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Degenerate Elliptic Equations and Morrey Spaces

F. BORRELLO

Sunto. — In questo articolo viene studiata la regolarita locale per la soluzione genera-
lizzata del problema di Dirichlet relativo all’equazione

Lu = X[ (ayXu) = f,
dove X1, Xz, . .., Xy, sS0n0 campi vettoriali soddisfacenti la condizione di Hormander e
Ay € L.
Viene data una formula di rappresentazione per la soluzione generalizzata in ter-

mint di funzione di Green. I risultati sono ottenuti grazie a opportune stime di
questultima. Nel caso in cui f > 01 teorema provati sono invertibili.

Summary. — In this paper we study local regularity for the generalized solution to the
Dirichlet problem related to the equation

Lu = X[ (ayXju) = f,

where X1,Xz, ..., X,, are vector fields satisfying Hormander condition and a; € L.
We give a representation formula for the generalized solution in terms of the Green
SJunction and thanks to suitable estimates we achieve our goal. In the case f > 0 we are
able to give necessary condition too.

1. — Introduction.

Let Xi,...,X,, be a given system of Hormander vector fields in R” (m < n).
We study local regularity for the generalized solution to the Dirichlet problem
related to the equation

(11) Lu EX;(aiinu) :f.

The case a;; = J;; has been studied by several authors (see e.g. [18], [19], [11],
[6]). Some regularity results are available when a; € L™, see [17], [3].
We assume very mild integrability conditions on f. In a so general setting, a weak
solution not always exists, so we are forced to use a different concept of gen-
eralized solution.

The plan of the paper is the following. In Section 2 we introduce the Carnot-
Carathéodory metric space and some related function spaces. In Section 3 the
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weak and very weak solutions are compared.We also define the Green function
and give a representation formula for the very weak solution. Fourth and fifth
sections are devoted to the study of regularity.

We start proving regularity results for the solution u, assuming that f belongs
to several classes which properly contains the Lebesgue classes. These classes
are much more natural to use than the Lebesgue ones. In fact we will see that,
at least in the case of non negative right hand side, all the conditions are ne-
cessary too.

We note that the technique used in the proof is very simple in nature. It relies
on a representation formula in terms of the Green function and suitable esti-
mates. OQur results generalizes results already known in the case of uniformly
elliptic equations (see [8], [9]). The case of degenerate equations with respect to a
Ay weight is discussed in [4].

We stress that all our results remain true if f is replaced by measure whose
density is f, but for simplicity we treat the case in which f is a function.

Aknowledgements. We thank G. Di Fazio for useful discussions and sugges-
tions and the referee for comments and remarks.

2. — Preliminaries.

Let X = (X1,X5,...,X,) be a system of C* vector fields on R".
We say that X7, Xs, ..., X, satisfy Hormander condition in a bounded domain £ if

rank Lie{X1,Xz,...,Xn} =7

at every point x € Q.
A piecewise C! curve y : [0, T] — R" is called X—sub-unit, if

m

(2:2) (0.9 <3 (X008 VEER", aetel0,T]

j=1

The X—sub-unit lenght of y is by definition Ig(y) = T. Given x,y € R", we
denote by &(x, %) the collection of all X—sub-unit curves connecting x to y. As it is
well known, &(x, y) is not empty by Chow Theorem ([5]). Setting

(23) pla,y) = inf{ls(y) : 7 € P, y)}

we may define a distance, the Carnot—Carathéodory distance generated by the
system X. We denote by B(x,r) = {y € R" : p(x,y) < r} the metric ball cen-
tered at x of radius » and whenever x is not relevant we write B,.. The number @
indicates the homogenous dimension of 2. We list the function spaces we need in
the sequel.
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DEFINITION 2.1. — Let 1 < p < oo we say that u € LP(Q) if

(e EIW d < oo
Q

and u € L>*(Q) if it is bounded in Q.

DEFINITION 2.2. (Sobolev spaces). — Let 1 < p < +oo. We say that u belongs to
WY(Q,X) if u € LP(Q) and Xu e LP(Q),j=1,2,...,m. We set

m
(2.4) H“HWI-P(Q,X) = [[ull o) + Z 1 X2l o) -
J=1

We denote by Wy (2, X) the completion of Cye () with respect to the above norm.
As usual, when p = 2 we set Hl(.Q, X) and H&(Q, X) the spaces W1’2(.Q, X) and
W}yz (2, X) respectively.

REMARK 2.3. — Xju denotes the distributional derivative of u defined by

< X, ¢ >=quj*¢ dr, Ve CXQ
Q

where X = — iy 9i(cyj - ) is the formal adjoint of X; = Y7, ¢;0;,7 =1,...,m.

DEFINITION 2.4. (Schechter classes). — Let Q be a bounded domain in
R", n >3 and let 1 < p < co. We say that u € LY(Q) belongs to the Schechter
class My(2,X) if

Y
A(2,y)
My(u) = |u(y)|p7’ ay | x| < oo

p (Qf (Bm!m B, plee, )| ) )
for some 0 > 0 and p < oo.

When p = oo

2
Mo () = sup f ()| |B” @Y gy < oo

ve@ pd (@, p(ae, )|

DEFINITION 2.5. (Stummel-Kato class). — Let u : Q C RY — R If

2
nr) = sup f [u(y)] B Py dy < oo

€ {y€Q|/)(x,y)<7-} (J’/', p(xa .7/))|

we say that u € S’(Q, X).
If; in addition, n(r) — 0 we say that u € S(Q2,X).
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If X; = 0,, we get back the classical Stummel-Kato class. In the sequel we will
use some properties of the above defined classes.

LEMMA 2.6 [10]. — Let V € S(Q,X). There exists C > 0 such that

f V(@)|u@)|? de < CE2R) f Xu@)|? dee, ¥ u € C(Q)
Br Br

Moreover, for any ¢ > 0 3 k(e) > 0 such that

f V() ||u)E de < & f Xu()2 de + k(e) f (@) dee, ¥ u € C(Q).
Q Q Q

PROPOSITION 2.7. — S(2,X) C (HX(Q,X))".
ProOF. — Let ¢ € C3°(22) and B, be a metric ball such that suppp C B,. We
have

1
2

[<foo> 1 <[ \IFeEVIlde < (fmdx)z(fvmx)
B, B, B,

1

3
<Cn(2r) (f |X¢|2 dx) 1f 1@ < Cllollmiex):
B,

i

O

DEFINITION 2.8. (Morrey classes). — Let Q be a bounded domain in R”,
1<p<oo and A>0. We say that f € L} (Q) belongs to the Morrey class
LPA(Q,X) if

1

Vé P '
=sup| = Fd < 00
where the supremum is taken over the class of metric balls B = B(x, rp).

REMARK 2.9. — If i=Q then LPQ,X)=L! () and if 1>@Q then
L'(Q,X) = {0}.

It is worth to compare the Morrey and the Lebesgue classes.

PROPOSITION 2.10. — Let ¢ > p and & < % Then

LH(Q,X) C IPHQ,X).
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Proor. — Let ¢ > p. We have

<B|f lf'”) (ﬁBf lfp)i (|B| qu) ;3%(% Bflf(’j

55 Fllye < CCLP st @ Dl
O

DEFINITION 2.11. — We say that f eLfU"}“(Q, X) if there exists C >0, in-
dependent on r and xy, such that
|B) (x0)|

supt?|{x € QN B,(xp) : [f(x)] >t} < C——
>0

PRrROPOSITION 2.12. — Let 1 < g<p < oo and 0 < 1 < Q, then
LPH(Q,X) € L™(Q,X)

where 1 = ;

Proor. — We have

+00

f If@)| dx = f gtz € QN Bo(xo)| [f@)| > t}] dt

QNB, (o) 0

& +o00
< qu 1R dt 4 Cq f P14 gt
0 £

—Cet? — L@t e,

Minimizing with respect to ¢, we get:

& <C P \By(aco)ll

@ pP—q 1

QNB, (o)

ProPOSITION 2.13. — Let 0 < 4 < 2 < i < Q. We have
L'(Q,X) € 5(2,X) € S(2,X) C L'"(Q,X).
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PROOF. — Let f € L'*(2,X) and # € Q. We have

P, y)

f F@)I |B(x, p(e, )|

QNB,(x)

+00 2
D S B k|

(x, p(x, y))
k=1 {yeQ|Z’—Ak§/)(:U,y)<2kil} Y |

IN
+
8

C f |f@)lple, y)*  dy

=1 {yeQi<pwy <z

=

IN
+

eSE [ o
{yeQlpwy) <z}

=
Il
—

+00 r 2—Q‘BL|

<C 2 _ okl ,

<cy (3) oy
IX  p\2-Q-1

<ClIflhY (5) Bl
k=1

<Clfl S (5)"

B e =2

and then LM(.Q,X) c S(Q, X).

Now we prove that S(Q,X) C L'*(Q, X).
rH

B f |f(y)| dy

B,.nQ

1”" PP,y |B, p,y))
'Br'BL'ﬂy)'|B<x,p<x,y>>| P y)

r 2@y g
C— — %7 d
< BAJQV(W'B(ac,p@c,y))l’) (. ) dy

H+Q—2
<c’t
|Br|

nr) <C,

because u > 2.
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ProPOSITION 2.14. — Let QCR", n>3 be a bounded domain and
1<p<qg<ocaThen

M (2,X) ¢ MQ,X) C M,(Q,X) C M(2,X).

Proor. — The last inclusion is the only one we need to show.
Let f € M,(2,X)

_Pay
! (Bm'[mg 7Dl B o, dy) v

Poo\» i
PP, y)
lf)| 5 dy | do dx
(gf m{m B, ple, )| ) ) (b[ )

< |QIIM,(f) < .

O
Let 0 <a <@, 2y € Q and B = B(xg, r). Setting
pla, y)*
I - P dl
S@ z! ) B

we have

ProprosITION 2.15. — Let 0 < A <2 < Q. Then
LY(Q,X) C Mo(@,X) C LR, X) C ) My, X).

1<p<oo

PRrOOF. — We only need to show the inclusion L12(Q,X) C MP(2,X), p > 1.
By proposition 2.10 LI’Z(Q, X) ¢ IM(Q,X), 2 < A < Q. Then, by Theorem 2.8 in
[7], we get Iof € L,J»*(Q,X). By proposition 2.12, it follows that

Lif € IP*(Q,X),
where 1 <p < q;, <ocepu=Ip/q;. O

We will need the following definitions. They are well known but we recall
them for reader’s convenience.

DEFINITION 2.16. (BMO space). — We say that f € L}
BMO(Q,X) if

() belongs to the space

loc

sup

= flf(x) ~fpl di < o0

where B = B(x,r) ranges over the set of metric balls with x € Q and 0 < r < R.
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DEFINITION 2.17. — Let f a locally integrable function. The function
1
Mf(@) = sup — [ |f @)l .
5 1Bl

18 called the Hardy-Littlewood maximal function of f. The supremum is taken
over all balls B centered at x.

3. — Generalized solutions and Green function.

Let Q be a bounded domain in R" and let X = (X1, X5, ..., X,,) be a system of
C™, free vector fields, satisfying Hérmander condition on a neighborhood of Q .
Let us consider the operator

m
L= XX
ij=1
where a;; € L>(Q), a; = aj; for 1,7 =1,2,...,m. We assume that there exist
A, 2> 0 such that

AP < aée < AP, VEER™ aexe Q.
i,j=1

First we recall what we mean by weak solution of the equation Lu = f.

DEFINITION 8.1. — Let f € (Hy(®,X)"). We say that u € H'(Q,X) is a weak
solution of Lu = f if

[ ai@Xu@Xip@w e = [ f@p@dz, Vo e CF@.
Q Q

Now we are going to introduce a very general definition of generalized solution
for the case of the Dirichlet problem. A crucial step to overcome is the presence of
characteristic points that we could get on the boundary of our domain Q.

DEFINITION 3.2. — We say that x € 02 is a characteristic point of 0 if X;(x)
1s tangent to 0Q at x foreveryj=1,... ,m.

In general we can get some subset of 0Q, 2 which consists of characteristic
points. This subset can be not empty but it cannot contain “too many points”. We
refer interested reader to [13] for discussions about the size of the set 2.

In [15] the authors have proven regularity up to the boundary when the
coefficients a;; are smooth functions except for the set 2. Since we are interested
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in the Dirichlet problem in the case of measurable coefficients a;;, we cannot hope
to get a better result than [15]. In the sequel we assume the following notion
regarding the boundary of the domain Q.

DEFINITION 3.3. — We say that a domain Q satisfies outer sphere condition if
forall x € 09 there exists x° € R" \ Q such that Bx®, p(x, x¢)) C R" \ Q.

Following [1] and getting inspiration from [16] we give the notion of gen-
eralized solution to the Dirichlet problem associated to the equation Lu = f in Q.

DEFINITION 3.4. — Let it be a measure of bounded variation on 2. We say that
u € LY(Q) is a very weak solution of Lu = u vanishing at the boundary 0%, if

(3.5) <L%u>:fvmhVvec%ﬁ\zwwﬁgzwveungv:Oonmz
Q

REMARK 3.5. — In what follows when we omit the words “vanishing at the
boundary”.

We have

THEOREM 3.6. — Let Q be a bounded domain in R" . Then very weak solution
of Lu = u exists. Moreover it is unique.

In general if u & (H 3(9, X))* weak solutions do not exist. When both exist, the
very weak solution is also a weak one.

DEFINITION 3.7. — We call Green function for the operator L and the domain
Qwith pole at y € Q, the very weak solution of LGY = 6,,.

In the sequel we use the representation formula

THEOREM 3.8. — Let u be the very weak solution of Lu = uin Q. Then

u(y) :fGy(x) dpa), ae y e Q.
I?)

DEFINITION 8.9. — Lety € Qand n > 0 such that B,(y) C Q. Let G} be the very
weak solution to
1

LG = —
17 B, XB,(y)

The function G will be called an approximate Green function.
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We are going to prove estimates for the Green function. We will achieve this
goal trough estimates for the approximate Green functions.

THEOREM 3.10. — Let GY be as in definition 3.7. Then
1) there exists C > 0 independent on y, such that

2
P, y)
GY <Comr ’:—"—, Ve, ;
@ < Clpe o, )] veQ ety

11) there exists ¢ > 0 independent on y, such that

P, y)
|B(x, p(x, y)|

V€ Q, x#ysuch that px,y) < iply,09Q).

< GY(w),

PRrOOF. — 1) Let x be fixed in Q. > 0. For any y € Q,y # xo let R = p(xo, y).
Let R be such that R > 25 and Bgs(xo) C 2, then GZ(x) is a weak solution to
LGy =0inQ\ B,(y). Since Bg(xo) C 2\ B,(y) we may apply Harnack inequality
to get

(3.6) (G’g(x))”g C ]f (Gg)”, Vo€ By, p> 1.

Bp(wo)
1

Arguing like the authors do in [14] and [2], we easily get

R
P p2/Q-1) P
G gy < CB<900,Z)| G e,

w

from which it follows

pz(xm y)

y Py
(3.7 GI7(x0) <C |B(xo, placo, )| .

Thanks to the Hélder continuity of the Green function we get the first esti-
mate.

11) We argue like in [14] and [2]. Let x,y € Q such that r = p(x,y) <
1/2p(x,0Q). Let w be a smooth function such that 0 <y <1, Xy| < C/r.
Moreover, we choose y such that w =1 in B,(y) \ B,2(y») and y = 0 outside
By (y) \ B:(y). We may take yG, as a test function in the definition of the weak
solution and so we get

|XG(z,y)|2 dz < er?/2 sup G2z, y) < CVQ‘ZGQ(x,y).

r/2<play)<r ispep<yr

Now let ¢ a cut-off function such that ¢ =1 on B:(y) and ¢ = 0 outside B,(y),
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0<¢p<1and|Xgp| < We get

1= [ a;XGepXpd << [ xGeypla
5<pzy)<r 5<plzy)=<r

1
2
4 2 1 C Q
< - b .
_V< f |XG|>|BT|2§T ¥ G, y)
5<pzy)<r

= c[p(e, NV 2 G, y).

4. — Regularity of the very weak solution

In what follows the word smooth means C* and Q is a bounded domain with
smooth boundary, satisfying outer sphere condition

THEOREM 4.1. — Let2 <1<Q, fe LY, X) Let u be the very weak solution
of Lu = f. Then u € LB (2,X), wherep =1-2

Moreover, there exists C > 0, independent of u and f, such that

[ully < CIAl -

Proor. — Using the representation formula and the estimate of the Green
function in Theorem 3.10,we get

P, y) |f @)
uy)| <C @)|de < C| ———~
[l f B, e ] | ! ol )12

We get the result by estimating the last integral.
Let R > 0 be such that Bap(y) C Q2. We have

de, ae. y e Q.

If ()| f If ()|

f @)
———de=1+1I
ALCE) o Bt P [pte I o Q\Bi@;) (ptar, 1

We estimate the first integral using the maximal function

I io f [f ()|

T Q-2
=0 (3eQ|R/2<p(w,y)<R/21} [plac, y)]

~ s p\2-Q

S e f o
k=0 <zt

< CREMf (y).
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On the other hand

17— i If (@)

o, I 2
k=1 (orR<p(ey)<2t1R)

- k; @R)Q % (2R (B2 B)|If1,

C N
:mnfnl,z;m-

Joining together the two estimates, we get

; 1
[u)| < CLR*Mf @) + B*(|f]l,), VR <3 dly,09)

and then,

1
(4.8) u(y)| < C|lFIF-Mf@)Y:, ae.ye Q.
where

1 2

The result follows immediately from the fact that the maximal operator is an
operator of weak type (1,1) (see [7]). O

THEOREM 4.2. — Let f € LY*(Q,X). Let u be the very weak solution of Lu = f.
Thenu € BMOy,.(Q, X) in the sense that there exists ry > 0 such thatV Q cQwith
d = p(2,Q) <1y, xg € 2 V0 <r<d/2we have

f |u(y) — up,w|dy < C,
B,.(x)

where C is independent on u,x, 7.

ProoF. — Let €', d, xy and r be as in the statement and 7y the same number of
Theorem 7.7 in [17].

Let B = B,(o), and consider the functions f; = fy, and fo = f(1 —y,,). We
split the solution u = u; + ug, where Lu; = f;. Representation formula gives
wi(y) = [ GY@)fi(w)dw, i = 1,2.

Q
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We have
J[|u1(9c) — Uy, | de §2f ’ fGy(ac)fl(.%') doc‘ dy
B B Q

PP, y)
<f WC)'J[ Bl pla, )] ¥ X

<Cf|f(x)| 3] f plae,y)* ¢ dy da

Bs,.(x)NQ

0 3 2—-Q
<cf|f(x)§§; f (2—:) dy dx

7

< C||f||1}~2(9,x)-

Jf lua () — u23|dx_f ‘ f G*(y)f y) dy — J[ f G()f () dy dz’dx

B Q\2B B Q\2B

< [ rwl f

Q\2B

G () — f Gy dz| de dy

= [ ol f16°0 - 6" @l de dy

Q\2B B
— f —_—

QZBN{ypo)<d)  Q\2BN{yipoy)>d)
=I1+1II

where x* is an element of B according to mean value formula for the Green function.
Let us estimate 1.
The function G*(y) is a weak solution outside of the pole and then it is Holder
continuous.

x el 2p(90790*) . 2 » IL)
g[|G ) — G ()| dae ch[(p(xo,y))< f IGZ(y)| dz> dz

pg.y)
2

o N
—C(p<xo,y))< § 1wl dz)

pg.y)
2

where 0 < a < 1, C is independent on x* and p > 1.
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Harnack inequality yields

167w - 6" @l dw < Crptao, >0
B

and then
1o [ @l dy
@\2B)n{y|pCeo.y)<d}
<C|fll2-

Now we estimate I1.
Despite of the previous case, now we do not know if B(x, p(xg, %)) is contained
or not in Q. So we have,

flew - fewazar = 1670 - ¢ @) de
B

B B
- J[( P, y) N G ) de
B |Bx, p(x,y)|  |Bar, plac*, y)|

<Cf 1@ "+ e, )
B

<Cd*?

sinee p(z,y) > p(y, o) — p(wo,2) >, V z € B. Thus implies,

II1<Cd*? f || dy
(Q\2B)n{y|plao,y)>d}

<Ca> 9y I/ @) dy < CIIf | 2

k=1 £yc02kr<play 1) <2511} {y€Q|p(wo ) >d}
O

We are going to get regularity for weak solutions. Indeed, from now on we
assume that f € S'(Q, X) or in some subspace of f € S‘(Q,X).

Our first result concerns the boundedness of the weak solution. This is easily
achieved via representation formula.

THEOREM 4.3. — Letf € S(Q) and u be the very weak solution of Lu = f. Then
u 18 bounded in .
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Proor. — For a.e. x € Q we have:

) =| [ @y < [ S0
Q

J B p. Y

P, y)

<C ) B, o, gy] VW W S 00) < 00
QnB

where B is a ball of radius 7 containing Q. d

The next step is to improve regularity of the weak solutions assuming more
on the function f.

LEMMA 4.4 (Caccioppoli inequality). — Let f € S(Q, X) and u be the solution of
Lu=f.
Then Yo € C(2) we have:

f PXulf de < C f [ Xol? de + Cy2R) f Xol? de
Q Q Q

ProOF. — The proofis standard and we used Proposition 2.6. For the existence
of test funetions we refer to [12]. O

THEOREM 4.5. — Let f € S(Q,X).Then the very weak solution of Lu =f is
continuous in Q.

Proor. — Let xy € Q and » > 0 such that B = B(xy, r)CQ and consider a cut-
off function ¢ € C3°(L) such that ¢ = 1 on By, ¢ = 0 outside By, and |X¢| < C/r.
For all y € Cj°(Q) we have

f a;i X;(up) Xy doe = f a;uX;pX;y dw + f a; X uXy du
Q

Q Q
:ff¢W dz Jrfaij“XiSij'// dw —fazmel//)ngdx.
Q Q 0

So u¢ satisfies the equation
L(u¢) = f¢ + X} (a;juX;$) — aiXuX;é.

By representation formula,

@) = [ F$@G @ dy + [ ai@uaXigw)X,6H@) de
Q Q

_f%j(?/)Xi%(y)Xjéb(?/)Gy(x) dy, a.e. x e Q.
2
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For a.e. x € B; we get

u() — ulxo) = f TG () — GY(wo)) dy
Q
- [ 4@ Xau)X,6a)(G @) - G dy
Q

+ [ a5 apue)Xig) X6 w) - G o) dy
Q

=1+11+111

We will get the result giving estimates of I, IT and 111 by a modulus of continuity.
Let us start estimating 1.
Let N > 1 to be chosen later. We have

n=s [ fele@ - @l ay

{yeQlp(ao.y)>Np(w,x0)}

[ 1wl - el dy

{y€Q|p(xo,y) <Np(a,a0)}

=l + Ip.

Using the regularity properties of the Green function outside the pole,we get

a a 9
I, <C (m) f F@)llé@)] (p(x, xo)) (p(y,x0))

r B(xo, p(y, x
{yeQ|p(o,y)>Nplac,x0)} (B0, ply, @)

2
e f (o, Y F W B(p o, 1)

—————dy < CN™*y(2r).
o (o, po, )] !

Let us now estimate .

(p(e, y))?
Ip < C( f oY) ——— dy.
{?IEQP(xO,?/)‘l;N/I@J%)} 1By, plw, )

(p(co, y))* q )

. I FWISD 6 oo, ]

{y€Q|p(ro,y) <Np(a,a0)}

(p(e, )
If ()] B

B o )l dy + n(Np(mo,y))>

<cf
QNB(a,(N+1)p(a,o))
< C{nl(N + Dplae, 20)] + n(N plac, 20))}
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1

Now, choose N = (L)Z

p,a0)
I <C K@) n@r) + n(/rp(a, 2o) + pla, o)) + n(/rpe, 900))] :
Caccioppoli inequality yields

i <o("E) M [ Xl a0y
Bo\By,

C  (plae,xo)\" Y
SW( . ) (Bf'X“| dy)

2r

C (ple,xo)\* %
<1 (P2) (wady).

To complete the proof we estimate II1.

M
i < e [ X @ - GYaollu] dy
BZ?‘\BQT

1

M : :
< 07< f IX[GY () — GY (o)l dy> ( f e dy>,

By \B 3 By

Finally we get

lu(x) — ulxo)| <C { (p @ W) n2r) + n(+/rp(e, 2o) + p(x, x0))

+n(\/rpe, 20)) + (p(x xO)) <f|u| dy)}

and the result follows. O

The last result in this section is the Holder continuity of «.The proof is similar
to the one of the previous Theorem. We also use Proposition 2.13.

THEOREM 4.6. — Let f € L'*(Q,X) with 0 < . < 2. Then the very weak solu-
tion of Lu = f is hélder continuos in Q.
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PrOOF. — There exist f = f(4,X) and C such that
(@) — u)| < Clpe, ),  a,yeQ.

As in the previous theorem we consider I, 11, and I11. Let us estimate 1.

pla, )\ (peo, )
I
[l < J Wy)'( . >|B<xo,p<xo,y>>|

{y€Qp(xo,y)>Np(xo,2) } By,

, (l/'/‘z
<o ("= Sl

r

SCN=P 4| f e
Taking N = /7/p(x, ), we get

5] < OFF (o, o) 7 |1f1l..
hence
1] < Clipta, w))r® % + (plar, @) T 71 £,
Integrals 17 and 111 are estimated asin the previous Theorem. O

5. — Necessary Conditions.

In this section we study what are the natural assumptions on the data in order
to get a given degree of regularity for the solution.

THEOREM 5.1. — Let u € LY(Q) the very weak solution of Lu = f, and f > 0.
The very weak solution w € L1 (), q > 1ifff € ML (Q,X).

loc loc

PRrROOF. — Let u € L! (Q) and K be a compact set in Q. Then

loc

Ju@rae =[] [y
K K Q@

>

q
( G (@) () dy) de
K\ {yeQlpe.y)>3}

:f\u(;(x)ﬂ da
K
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where
(5.9) us(x) == f GY(@)f () dy
{yeQlp(v.y)>0}
with 6 > 0.
We have
; () q 0.
1(%1 f|u0(9c) w(x)|?de =0
K
that implies
q
12%1 ( GY(x)f (y) dy) de — 0.
o K N\ {yeQp(ey)<d}

Using the estimate from below for the Green function (see Theorem3.10) we get
feMl (2,X).

Now let f € M? (2,X) and we show that w € LY (Q) with ¢ > 1.

loc loc

wwl< [ Gerepdy

{yeQlpla,y)<o}

+ [ cerpy

{yeQ|plax,y)>d}

(pla, )
<C @) = ———— dy.
{yGQ/I(-ﬂ[c:yKé} 1B, pla, )
So, we have:
(pz, y))*
q q
I[W(m) de SC!( f N f) B, p, ) dy)” de
{yeQlpla,y)<d}

<CIK|.
O

THEOREM 5.2. — Let u € LY(Q) the very weak solution of Lu = f, and f > 0.
The very weak solution u € L>(Q) iff f € Sje(2, X).

PROOF. — We only need to show thatf > Oand u € L>(Q)imply f € Sj(2, X).
Let K be a compact set of 2. We prove that there exists ¢ > 0 such that
ng(0) < oc.
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Let 0 < 0 < p(K,0Q)/2. We have

f(y)|3(%,p(x,y))l dy < f JyG' ) dy

{yeQlp(x.y)<d} {yeQlp(x.y)<d}

a.e. x € K. Then

(p(e, )?

B, pla, ] ¥ <

wo= [ fo
{yeQlpay)<o}
O

THEOREM 5.3. — Let u € L(Q) be the very weak solution of Lu, = f, and f > 0.
Then u € CUQ) ifff € Sipe(2,X).

ProOF. — Let 6 > 0. We shall prove that the function us; defined in (5.9) is
continuous at any xy € Q.
We have:

1s@ — wstaw)| = | [F@IG @) - Gz, @ndy|,  we e,
Q

where y and y are, respectively, the characteristic functions of sets

{y € Q|pla,y) > J} and {y € Q| plxo,y) > J}.
Hence we have

@) —ws@l < [ F@IE"@ - G| dy

Q\[B;(x)UB;s(x0)]

+ f F@)|GY @) — G o)y, )| dy
[Bs(a)UB s(a0)\[Bs@)NBs(xo)]
=141

For the first integral we have

1< f FWIGY @) — GY(xo)| dy — 0

Q\B(xo)

as p(x,y) — 0, by the uniform continuity of the function G¥(-).

Moreover, lim,_ .y, II = 0 by the absolute continuity of the Lebesgue mea-
sure. So (Us)s-o is a family of continuous functions and us7u, then us = u as
0 — 0, that means

suplus@) —u@| =swp [ f@)G@)dy—0

xeK cK .
v TR fyeipey<oy
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This obviously implies

P, y)
vk ez <o) B, p(, )
and the result follows. -

The next result concerns the necessary condition to get holder continuity. By
our previous results the solution is the weak one.

LEMMA 5.4. — Let f € LY (Q), f > 0 and let w be a local weak solution of
Lu = f. Assume that u € CO*(Q,X). Then

f|XM(-%')|2 dx < C (Taff(%') de + TQ2+2a> ,
B,

Bar

for every ball B, such that Ba,cQ.
Proor. — Let n(x) € C3°(Bg,) such that
nae)=1inB,, 0<y<1 and |Xu< % for some constant C.

Consider the test function ¢ = 12(x)(u(x) — uz.). We get

f Xul? di < c( f IXut|2e0(e) — sy 2 dx + f FR@)|ule) — us| doc) .
B,

B21' Bzr

The Holder continuity of « gives the result. O

Before proving our last result, let us recall a lemma due to Stampacchia
(e.g. [20]).

LEMMA 5.5. — Let w(x) > 0 non-decreasing i (0,R) with R < 1. Let us
suppose that there exist T € (0,1), H > 0 and a > 0 such that
wlp) < wwdp) + Hp",  Vpe(O,R).
Then there exist K > 0 and A € (0,1) with 2 = min ( log412i11 ,a)), such that
w(p) < Kp*.

We are ready to show our last result. It is the converse of the Theorem 4.6
when f > 0.
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THEOREM 5.6. — Let f € LN(Q) f > 0. and let u be the very weak solution of
Lu =f.
Ifu € C*Q,X) with 0 < a < 2 then f € L}*(Q2,X).

loc

Proor. — Let ¢ > 0. Consider a ball B, such that By,.cQ. Let
peCiBz), 0<p<1 and ¢=1in B,.

By Young inequality we get

f f@yde < f ()X X p(e0) dee

BZ?

1
<claf |Xu|2dx+zr“f Xol? de

By, By

Lemma 5.4 then yields

ff(oc)dx < Crff(oc)dachC"rQ 2re yes

B4r

Now choose ¢ : Ce < 1. By Lemma 5.5, there exists K > 0 such that

f fe) da < Kr@-2+e

hence

|B B ff(gc)dac<K
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