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Bollettino U. M. 1.
(8) 10-B (2007), 969-987

Minimum Free Energy for a Rigid Heat Conductor
and Application to a Discrete Spectrum Model

(GIOVAMBATTISTA AMENDOLA - ADELE MANES

Sunto. — St considera il problema di trovare una espressione dell’energia libera minima
per un conduttore di calore rigido e con memoria. Tale energia fornisce il massimo
laworo ottenibile dal materiale in un dato stato, caratterizzato in questo lavoro dalla
temperatura e dalla storia passata del gradiente di questa. Una equivalente espressione
viene ottenuta e applicata al particolare caso di un conduttore con spettro discreto.

Summary. — A general closed expression is given for the minimum free energy for a rigid
heat conductor with memory effects. This formula, derived in the frequency domain,
is related to the maximum recoverable work we can obtain from the material at a
given state, which is characterized by the temperature and the past history of its
gradient. Another explicit formula of the minimum free energy is also derived and
used to obtain the results related to the particular case of a discrete spectrum model
material response.

1. — Introduction.

A generalization of the results derived by Cattaneo [4] to remove the paradox
of the instantaneous heat propagation was proposed by Gurtin and Pipkin in [15].
They, using Coleman’s results for materials with memory [5], proposed a non
linear model for a rigid heat conductor and also considered the linearization of
this theory, which yields a constitutive equation for the heat flux expressed in
terms of the history of the temperature gradient.

This linearized equation has been considered by many authors to study
problems connected with heat propagation. Among all the works about these
investigations (see, for example, [19]) we recall, in particular, the results derived
in [8], where stability and domain of dependence are established by using the
maximal free energy and the maximal free entalpy functions, there explicitly
constructed by means of an approximate theory of thermodynamics. Always in
[8], following [16], the authors have used the integrated history of the tem-
perature gradient, already considered in [15], to describe the states and, in
particular, the temperature gradient to characterize the processes of the body.
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This choice of states and processes for the rigid heat conductor has been also
used in a recent article [2] to derive an explicit expression of the minimum free
energy. It is well known that the minimum free energy has a great importance
since it is related to the maximum recoverable work, that is the work we can
obtain from a given state of the material. Therefore, such a problem has been
considered by several authors, in particular, for viscoelastic solids (see, for ex-
ample, [3,7] and [9-14]). Among all these articles we remember [14] and [12]
because of the interesting methods there used for such investigations.

In this work we assume that the states of the rigid heat conductor are ex-
pressed by means of the past history of the temperature gradient in the place of
its integrated history, to give a different formulation of the problem of finding an
explicit form of the minimum free energy. The technique used to obtain such a
formula starts from the study of a Wiener-Hopf integral equation, which can be
solved by virtue of the thermodynamic properties of the kernel, present in the
functional of the heat flux, and of some theorems on the factorization of the same
kernel. Two different expressions of the minimum free energy are thus deduced
and one of these is used to derive explicit formulae for the particular case of a
discrete spectrum model material response.

The layout of the paper is as follows. In Sect. 2, fundamental relationships are
written down. In Sect. 3, states and processes are defined as well as the con-
tinuation of histories, which allows us to introduce the notion of equivalence
between histories of the temperature gradient. In Sect. 4, the thermal work is
considered and some expressions corresponding to particular cases are derived;
thus, another definition of equivalence between histories is given by using the
boundedness of the thermal work. In Sect. 5, the maximum recoverable work is
evaluated, while, in Sect. 6, a different expression is derived for it. Finally, in
Sect. 7, the results for a discrete spectrum material are presented.

2. — Notations and preliminaries.

Let B be a rigid heat conductor with memory, which occupies a bounded and
regular region Q C R?, that is simply-connected with a smooth boundary. Within
the linear theory of thermodynamics developed in [15] and studied also in [8], we
assume a linear relation between the internal energy e and the temperature <,
relative to the absolute reference temperature 7y uniform in Q,

2.1 e(x,t) = apd(x, 1)

and the following constitutive equation
400

2.2) qCe,t) = — f k(s)g (e, t — $)ds
0
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for the heat flux q, whose memory effects are expressed by means of the history
up to time t € R = [0, +00) of the temperature gradient g =V 4.

In these relations x € Q is the position vector, ay is a constant, positive be-
cause of physical observation, and the heat flux relaxation function k : R* — R,
such that k € L'(RT) N H'(R™"), is defined by

t
2.3) e(t) = ko + f k(dr  Vie R
0

where ky = k(0) is its initial value, at time ¢ = 0, with 111+n k() = 0 [8,13].
Henceforth, we shall understand that the statements are relative to any fixed
x € Q; moreover, we shall identify the history up to time ¢ with the couple
(g(t),g"), where g(t) is the present value of the temperature gradient, while
gi(s) =g(t —s) Vs € R™" = (0, +00) will denote its past history.
The static continuations of any history (g(t), g*), with duration a, defined by

@4) o — {gt(s —a) Ve>a,

9@ Vs € [0,al,
yields the following heat flux

+o00

@5) at+0) = —wag® — [ ka+pgpdp.
0

where we have introduced the thermal conductivity
t
2.6) t) = [ ke
0

We observe that in (2.5) we have g(¢) because of the supposed static continuation
of this value.

The thermodynamical phenomena can be specified by the introduction of the
following vectorial space of the possible temperature gradients

+00
Qen I'= {gt : (0, +00) — R?; ’ f k(t + 8)g'(s)ds| < +o0 V1 € R*},
0

where t is a parameter.
We recall the restriction imposed on the constitutive equation (2.2) by the
laws of thermodynamics [8,13], that is
+00
2.8) f k(s) cos (ws)ds >0 Vo € R\{0}.
0
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For our considerations the Fourier transform will play an important role.
Thus, we remember that for any function f :— R — R" its Fourier transform is
defined by

+00 0 +00
@9 fr@) = [ foeds = [feeds+ [ fe)eds = f (@) + i)
0o "o 0

moreover, we recall that if functions are defined on R™, these can be identified
with their causal extension on R, that is functions which vanish for any
seR ™ = (- 00,0), and we have

(2.10) Jr(@) = fo(w) — ifs(w),

where we have introduced the half-range Fourier cosine and sine transforms
+00 +o0

Q1) flo) = [ fOcos©@dds,  filw)= [ f@sin@dde
0 0

In particular, if f and f” belong to L'(R*) N LA(R™), we have

2.12) filw) = —o fo(w).
Using (2.11);, the thermodynamic restriction (2.8) assumes the form
(2.13) ke(w) >0 Vo € R,
under the hypothesis that the quantity
+o0o
2.14) k) = [ k@dE = >0,

0

where v,, = lim ¥(f) is not equal to zero.

t—t
We observe that the asymptotic value of v in (2.14) gives the heat flux due to
the constant past history g'(s) = g'(s) = g Vs > 0, since (2.2) and (2.6) yield

(2.15) qt) = —vee g = —k(0)g,

from which it follows that the constant heat flux so obtained has the opposite
versus of g.
We recall that if ¥ € L2(R*) and |[k'(0)| < 400 we also have

(2.16) sup |wkl(w)] < 400, lim wkl(w) = — lim ?ko(w) = K'(0) < 0,

weR

where we have assumed £/(0) # 0.
Finally, the inverse Fourier transform yields the following results
+00 +00

@.17) Kt = 2 f ko) cos (@bdo,  k(0) = 2 f ko(w)dw > 0.
n 0 & 0
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It is interesting to consider the functions f. , introduced in (2.9), defined also
for any z € C, the complex plane. Such functions are analytic for z € CP, which
exclude the real axis, but they are supposed, by assumption [14], analytic also on
R and hence for any z € C7, defined by

2.18) C*={xcC: ImzeR*}, € ={zeC: ImzecR**}.

Thus, we shall denote by f+)(2) a function with zeros and singularities in c*.

3. — States and processes.

The constitutive equations (2.1) and (2.2) allow us to consider the body B as a
simple material [5,6], whose behaviour can be described in terms of states and
processes. Thus, B can be characterized by means of the function

3.1 a(t) = (3(t),g"),

which is termed the thermodynamic state at time ¢ and at any fixed point x € Q.
We denote by 2 the set of the states of B.

A kinetic process of duration d € R" is a map P piecewise continuous on the
time interval [0, d) and defined by

(3.2) P(r) = (vﬂp(r),gp(r)) vt e [0,d).

Let P € II, the set of all the processes, be a process of duration d, we can con-
sider its restriction to any interval [71, 72) C [0, d). This restriction is denoted by
P, .,y and belongs to I1. Given an initial state o' € X and a process P € I1, the
function p: X x IT — X, defined by ¢ = p(¢',P) € X, is called the evolution
function which maps (¢%, P) into the final state ¢ € X.

We observe that the heat flux (2.2) depends on the past history of the tem-
perature gradient; the present value of this quantity characterizes the process P,
defined by (3.2), for 7 = 0.

Given an initial state, if we apply a process P, we obtain, in particular, a
prolongation of the past history of g.

Firstly, we consider the case when a process is applied at time ¢ = 0. Thus, we
have the process P(t) = ({9p(t), gp) ¥V t €[0,d), since 1=t €[0,d), and the
initial state a(0) = (5.(0), gg), which yields the temperature and the past history
of its gradient at time ¢ = 0. This process induces a set of states denoted by
a(t) = (t),g") and defined by

g t—s 0<s<t,
(3.3) It) = 4.00) + f Ip(s)ds,  g'(s) = {gf: s s
0 gus—1t) s>t
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Now, we consider the process P applied at time ¢ > 0. Denoting by
o(t) = (I(t),g") the initial state, the process P(1) = (Ip(t), gp(7)), defined for any
7 € [0,d), is related to

(3.4) SOl =R, 50 =50 + [ (e,
0

while the continuation of the past history of the temperature gradient is defined
by means of the final value g,(7') = (gp * g)(7'), V' =t + 7 <t + d and given by
gpd—s) 0<s<d,

35 t+d—s)= trd=s=
8.5) gf(+ $)=(gp*g)t+ s) {g(t+d—3) s>d,

because of the function
(3.6) gp:[0,d) > R®,  gp()=g(t+1)

assigned by P.

The constitutive equation (2.2) yields the linear functional ¢ : I" — R?, which
gives the possible heat fluxes corresponding to the past histories of the tem-
perature gradient

+00
(3.7 (9 =— [ Kog's)ds,
0

where gt € I".

DEFINITION 3.1. — Let g}, 7 =1,2, be two past histories of the temperature
gradient, corresponding to the same instantaneous value I(t) of the tempera-
ture. They are said to be equivalent if for every gp : [0,7) — R® and for every
7> 0 we have

3.8 Gd(gp+g)") =q(gp g™

whatever may be {9p :[0,7) — R.

It is interesting to consider the zero past history g'(s) = 07(s) = 0 Vs > 0. Any
past history g° is equivalent to it if

+00 +00

3.9) f k(s)g(t + 7 — s)ds = f k(t + &) gh&)dé = 0.

T 0

Thus, we see that two past histories gj-, j =1,2, are equivalent in the sense of
Definition 3.1 if the past history g' = g} — g/, satisfies (3.9) and hence we have the
same state with the fixed value of d(t), according Noll’s definition of state [18].
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4. — Thermal work.

We are now concerned with the notion of work. This quantity for our rigid
heat conductor, if associated to a process P(t) = (9p(1),gp(7)) Vr € [0, d) applied
at time ¢, when the state is o(t) = (J(t),g"), is given by the following functional

t+d

d
@) Wig'gp) = [ @gp 0" gp@dr=— [ agp*9))- 92,
0 t

which can be also written as follows
d
(42) Wig'gp) = - [ at+0-gp(dr,
0
where gp(7) is given by (3.6) and, by virtue of (2.2),
+00
4.3) qt+1) = — f (s) g+ (s) ds.
0

If we consider the state ¢(0) = (0, 0') as the initial one, to which a process
P = (Jp,gp) of duration d is applied at time ¢ = 0, for simplicity, the ensuing
fields (y(2), gf,) with ¢t € (0,d] are given by (3.4)-(3.5) and have the form

gpt—s) 0<s<t,

t
4.4) Sot) = | Ip(&)de, %@:{
"o[ 0 s > t.

The work done on P is given by (4.1) or (4.2) and, taking account of (3.7), assumes
the form

d
(45) W95 = - [ atgh) - godit
0

where g,(t) = gp(t) is assigned by means of P.
This quantity allows us to introduce the notion of finite work process, as it has
been defined by Gentili in [12].

DEFINITION 4.1. — A process P of duration d is said to be a finite work
process if the work (4.5) satisfies

(4.6) W(0,9p) < 400.

Moreover, for such a work we have the following result.
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LeMMA 4.1. — The work done on any finite work process, in the sense of
Definition 4.1, is positive.

ProOOF. — Let P a finite work process, then (4.6) is satisfied. Extending P on
R by putting gp(r) = 0 Vr > d and using (3.7), from (4.5) we get

400 400
@ Wo.9p) = [ [ ko)gheds-gotit
0 0

and hence, by virtue of Plancherel’s theorem, we obtain
~ 1 +00 .
“8) WO.9p) =5 [ kr@)g0, @ - gi,(@)do

where * denotes the complex conjugate. In (4.8) we have the Fourier transforms
of functions which are defined on R" and can be considered equal to zero on R~ .
Therefore, taking into account (2.10), where the cosine and sine transforms are
even and odd functions, (4.8) reduces to

+o00
. 1
4.9) WO.9p) =5 [ kl0llg} @) + g} @ldo >0,
where the inequality follows by virtue of (2.13). O

Let us consider the work done on an assigned process P of duration d, given
by (4.5) but also expressed by (4.7) when P is extended on R* by putting
gp(t) = 0 Vr > d. Thus, we obtain

+oo 77
W,90) = [ [ k) gptn—s)ds - gptndy
0

(4.10) 0

+oo 77
_ f f kG — p)gp(p)dp - gp(n)dn,
0 0

since we have the null histories for s > #. The expression now derived can be
equivalently written as follows

+00 400
= 1
@1 W99 =5 [ [ k- pDgp)-gptpdpdn
0 0

or, by applying Plancherel’s theorem and recalling that the Fourier transform of
an even function f is fr(w) = 2f.(w), also in the form

+00
= 1
(4.12) W0.9p) =5 [ k()9 (@9, @do,

400 .
where, using (2.9)3, we have put g, (@) = f gp(s)e " ds.
0
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This allows us to characterize the set of the finite work processes by means of
+00
(4.13) H®R",R®) = {g ‘R" - R f k(@) g (o) -g" (w)dw < +oo},

which, by virtue of (2.13), can be endowed with the inner product (g,g5); =
+00
[ klw g, (@) g; . (w)dw and the corresponding norm Hg||,zc =(9,9);. The
Egompletion with respect to such a norm of HR*,R) yields the Hilbert space
H(R™,R?) of the processes.

Thus, we can consider the set of the past histories as the set of all g such that
the work done on any process, characterized by gp € HR™,R?), starting from
the state corresponding to them, is positive. This work, always supposing that
the process P(1) be zero for any 7 > d (d < +0o0), is given by (4.1), which, by
virtue of (3.7) and (3.5), becomes

400
W'.9p) =~ [ agp+9)") gp(ods
0

+o00

T ~+0o0
f l f k(s)gp(t — s)ds + f k(s)gt + 1 — s)ds] -gp(D)dr
0 T

0

(4.14)

+o00 +o0

i l [re—ogp0a+ [ k(f+77)yt(f7)df71 - gp(dz.
0

0 0

This expression, putting
400
(4.15) I(z,g") = — f k(z 4+ g'Gpdy, © >0,
0

can be written in the following form
1 +00  +00
7 (ot __ _ .
Wig'.gp) = Of [ ke - éhgp@rds - gprie

0
+00

- [ 169" gr0dx
0

(4.16)

or, using Plancherel’s theorem, equivalently, by

+00
@D W e =5 [ kg, 16" g\ oo,

+00 .
where I (w,g") = [ I(z,g")e “"dx.
0



978 GIOVAMBATTISTA AMENDOLA - ADELE MANES

We observe that the quantity I(r,g"), now introduced in (4.15), is related to
the heat flux obtained by means of a static continuation of the history (g(t), g?),
already examined in Sect. 2. This heat flux is expressed by (2.5), which reduces to

(4.18) 9(g") + v g®) =1z, 9"

when the duration of the continuation is equal to 7; moreover, we observe that
I(z,g") has the same regularities of the functions at the left hand-side of (4.18).

The comparison between the two expressions (4.16) and (4.11) shows that the
boundedness of W(0, g ) yields that one of the first term of W(g', gp); therefore,
it rests to consider the second term in (4.16). This quantity must be finite; thus,
the possible past histories are those such that I(-,g%), to which are related by
means of (4.15), belong to H'(R*, R?), the dual space of HR*, R?), whose func-
tions satisfy

+00

419 | <f.g>| :] f f(t)-g(t)dt‘ :%] fcm(w)-g:(w)dw < +00.
0 —00

The equivalence between past histories of g can be expressed in terms of
work.

DEFINITION 4.2. — Two past histories g]t, J = 1,2, corresponding to the same
value of the temperature J(t), are termed w-equivalent if, for any Py and for
any t > 0,

(4.20) W(g',gp) = W(gh,gp).

This equivalence coincides with the one introduced by Definition 3.1.

THEOREM 4.1. — Two past histories of the temperature gradient are w-
equivalent if and only if they are equivalent in the sense of Definition 3.1.

ProOF. — If two past histories g;», j = 1,2, are equivalent, then (3.8) holds for
any process Pj; and hence also (4.20) is satisfied for any 7 > 0 and any gp(7),
sinece

d d
@20 [ agr 90" -gp@dz = [ agp <92/ - gpz;
0 0

therefore, they are w-equivalent.

On the other hand, if g;-, j =1,2, are w-equivalent, then (4.20) holds for any
Py and © > 0. Taking into account (4.16), written for the past histories g]t-,
Jj=1,2, we see that the integral with k(]r — &|) coincides for the expressions of
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the two works and, therefore, these quantities eliminate each other. Thus, (4.20)
reduces to

+00
(4.22) [ ucgh — 1901 gpdz —o,
0

whence, the arbitrariness of gp yields
(4.23) I(t,g)) =I(zr,g})  Vi>0,

or, equivalently, because of (4.15),
+00

(4.24) [ e+ mighon —gioman =0 vr>o.
0

This last relation expresses that the difference g'(n) = g’ ()—g' (1) satisfies (3.9),
and hence that g{(») is equivalent to g5(»). O

5. — Maximum recoverable work.

Let o be a given state of the material, the maximum recoverable work we can
obtain starting from o is so defined

.1 Wg(o) = sup{-W(o,P): P < I},

where IT denotes the set of finite work processes [9].

We note that Wz (o) gives the amount of the available energy; moreover, since
the null process belongs to /7 and its corresponding work is null, Wg(o) is a non-
negative function of the state and it is bounded from above, Wg(o) < +o0, by
virtue of thermodynamic considerations.

Many authors [9, 11, 14] have shown that such a work coincides with the
minimum free energy v,,(0), that is

(5.2) W,(0) = Wg(o).

Let P € II be a process of duration d < +oo and applied to the initial state
o(t) = ((t),g") at time t. We can extend P on R" by means of its trivial extension
on [d, +00), where, therefore, P = 0. The work done on P is expressed by (4.16),
that is

+o00 +o00
63 Wen.P)= [ |3 [ ke ep@d —Irgh| -gpir
0 0

From this relation we must derive the maximum recoverable work, which, on
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the ground of (5.1), will correspond to an“optimal” process denoted by P, For
this purpose, in any process P we put

(5.4) gp(0) =g™ @) +ov(x) VieRT,

where g"(t) denotes the temperature gradient related to the required process, J
is a real parameter and v is an arbitrary smooth functions such that v(0) = 0.
Substituting (5.4) into (5.3), we get an expression which yields

+oo | 400

9 .
G5) ol W, Pl = - Of Of K — &) g™(@dé — I(z,g" | -v(@dr = 0

and hence for the arbitrariness of v we obtain
+o00
(5.6) [ #e-epg™@az =1gh  vreR".
0
This relation is an integral equation of the Wiener-Hopf type of the first kind,
whose solution g™ yields the required maximum recoverable work. Using (5.2)-
(5.3), we have

+oo 400
6D v =Weo = [ [ ko™ g™ @dcdr
0 0

or, equivalently, by virtue of Plancherel’s theorem,
1 400
5.8 V@) =We@) =5 [ k@@ (91"@) do.
It remains to solve (5.6). For this purpose we introduce the function

+00
f k(t — s)g™(s)ds  YeeR™

—00

0 vte R™

5.9 r(r) =

and observe that supp(g™) C R*, supp(-,g")) C R and supp(r) C R™; thus,
(5.6) can be written as follows

+00
(5.10) f k() — &g (E)dé = I(r,gh) + 1) Ve eR.

Applying the Fourier transform to the last relation, we have
(5.11) 2ko(@) 9" (@) = I' (0,9 + (),

where, in particular, g(l”) is analytic in C".
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We now consider the function
(5.12) K(w) = (1 + 0Pk ()

and observe that it has no zero for any real w and also at infinity, by virtue of
(2.16). Thus, we can factorize both K(w) and k.(w), i.e.

(513) K(w) = K(H(a))K(,)(a)), kc(w) = k(Jr)(a))k(,)(w),
and hence we get
K )(w)
(5.14) ky(w) = T
Using (5.14), from (5.11) it follows that
1
(m) _ t t
(5.15) k(@) g (@) = o)) I (0,9") +r_(w)].
The Plemelj formulae [17] give for the first term at the right hand-side of (5.15)
1 Ii ((D, gt) t t
(5.16) 5 k@ P (@) - P (),
where
+00 t ¢
iy 1 Log")/ko)(w) ¢ - ,
(5.17) P'(z) = i f Q. do, P (o) = /}L%P (w +1P).

—00

We observe that Pé + )(z) has zeros and singularities in z € Cc*. Therefore, it follows
that Pﬁ +(2) is analytic in C'™ while the analyticity on R is assured by virtue of the
assumption in Sect. 2 for the Fourier transforms [14].

By substituting (5.16) into (5.15), we get

1r_(w)

(5.18) i (@)g7(@) + Pey(@) = Py@) + 57708,

which expresses the equality of two quantities, each of which has an analytic
extension on the complex plane and vanishes at infinity and, consequently, it
must be equal to zero. Thus, we have

P
k()

The solution (5.19); allows us to write the expression of the minimum free
energy (5.8) as follows

_lr(@
2]6(,)((0)'

(5.19) g9"(w) = P (w) =

+00
1
(5.20) vo@) =5 [ 1Py do.
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6. — A different formulation for y,, .

The relation (5.20) now derived expresses the minimum free energy in terms
of P (@). Another equivalent form can be deduced for y,, by means of the
relatlon between P< () and g'. For this purpose we identify g’(s) with its causal
extension to R, where we thus assume g'(s) = 0 Vs € ( — o0, 0), and the kernel
k(s) with the even function k@ (s), whose Fourier transform is kg,f)(w) = 2k ().

With this assumptions, the quantity I(z, g%), defined in (4.15), can be written in
this form

6.1 I(z,9" f K0+ og'Gpdn - Ve >0,

and can be extended on R by means of

I,g)  Vr>0,
62 1P g)= j’ww+w¢@w—
I(z,g") V<0,
where
6.3) 1", g" = fk@m+ﬂfww Ve < 0.
From (6.2) we have
+o00
64 1P = [ IPcged =1 0.g) + 10,

whence, using (5.16), we get this relation

1 (R) (n) ¢ ¢ Pl
(6.5) 2k(,)(a))IF (,9") = oo ( )I (0,9") + P \(w) — P ().
Applying the Plemelj formulae to the first term of (6.5), we have
1 (R) ty _ p't _ ptt
(6.6) 216(_)(60)IF (w,9") = P(_)(CU) P(+)(w)a

where P"(z) is defined by a relation similar to (5.17); and is such that P( 1H(®@) has
zeros and singularities in C*.
From (6.5) with (6.6) we get

67 Pl —Ply@) =P (@) - P+ 1"(,g" =0,

1
2k(_)(w)

since, while the first two terms are analytic in C~, the others are analytic in C*
and, moreover, both of them vanish at infinity.
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Thus, we obtain

68  PL0)=Plyw), P =Pl - 1"(,g").

1
2]6(,)(60)

Now, we let g/ (s) = g!( —s) Vs < 0 with its extension g!(s) =0 Vs > 0 and
consider its Fourier transform

(6.9) gl (@) =g, (@)= (g (),

which allows us to write (6.2) as follows

+00

(6.10) 1V0,g) = - [ K95\ (s)ds,
so that
(6.11) IP(w,9") = —2kc(w) (9", (@)

and, using (5.13)g,

1

6.12
( ) 2k<_)(w)

I®(w,9") =~k (@) (g, ()"

Then, from (6.8); with (6.6), (6.12) and the relation analogous to (5.17) but
written for P@)(w) yield

() t /
Pf+)(w) —P/25 ) = hm P ) = z]im 1 f I (a),g )/ k- )(w)

o~ 4 K -z

(6.13)

B 1 °°Ac<+><a/)( (o ))

- lerg i i —z ’
from which it follows that

1 ko)t @)
t =) + /

(6.14) (Pl(@)’= Jim - f e dw

The quantity k() g’ (»), using the Plemelj formulae, can be put in the form

(6.15) ko (w)g', (@) = Q) (@) — Q, (),

where

t 1 [EO@)gl@)
(6.16) Qo) = Jim 5 [0 S dw
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Hence, the quantity Q(tf)(co) now introduced is such that
6.17) Ql () = (PLy()";

moreover, we observe that, applying Plancherel’s theorem and using (5.13)2 and
(6.15), it allows us to transform (3.7) as follows

+o0 +o0
- 1 1
16" =~ [ kg @do=—— [ ku@[Q,©) - @ )]do
(6.18) 7? -
1 o0
- [ k@@l @i,

since the integral of k(. )(w) Qf +)(a)) is zero because of the analyticity of this in-
tegrand in C'~, where the same integral can be extended to an infinite contour
without altering its value.

Finally, the expression (5.20) of the minimum free energy, by virtue of (6.17),
assumes the equivalent form

+00
1
(6.19) V) = 5 . f Q. (@) do,

which is the new required formulation.

7. — The discrete spectrum model.

We now consider the results of the previous section for a particular class of
relaxation functions, that is a discrete spectrum model.

Let the kernel k(t) be expressed by the following linear combination of de-
caying exponentials

n
Z hie’kft Vi>0
(7.1) k@) = < i=1 , nen,
0 vt <0
where the inverse decay times k; € R*" (i=1,2,..,n) are such that
k1 < ke < ... <k, and also the coefficients #; (1 = 1,2, ...,n) are positive.

We recall some results we have already obtained for such a model in [1].
In particular, (7.1) satisfies (2.17); since

(72) k() =Y ki > 0.
=1
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The Fourier transform of (7.1) is given by
h;

n
(7.3) kr(w) = ; e ©€ R,
whence it follows that
(7.4) ko) = Zk2+w2 weR.
Thus, for K(w), defined in (5.12), we have
n h/ k . n
15 K=+ wz)z Btad Ky = lim K()= Zhiki > 0.

We observe that f(2) = K(w) with z = —«?, when n # 1 and k% # 1, has n
simple poles at k? (i = 1,2, ...,n) and n simple zeros denoted by 5% =1 and 5]2
(4 =2,3,...,m) so ordered

(16) K <H<k<.<k<d, <k, ,<.<k_<d&<k.

If there exists p such that k2 <1< kf) 1> With p equal to only one of the values

1,2,...,n — 1, the number of zeros can reduce to n — 1 since 5 41 can coincide
with 52 = 1, which thus becomes a zero of multiplicity 2.
Therefore, (7.5); can be rewritten as

52 +
i K K.
.7 (@) = IH@+M}
whence we have its factorization (5.13); by means of

"o+ 10; o —
(7.8) K(_)(CO) =Kk { . }7 K(+)(CU) =k {
g o + ik; E w—

Using (5.14) and (7.8);, we obtain

id; _ 1
@J’%—@J

H@+w) .y
(1.9) 0 F N e —— =
[T (@ + iky) @+
=1
where
n
H (5] - k?)
7.10 U=-"2  (r=12..n.
H (kl kr)
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If there exists p’ € {1,2,...,n} such that lcf), = 5? =1, the two expressions
(7.9)-(7.10) hold again, since in such a case the number both of the poles and of the
zeros of f(z) reduces to n — 1, however in k_(w), given by (5.14), we have the
factor L which introduces the pole k2 = 1.

It rests to examine the particular case n = 1. In this case (5.14) reduces to

1

In the general case when n # 1, (6.16) and (7.9) yield
g (@)/( —o") .
12) Q@)= - Z il Uf ey OCZ 9Lk,

where the integrals have been evaluated by closing in €', where we have the
imaginary numbers —ik, (r = 1,2, ...,n), and taking account of the sense of the
integrations.

Since (2.9)3 gives

+00
(7.13) g(~ik) = [ geds = (g',(~ k)"
0
then (7.12) yields
* . " U, .
(1.14) Q@) = —iks ;w - m”?( — iky).

Thus, (6.19) becomes

1/(w+ Zkr) do

n 1 oo
_ 1.2 t(_ s ot (5 i
T15) v, ) =k > UUigl(— i) g (— ik 5 f Py

rl=1 —o0

where the integrals over R can be evaluated by closing in C™, where we have ik;
(I=1,2,...,m), and taking account of the sense of the integrations.
Therefore, using (7.13);, we get

+00 400

U, U,
(7.16) l//m(t)_zf f 2K Z 0 (gl (s1) - g o) dsids

In the particular case When n = 1, as we have done for (7.16), we obtain
+o0 400

U% 7k1(81+82) t t
r//m(t)—2 f f kle g'(s1) - g'(s2)ds1dsz

+00 2
:—hllf gt(s)eklsds]
0

since now K., = hik; from (7.5)2 and U; = 1 from (7.11)s.

(7.17)
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