimension for the semigroup governed by the Cauchy problem
for an abstract parabolic equation. We also consider some specific examples, like
a strongly damped wave equation involving a critically growing nonlinearity and
a linear main part with non-compact resolvent, reaction-diffusion equations with
subquadratically growing gradient term and 2m—th order parabolic problems
with fast growing nonlinearities. We finally discuss a (non-parabolic) evolution
problem, which will be a conserved phase-field system with thermal memory.

3.1 — Abstract semilinear parabolic problems.

Throughout this subsection X denotes a Banach space, A: X D D(4) — X isa
positive sectorial operator in X and X?, ¢ > 0, are the associated fractional power
spaces.

It is known that —A generates in X = X° a C° analytic semigroup {¢~4!} and

—at

_ e
(3.1) lle AtHL(XA,X”) < Cors O >0,¢>0,

where a > 0 is such that Res(A) > a and c, are certain positive constants.
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In this subsection we fix a € [0, 1) and assume that F: X¢ — X° satisfies
(32) VB bounded in X 3L,L.[,»>O VoweB ||F(7)) - F(w)HXU < La,BHU - w”xrw

We remark that the inequality in (3.2) is now true with a replaced by any
p € la,1). We consider the Cauchy problem

(3.3)

ut +Au = Fu), t >0,
w(0) = ug € X“.

It is known from [17] that there is a certain ,, > 0 such that in C([0, 7,,,), X*)
there exists a unique mild solution u(-, %) of (3.3) and either 7,, = oo, that is
u(-,up) exists globally in time, or 7,, < oo and limsup ||u(t, %o)||x. = co. Such

u(-, ug) satisfies variation of constants formula =g
¢
(3.4) ut,ug) = e Al + f e A R (s, u))ds, t € [0, 70,
0

and has additional regularity properties; namely
u(-, ) € C[0,7,), X*) N CH(0, 7)), X*) N C((O, ), X V).

In what follows such u(-,u¢) will be called an X* solution of (3.3).
We will assume throughout this subsection that all X* solutions of (3.3) exist
globally in time, in which case (3.3) defines a C° semigroup {S(¢)} on X* such that

Stug := ut,ug), t >0, ug € X* .
From (3.1), (3.2) and (3.4) we obtain the following auxiliary relation.

LEMMA 3.1. = Ift > 0, f € [a,1), B is bounded in X* and S(s)uy,S(s)us € B
for each s € [0,1], then

IS = 8Os 0 < G s — el + f o " 15 — S xods.

THEOREM 3.2. — Suppose that the resolvent of A is compact, By is bounded in
X* and absorbs bounded subsets of X°.
Then, for each f € (a,1),

(i) there exists a global (X* — XP) attractor A for {S®t)} satisfying
(3.5) ' (A) < d¥'(A) < log, N¥'(BY'(0,1)),
Teg

with xg specified in (3.7),
(i) there exists an exponential (X* — XP) attractor M containing A.
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PROOF. — Fix 8 € (a,1) and note that {S(¢)} is a C° semigroup on X?. By as-
sumption, X is compactly embedded into X’ for each o > y. From [8, Lemma
3.2.1] it follows that By := clysS(¢p,)By is compact in X? and absorbs bounded
subsets of X”.

(i) Corollary 2.4(ii) applies with V = W = X’ and there is a global (X# — X7)
attractor A, which as a set does not depend on 8. We observe that A is a global
(X* — XP) attractor because S)B C By for any B bounded in X* and all ¢ suffi-
ciently large.

Applying Lemma 3.1 with B= A, f € (a,1), uy,u2 € A, and t = t* satisfying

csLpatt " 1 1 1
(36) sizia \1_fra 1-5) 2

we obtain via Volterra inequality (see [8, formulas (1.2.21) and (1.2.30)]) that

(8.7 ISE w1 — SEHuz|| xs < 2cﬁ,at*”7ﬂ||u1 — Uz ||ye=: Kp||U1 — Usz||x0-

In particular, Corollary 2.6 applies with V = X/, W = X* and with the con-
stant x = x5 = 2¢5_,t** 7. Part (i) is thus proved.

(ii) By [8, Corollary 3.3.2] and the properties of Bo, the pos1t1ve orbit y*(BO) of
By is bounded in X% Applying Lemma 3.1 with B = y*(BO) U1, Uz € By,
0 < t < T and using the Volterra inequality we get

3.8)  [ISMus — S(tyuz||xs< t*F const (T, a, B, Bo)||us — uz|xe, 0 <t < T.

In particular there is a constant ¢ >0 independent of wu;,us € By and
t € [11,12] C (0, 00) such that

39)  IS®u — S®uz|x. < cllus — uzlx., u1,uz € By, t € [r1, w2].
From [8, formula (2.2.3)] it follows for u € EO and ty,ts € [11, 72] that
(3.10) ISt — St xe < Elty — t2]”,

where 0 € (0,1) and ¢ > 0 do not depend on ¢y, t2 € [t1,72] and u € ]§0. Therefore,
Corollary 2.9 applies with V = X#, W = X and there exists an exponential (X” — X7)
attractor M. Since S(t)B C By for any Bbounded in X* and all ¢ sufficiently large, M
is an exponential (X* — X%) attractor and the proof is complete. O

Repeating the argument leading to (3.7) in the proof of Theorem 3.2 and using
Lemma 2.1 with S = S(t*), P(uo) = 0, M(ug) = S(t*), we obtain

COROLLARY 3.3. — If the resolvent of A is compact and A is a nonvoid
bounded and invariant subset of X then A is precompact in X°, ¢ € [a, 1), and

(3.11) d¥' () < dX'(A) < Tog,NX (BY'(0,1), f € (a,1),
g

with kg as i (3.7).
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REMARK 3.4. — We remark that the estimate (3.11) requires the knowledge of
the e-entropy log, Nf‘ (BX/f (0,1)), for which in the case when abstract fractional
power spaces are involved the explicit estimates may not be easily available.
However, in applications, fractional power scale X%, a > 0, is often characterized
with the aid of some known function spaces, for which such estimates appear
within the references (see e.g. [30, §4.10.3]).

3.2 — Second order parabolic equations in bounded domains.

Let @ c RY be a bounded domain with smooth boundary and consider the
second order problem
(3.12) = Au+ fle,u, Vu), t >0, x € Q, u(0,x) =up(x), © € Q,

with Dirichlet homogeneous boundary condition.
Following [28] (see also [19]) assume for f € C(Q x RN “, R) that

(3.13) f is locally Lipschitz with respect to each variable separately,
(3.14) sf(x,s,0) <0 for all x € Q, s € R, |s| > K with a certain K > 0,
and that for some continuous map %: [0, c0) — [0, c0) and certain y € (0, 2)
(3.15) |f(x,s,p)| < k(s + |p|") whenever x € Q, sc R,p ¢ RY.

We consider in this example A = —4in X° = LP(Q), p > N, with the domain
D(A) = W2P(Q) N W P() and choose a € (l—i—%,l). The resolvent of A is

2
compact and, since X* — C1(Q), the function

F:X* = X% Fu)(x) = f(x, w(x), Vu(x)) for u € X%, x € Q,

fulfils (3.2) with X* = [LP(Q), W2P(Q) N Wé"’ @], =: Wg“"’ (Q) and X° = LP(Q).
Due to (3.14) and comparison argument we have (see [28] and references
therein)

(3.16) [|(t, u)l| = (o)< max{||uo|| () K} o € X%, T € (0,74,

(3.17) limsup sup |lu(t, uo)l| -~ < K, 7> 0.

t—o0  yyeBX(0,r)
Due to (3.15) one obtains as in [2] that, for certain 0 < # <1 and f > a,

(318) ||F(u(t7 uo))HLP(Q)S C(HuO”Loc(Q))(l + Hu(t7 uO)H?{/ﬁ)v t < (0, Tun)-

From this we infer that all X” solutions exist globally in time and for the
associated C° semigroup {S(£)} on X* there is By bounded in X* and absorbing
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bounded subsets of X* (see [8, Corollary 4.1.3]); in particular Theorem 3.2
applies.

COROLLARY 3.5. — If (3.13), (3.14), (3.15) hold and a € (; é\]/; ), p >N,
then for each f € (a,1) there is a global (Wg“"’(ﬂ) —Wgﬂ”’ (Q)) attractor A
satisfying

Q) Q)

(3.19) ) < d A) < logzN 2@ pwit@ 1y)

g

which 1s contained in an exponential (Wza” Q) — Zﬁ P(Q)) attractor.

When f = f(x,u) does not depend on the gradient we choose any p > N,
ac (é\; %) and note that ¢(x) e [ — K,K] for ¢ € A and x € Q. If L is a
(uniform for x € Q) Lipschitz constant for f with respect tos € [ — K, K] and cg
is a constant from the Poincaré inequality, then for p :1 we have
XP = Xb = WyP(Q) and 2

G C) = fCueC Doy < caLllur — uallyog = Lyalln — uzllyiog)

whenever u;,uz € A. In this case (3.6)-(3.7) apply with Lj 4 = coL and we get
(3.19) with 15 = 261, (25 "cyco L1+ a)(1 + 20) D' .

—f(l.

3.3 — Wave equation with damping operator ( — AD)%.

Following [4, 5], we consider @)

i+ 1( — Aplg + (= Apyu = f(w), t> 0, @ € 2,
(3.20) w(0, ) = up(x), us(0,2) = vo(x), x € Q,
u(t,x) =0, t >0, x € 0Q,

where 5 > 0, Q is a bounded C? smooth domain in RY , N >3, and 4p is the
Dirichlet Laplacian in L3(Q) with the domain H%(Q) N H}(€2). We assume that

(821) |f(s) —f)| < cls — 5|1+ [s) ' +[5]"Y), 5,5 € R,with p € (1 %)

() Instead of ( — 4p )%, chosen here for better clarity of argument, one can consider the

damping operator ( — Ap)’ with 0 € E 1), but the analysis would have to be adapted.
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and

(3.22) lim sup @ <0.

|s|—00

We can rewrite (3.20) in the form (3.3) in X° = H}(Q) x L*(Q) with

i e L R (M R P

where
D) = X! = [HX2(Q) ﬂH(l)(Q)] X H(l)(.Q).

From [7, 4] we know that A is a sectorial positive operator with compact resolvent
and bounded imaginary powers. Therefore, we have (see [4, Proposition 3])

lia

X =[X" X", =D((— 4p)*) x D(— 4p}?), a € (0, 1).

Set a = % By (3.21) it follows from [5, Lemma 2] that F satisfies (3.2).
Recall from [5, Theorem 5] that (3.22) ensures the existence of a C° semigroup
{S@®} of global X“ solutions to (3.20), which possesses a global (X* — X%) at-
tractor. Thus Theorem 3.2 applies. Furthermore, it follows from [5] that {S()}
can be considered as a semigroup on X and the attractor attracts bounded
subsets of X°.

Summarizing, we obtain

N +2 N -2

COROLLARY 3.6. — If p € 1,m , a N2
for each B € (a,1) there exists a global (X° — XP) attractor A contained in an
exponential (X° — XP) attractor and satisfying

and (3.21),(3.22) hold, then

(3.23) d¥'(A) < 4" (A) < logy N¥' (BY'(0,1)).

g

3.4 — Wawve equation with damping operator —Ap.

Following [5, 24, 25] we will consider in this subsection the problem
Uy — Apuy — Apu = f(u), t >0, x € Q,
(3.24) w0, 2) = ug(x), ul0,x) = vo(x), x € Q,
uwt,x) =0, t>0, x € 09,

where Q is a smooth bounded domain in R? and f € C3(R, R) satisfies the (cri-
tical) growth condition

(3.25) w0 /1) < e +sP), s € R,
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and the dissipativeness condition

(3.26) lim sup @ < /a1,

|s|—o0

with 1; being the first eigenvalue of the negative Dirichlet Laplacian —4p in
L*(Q).

As shown in [4] the problem (3.24) can be viewed as the Cauchy problem for an
abstract parabolic equation of the form (3.3) with initial data in a product space
X" = HY(Q) x LA(Q). Here, defining in X°

ol _ —y 7
A{I//} B |:*AD(¢+I//):| for Lﬂ] € D),

and

D) =X = { Lﬂ € Hy(Q) x Hy(Q): ¢ +y € HX(Q)N H})(Q)},

we remark that A with the domain X! is a positive sectorial operator in X°
possessing bounded imaginary powers but the resolvent of A is non-compact.

The approach of [5], which uses a suitable decomposition of f and a nonlinear
variation of constants formula (so called Alekseev’s formula), ensures that a C°
semigroup {S(t)} is associated to (3.24) in H(l)(Q) x L2(Q) and {S(t)} possesses a
global attractor A.

In [25] a significant progress was made, since for f satisfying (3.25) and
(3.26) a higher regularity of the attractor was proved. It was merely mentioned
in [25, Remark 3.2] that A has finite fractal dimension, which appeared in
connection with the previous work [24], where dimension d/fl‘l)(Q)XLZ(Q)(M) of an
exponential attractor M containing A was estimated from above in a sub-

2
critical case by 1 + log, N?‘l’(g)XL (Q)(BH2 @NH><Hy()((), 1)). In what follows the
e HY(Q)xLX(Q)

estimate of this type will f;e derived for df
the analytic semigroup approach. '
We first establish the auxiliary result involving the damped wave operator A.

(A) in a critical case within

LEMMA 3.7. — —A with the domain Z' = H*(Q) N HY(Q) x HX(Q) N HY(Q)
generates a C° analytic semigroup in Z° := HAX(Q) N H{(Q) x LA(Q), which is
exponentially decaying. Furthermore, the associated fractional power spaces
Z° a > 0, satisfy the embedding inequality

H

<
< b, 5

1
H[(”}H ,V] € Z°, whenever o > =.
V 1l 2 @nmi@xHY@) 7
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ProOF. — The first assertion comes from [32, Proposition 2.2]. As for the
embedding property we observe that, for each [(p} e 7,

aHinii

4 4
1 1

||AD¢||L2(Q) = (HADV/HLZ(.Q) + ||AD(P||L2(Q) - HAD‘//HLZ(Q))Z\|A(0||2Lz(g)

MM

: [q A
L

1 1
2 2

! ! .
Wl < clldpyl7zg) ¥l < €

A A

and

1
2

! | _
< (||AD‘//||L2(Q) + || 4p(p + '//)||L2(Q)>Z||AD¢HZL2(Q) <c

Z0 Z0

Hence, using [17, Exercise 1.4.11], we obtain for ¢ > %

SRR
(3.27) 'H 0 (—AD)Q} {V/ LZ(Q)xLZ(Q)SC v

which completes the proof.

THEOREM 3.8. — If (3.25)-(3.26) hold, then the global (H, (l)(Q) x L2(Q) —
HL(Q) x LA(Q)) attractor A for the semigroup associated to (3.24) in Hy(2)x
LA(Q) is a bounded subset of H*(Q) N HY(Q) x H\(Q) and

J@ @

; (A) < log, N?}\(g)XLZ(Q)(BHZ(Q)HH(I](Q)xHé(Q)(O 1)
_— S_k ) bl

where K is given in (3.33).

PrOOF. — Boundedness of the attractor in H*(Q) N H(Q) x Hy(L2) comes
from [25].

If {¢4'} is an analytic semigroup generated by —A in X°, then {e¢ 4!} re-
stricted to Z° (which will be denoted the same) coincides with the analytic
semigroup generated by —A in Z°. In both settings {¢~4!} is exponentially de-
caying, so that

(3.28) ||67At||L(X°) < cope ™, ||67At||L(Z0) <coe ™, t >0,

for certain ¢y > 1 and @ > 0. In particular, in both settings Rea(4) > 0.
Letting v = u; note from [4, 5] that the variation of constants formula

¢
u uo |\ _ —at| Mo —A(t—s) 0
(3.29) [v} (t, [UOD —¢ L}o} +0fe [f(u(s,uo,vo))]ds’ t>0,

holds in X° but also in Z° provided that in the latter case [ZO ] € Z°. Therefore, if
0
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[le ] , {7::} € A (A being invariant and bounded in Z°) and

i

Uo | ._ —A(t—s) 0
M(t)[vo] .Ofe ‘ {f(u(&umvo))}ds, t>0,

then
oy | w7
V1 V2 yV/d
‘o
<e¢, f =y (17t 100,00) = F s, 202,02 120 s
(3.30) o T8

<¢,L(A - o) 17 sup ([[2eCs, w1, v1) — uls, uz, v2)| 120

LD LI <)

where the embedding H?(Q) — L>®(Q), local Lipschitz continuity of f: R — R and
Poincaré inequality 4, H¢||i2(9) <||(— AD)§¢\|%2<Q) were used. (%)

Denoting next
P(t)[“‘)] = e*At[“‘)], t>0,
o Vo

and using (3.28) we obtain

< c,,Lxlﬁ(l —o) 17 sup
sel04]

Uy Uz —at ||| %1 Uz
(3.31) HP(t){vl} fP(t)[vz] XOS coe {”1} — {7’2} o’ t>0.
We also estimate sup {Z] (s, [:}Ll]> - [ﬂ (s, {Zz}) using (3.28)-
(8.29) to get selod] ! 2]/ llxo
[1CLo) - LDl lln] - ]
v V1 v V2 X0 V1 V2 ||l xo0
t
(3.32) + f coll f (s, ur,v1)) — f(uls, uz, v2))|| 2. ds
0
¢
S22 1 i I T s 13 R [ G ) SRR
(1 V2 |l xo 0 v V1 v V2 X0

(®) Due to H*(Q) N H{(2) x H)(Q) regularity of A the set {u(s, U, vo)@), % € 2, s> 0,
mg } € A} is contained in a certain interval [ — r,r] and f‘[w]: [ —»,7] — R is Lipschitz

continuous with a Lipschitz constant L.
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o] - 1)
HEH

Hence, Lemma 2.1 applies with V = H%(Q) N H{(Q) x H{(Q), W = H}(Q)
xL2(Q) and S = S(t*), for which we choose § = v = é and

Since the Gronwall’s inequality ensures
BIGH)RHIGH)
v (% v V2

from this and (3.30) we obtain for ¢ € %7 1

HM(t)Hﬂ —M(t)mﬂ

1
. 7,] 2
ecoLil t7 t > O7
X0

<c

X0

sup
s€[0,t]

1
2
el 1> 0.
X0

_1
< eoeeLiy *(1—a) 10
ZU‘

_1 7B 1
(3.33) t" =a 'In8e, K = bycoc, LAy (1 — o) M7 g e (§,1). O

3.5 — Higher order parabolic problems with fast growing nonlinearities.

Consider the well-known Cahn-Hilliard equation
(3.34) w=A(—Au+f(u), t >0, xe€Q,
with the initial-boundary conditions

w(0,2) = up(x), v € Q,

(3.35) Adw) _

Bou = a—u:Oand Biu = 0 on 0Q,
on

in a bounded smooth domain Q ¢ RY where N < 3;see[29] and references therein.
As in [20, 8] we assume that f € C>*LP(R, R) satisfies

z
(3.36) f fs)ds > -M, —fz)<i for zeR
0
with some positive constants M, A and
(3.37) Va0 350 Vim<mr Yoer vf (0 +m) > —B.
2p—1

We remark that one can take a polynomial f(v) = > a;v* with @2p—1 positive and
an arbitrary p € N. k=1
In this example we consider A = A +1in X = L%(Q) with the domain

D(A) = Hy 1, 5,1(Q) = {¢ € Hy(Q): Bop = Bip = 0}.
It is known that A is a sectorial positive operator with compact resolvent and

X = H} (5, (Q — L™(Q) N H{(Q).
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In this setting we have that the nonlinear map

F)@) = Af @) + u@), u € Hy,(Q), v € 2,

satisfies the Lipschitz condition (3.2) with ¢ = = Xz =Hj 5@ and X0 = L2(Q).

Recall from [8, §6.4] that to the Cahn- Hllhard problem (3.34)-(3.35) corre-
sponds a C° semigroup {S()} of the global X¢ solutions. Define also a complete
metric subspace H, of Hgﬁ (8D by

H,= {¢ € H%{BO}(Q):‘la‘fgﬁ(x)dm < y}, y>0.
Q

As shown in [8, Proposition 6.4.3], for every y > 0 there exists a nonvoid in-
variant set A,, compact in H3 2.5y }(Q) and attracting bounded subsets of H, with
respect to the Hausdorff semldlstance in H% (B }(Q)

Thus Corollary 3.3 applies and we conclude that

COROLLARY 3.9. — If (3.36)-(3.37) hold, then for any f € <1 ) the set A, is
compact in H4 2 (Bo B }(Q) and

1
(338) d; 2ol D g < d; L@ g ) < 1og2N}5”*°’( (B0 90, 1)),
gy

Now let Q be a bounded domain in RY, A = >~ a,D° be a linear 2m—th

) |o|<2m
order differential operator and let B; = >~ b/.D? (j=0,...,m — 1) be bound-
|o]<m;
ary operators such that the triple (4, {B;}, Q) forms a regular elliptic boundary
value problem (see e.g. [8, pp. 29-30]). Suppose, in addition, that A in L?(Q) with
the domain Hgf’{’le}(Q) is selfadjoint and positive definite; e.g. A = (— A)™ and
Jj T

Bj:%forj:07...,m—l.

Following [6, 31], consider an initial-boundary value problem of the form
uy +Au = f(u), t >0, reEQCRY, N>2m>2,
(339) Bou=...=B,,_ 1u=0 t>0,9€€89,
w(0,2) =uy € H’"{B }(.Q)

where the nonlinear term satisfies (3.22) and

(3.40) Feci®r), 1m L9 _g

4
|s|—o00 ‘S|7\ =

It was shown in [6, Theorem 4.1] that under the assumptions (3.22) and (3.40) the
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problem (3.39) is globally well- posed in Hg” B} (2) and the associated semigroup
{S@®} has a global (H}' 2B }(Q) HY { B, }(Q)) attractor A.

We now refer to the spe(:lflc condition in [6, Theorem 2.1 (ii)], which implies
that there are certain 7q, C’,¢ > 0 such that for each uy,us € A

-
(3.41) IS (to)us — S(TO)MQHH;_I?%T;(Q) < C'ty%llur — MZHHZQE,-;(Q)’

1
where ¢ > 0 can be chosen less but arbitrarily close to 5 accordingly to the results

of [6, Lemma 4.1 and Theorem 4.1]. The following conclusion is now straight-
forward.

COROLLARY 3.10. — If (3.22) and (3.40) hold, then there is a global
H’zt‘{Bj}.(Q)—H;f‘{?j}(Q)) attractor A for (3.39), compact in H’zw{*Bz’f*(Q), and
satisfying the estimate

Hm +2mg, S(Q) Hm Q) Hw+2m Q)

dfz{b) (A)ﬁdfz"{g} (.A)< loggN 2<8} (B 2,(B;} (0’1))'

4C'

3.6 — A problem with memory.

The conserved phase-field system with thermal memory for the temperature
variation field 9 and for the order parameter y reads as follows

(3.42) 8+ 2= [ M98t~ 9)ds, 1>0, 2 € @,
0

with the initial-boundary conditions

90, x) = Hx), x(0,2) = xolx) and I — s, ) = Hi(s,%), s >0, x € Q,

3.44
( ) By = By =0 and Bo( — Ay + ay; +f() — ) = 0 on 0Q,

where Q is a bounded smooth domain in RY, N < 8, and B, is the operator in-
troduced in (3.35). Here a > 0 is the viscosity parameter and k is the smooth,
nonnegative, nontrivial, summable memory kernel, which accounts for the
thermal memory. The presence of the memory requires the introduction of the
given past history J;: Q x (0,00) — R. Throughout this section we assume that

(345)  feC*R,R), 1f(r)>cor* —cpand |f"(r)| < co1 + |7)), 7 € R,

for some ¢y > 0 and c1,c2 > 0. We remark that any double well potential deri-
vative, i.e. f(#) = 13 — ¢r, ¢ > 0, fulfils the above assumptions.
In order to prove that our problem generates a dynamical system, following
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the approach in [22], we need to introduce an additional variable #, usually called
the summed past history, and defined as

nt)s) = —fA(e(t — 1) — y(t — 0)dz, ¢,8) €[0,00) x [0,00), & € Q,
0

where e = & + y is the enthalpy density. It is immediate to check that # formally
satisfies the first order hyperbolic equation

i 0)(s) = —n(E)(s) — Ae(®) — 1), @, s) € (0,00) x (0,00), & € 2.

Concerning the boundary and initial conditions to associate with the equation
above, on account of (3.44), we deduce

(3.46) n0)s) = — Of 481z, 0z, 5> 0, @ € Q,
Bon()(s) = 0 on 02, (t,s) € (0,00) x (0, 00).

Moreover, we observe that, under reasonable assumptions on the past history
and the memory kernel, a formal integration by parts yields

o0

- f k() A(e(t — 5) — (& — 8))ds = f LSnBs)ds, >0, x € Q,
0 0

where we have set

u(s) = —k(s), s > 0.
The assumption on 0 < x € C1((0, 00), R) N LY((0, 00), R) is
(3.47) Jo=0Vs=0 '(8) + au(s) < 0.

Notice in particular that (3.47) entails the exponential decay of i as s — co. In
order to deepen the dissipative properties of our system, following [9] (see also
[23]), it is necessary to introduce the rescaled kernel

- 1 /1

lu(s) - %#(%S)v s> 07
where ¢ > 0 is a sufficiently small number called a relaxation time of the sys-
tem. It is important to point out that for the function i assumption (3.47) still

holds, by replacing o by —
We next consider the operator B=—-4in H={ue L*Q): fu(x)dx =0}

with the domain D(B) = {u € Hg‘{BU}(Q): Ju(x)de =0}. Tt is known that B is a
o

strictly positive operator, so that we can define V = D(B'/?).
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We introduce the memory space defined as the weighted Lebesgue space
M= L%((O, 00), V),
where V' is the adjoint space of V. Moreover, we let T be the linear operator on
M with domain
D(T) = {n e M:n, € M, 50) =0},
defined by
(3.48) Tn= —n,,

where 7, is the distributional derivative of #.
Then we can reformulate the original initial-boundary value problem as
the following integro-partial differential system in the variables (e,y,n) =

(e(®), x@®), n(®))

(3.49) @+fﬂ®mgm:mt>mxeg,

0
(3.50) =A—dy+ay+f)—e+y),t>0 xeQ,
(3.51) m=Tn—Ade—y),t>0, x € Q,

with the boundary and initial conditions (3.44), (3.46) and
(3.52) n)(0) =0, t > 0.
The proper phase space for our problem will be then

H = LX(Q) x HY(Q) x M.

As showed in [23, Theorem 3.4], phase-field problem (3.49)-(3.51) generates a C°
semigroup {S(¢)} of global H solutions.

In order to prove dissipativeness, we need to restrict the phase-space. Taking
into account the mass conservation for e and y, we introduce the complete metric
space

Hy, = {(e,x, n € H:%’!e(m)dm‘ < p and ﬁ‘gfx(x)d%’ < 7}7 B,y > 0.

Moreover, it is essential to construct a compactly embedded subspace of Hg,. To
this purpose we also define for any € M the tail of # in M, that is the function

Tplloo) — 0,00, T,0= [ &ne)lds, v>1

0HU(r00)
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Then we introduce the vector space

L= {;7 € L2((0,00), H): 7 € D(T), suptT (@) < oo}.
>1
As proved in [15], £ is a Banach space endowed with the norm

1
2 2 p
e = (WrlEzcomnsn + 1723+ s0peT, @), n € £
=
Thus, on account of an immediate generalization of [27, Lemma 5.5], we have
Z = Hy(Q) x H} 5,(2) x L—~H and Z, = ZNHy,— Hg,

with compact embeddings. Moreover, Z;, is positively invariant under {S(¢)}. On
account of the above results, we are now in a position to proceed in the asymp-
totic analysis of the problem. As showed in [23, Corollary 5.2] we have

LEMMA 3.11. — There exists a ball By = Bi(f,y) i Zg,, which absorbs
bounded sets in Zg, under {S(t)}.

Consequently (see [23, Theorem 9.2]), we can establish the next lemma, which
provides conditions of Proposition 2.7.

1 .
LEmMA 3.12. — For any 0 € (0,§> there exist ty > tp,, k > 0 and a decom-
position

(3.53) S(to) = P(ty) + M(to),

such that

(3.54) [|P(Eo)ur — P(to)uzll;, < dllur — uz|lyy, w1, u2 € By,
(355) ||M(t0)u1 7M(t0)u2||2§ KH%l — ’M/QHH, U, U € Bl,

and there exist 0 < 6 <1 and A > 0 such that
(356) ||S(t1)u1 — S(tz)%z”HS }»(‘tl — t2|0+\|u1 — MQHH)

fO?" all tl, to € [t072t0] and U, U € Bl.

Thus, Proposition 2.7 applies and we can state the following result

1 1
PROPOSITION 3.13. — For any f,7 >0, 6 € (O,é) and v € (0,5 — 5) there

exist w > 0 and a nonvoid set M C By such that M is positively tnvariont
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under {S(®)}, precompact in Hg, with
Hpy 1 KA 1 HipZ
a7 (M) < 5 (1+ log y NIUB=(0,1)),
and for any bounded subset B of Zg,
lim ¢'dy, (S()B, M) =0.

Note that by [22, Theorem 4.1] there exists a bounded and closed set
By C Hg, absorbing bounded subsets of H;, such that By C By and with some
constants C > 0 and ¢ > 0 we have

IS@us — Styusz||, < Cet|luy — uz|ly;, u1,us € By, t > 0.

Furthermore, it follows from [23, Theorem 6.1] that there exists w; > 0 such that
for every bounded subset B of Hy, we have

(3.57) lim e™dy, (S®)B, By) = 0.

Using (3.57) and the compactness of the embedding Zj, into Hj,, we obtain
the following consequence of Corollary 2.4 (i).

COROLLARY 3.14. — For any f,y > 0, {S®)} has a global (Hg, — Hg,) attrac-
tor A.

By (3.57) and the transitivity of exponential attraction (see [13, Theorem 3.1])
we also get

1 1
COROLLARY 3.15.-If f,y>0, oJ¢€ (0,5 and veE 0,575 , then

M = cy M is an exponential (Hg, — Hp,) attractor for {S@)} and contains
the finite dimensional global (Hg, — Hpg,) attractor A.
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