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Bollettino U. M. 1.
(8) 10-B (2007), 951-967

Hardy-Sobolev Inequalities for Hessian Integrals

NuNzIA GAVITONE

Sunto. — Usando appropriate tecniche di simmetrizzazione, si provano disuguaglionze
di tipo Hardy-Sobolev per integrali Hessiani che estendono quelle classiche, ben note
per le funzioni di Sobolev. Per tali disuguaglianze viene dato il valore della costante
ottimale. Infine si stabilisce un miglioramento delle suddette disuguaglianze con
laggiunta di un secondo termine che presenta un peso singolare dato da un’oppor-
tuna potenza negativa della funzione log (|x|).

Summary. - Using appropriate symmetrization arguments, we prove the Hardy-Sobolev
type inequalities for Hessian Integrals which extend the classical results, well known
Sfor Sobolev functions. For such inequalities the value of the best constant is given.
Finally we give an improvement of these inequalities by adding a second term that,
mwolves another singular weight which is a suitable negative power of log (|x|).

1. — Introduction.

Let n > 2 and let Q be an open and bounded set of R". For a function
u € C%(Q) the k-Hessian operator, for k = 1,...,n, is defined by

(1.1) Fi(D*u) = [D*u], = Si(M(D*w)) = ok

1<ty <lg <+ <y, <ty

e
where D?u denotes the Hessian matrix of  and 4, is the " eigenvalue of D?u.
Well known examples of k-Hessian operators are F; = Au and F,, = det D?u
(Monge-Ampere operator). If for any = xn matrix A=[a;;] we put

. b
Fl@a) =5

—F, [A], it is possible to define the so-called (p, k)-Hessian Integrals
ij
for u € C3(Q), p > 1,

(1.2) L, @) = f F(D2u)DuDju| Duf’ ™ das
Q

Such integrals are well known generalizations of energy integrals. For ex-
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ample, if v = 0 on 0Q, we have for p > 1 and k =1,

(1.3) Lpu, Q) = f \DulP du

In analogy with the classical results obtained for Sobolev functions, in [15]
and [20], under additional convexity assumptions on 2 and u, suitable Sobolev
inequalities in the form

(1.4) Ly ew; Q) > Cllullf, o)

have been proved. For such inequalities the value of the best constant C is
available. In the present paper we investigate the question of finding an in-
equality in the form (1.4) when the norm of u is substituted by a norm with a
weight which is a suitable negative power of |x|. For such inequalities, sometimes
known as Hardy-Sobolev inequalities, we also give the best value of the constant.
The inequalities are established for a particular class of functions A;(Q2), with
n > k > 0, called k-convex functions. This class is defined as the set of functions
w(®) € C*(Q) N CY(Q), with Q k-convex (see Section 2), such that » = 0 on 6Q
and that verify the following properties:

(1.5) {DID)—ZJ >0,Vli=1,...,k, and for Du # 0
l
(1.6) [D*u], > g|Du|* for some g <0, g € L'(Q).

A consequence of (1.5) is that the functions of this class are non positive
functions, (see [15]).

A typical inequality for u € A;_1(Q), with Q (k — 1)-convex, (see Theorem 1)
reads as:

(1.7) Iyilu, Q) > C

q q
fIMIs dae
i

wherel<p<n—-k+1, 0<s<p+k—-1 q<

p(n —s)
n—k—-p+1

Various improvements and generalizations are given. Here we only quote the
fact that also the limit case, s = p + k — 1, which for Sobolev functions corre-
sponds to Hardy inequality, will be considered and the question of obtaining an
improved inequality with an additional term on the right-hand side, is addressed
(see Theorem 3). Similar results concerning improvements of Hardy inequality
can be found for instance in [4] and [6] for Sobolev functions. Our results will be
established using appropriate symmetrization arguments, in particular the
symmetrization for quermassintegral, defined in [15]. In fact, we will see that
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using the properties of this symmetrization process, we can obtain our results
proving them only for the symmetrand of the functions of A;(Q).

This paper is organized as follows. In Section 2, we introduce the notations
that we use in the paper, we define the symmetrization for quermassintegral and
we address the principal properties of this symmetrization which we need to
prove our results. In Section 3 we prove the Hardy-Sobolev type inequalities for
(p, k)-Hessian Integrals. In particular, we prove that these inequalities are sharp
defining a suitable minimizing sequence of functions in the class A;(2). In the
last section, we give an improvement of Hardy inequality, established in Section
3, by adding a second term in the right-hand side that involves another singular
weight which is a suitable negative power of log (|x|).

2. — Notations and Preliminaries.

We begin with an appropriate definition of quermassintegral for non-convex
domains (see [15]). Let Q be an open, bounded set of R” with boundary 0Q2 € C?,
having principal curvatures i, ...,x,_1 (oriented so that convex domains have
non-negative curvatures).

For k=1,...,n — 1 we define the k™ mean curvature of 9Q by

(2.1) H[0Q] = Silrcy, .., K1),
while for k = 0 we assume
(2.2) Hy=1
For k=0,...,n — 1 the quermassintegral V;(Q) is defined by

1
" n—1
k
where H" ! denotes the (n — 1)-dimensional Hausdorff measure in R”, and for

k = n we assume

(2.4) V@) = 2.

23) V(@) = [Hy o s0@an,
oQ

When k < n — 2 we restrict our attention to quermassintegral on domains Q
that are (n — k — 1)-convex, i.e.

(2.5) Hi0Q>0,j=1,....n—k—1.

When 022 is connected, (2.5) is equivalent to H,_j_1 > 0, while for k = 0 we
have to assume that Q is (n — 1)-convex, that is the components of Q are convex
in the usual sense. Whenever 1, Qs are convex domains and Q; C €y, clearly
V(1) < Vi (£2).
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Moreover Vi.(Q1) < Vi(€2), for every k (see [5]). But this property is not true in
general when the domains are only (n — k — 1)-convex. We get around this diffi-
culty by only considering functions whose sub-level sets have this monotonicity
property, that are functions belonging to the class Ay (£2) defined in the introduc-
tion. Indeed in [15]it is proved that the sub-level sets of the functions in A;(£2), that,
as already said, are non positive functions, verify the monotonicity property
Vi-ie11(Qs) < Vi 1(2), where Q; = {x € Q : u(x) < t} and mgnu <s<t<NO.

Let Qbe (n — k — 1)-convex; we introduce the k™"-mean radius of Q defined by

&(Q) = (V’“(g)y k=1,...,n
()

ék(m) = 07

when w, denotes the measure of the n-dimensional unit ball. The following
isoperimetric inequality holds true (see [16])

(2.6) Q) <&(Q) for 1<k<I<m.

We observe that (2.6) includes the classical isoperimetric inequality when
1
Hnl(Q)>nl

n

l=nand k =n—1, because &,_1(Q) = (
Now we can define the (k — 1)-symmetrand of a function u € A;_1(Q),

k=1,...,n as follows:

(2.7 up (@) =sup{t <0:&, p1(Q) < x|, Du+#0on2;}

for |x] < R = &,_;,1(Q), where 2, is the ¢ level set of u, 2} = {x € Q : u(x) = t}.
The following statements hold true (see [18] and [15]):

o writing u;,_,(|x|) = p(r) for » = |x|, we have p(0) = rrgnu and p(R) = 0;
e p(r) is a negative and non-decreasing function on [0, RJ;
e p(r) € C%(]0, R]) and moreover 0 < p'(r) < sup|Du| a.e.
Q
REMARK 1. — For k = 1 we have that the 0-symmetrand of u, i. e. u;(x), co-

incides with the Schwarz symmetrand of u.
Moreover for k =n — 1 the (n — 1)-symmetrand of u, i.e. u;_;(x), is such that

n—1
Uy 4 <(nf} ) coincides with the rearrangement of % with respect to the
n

perimeter of the level set.

By definition, through (2.6), it follows &,(2;) < &({u;, < t}), for k> n —m
and equality holds when n — m = k. This implies

(2.8) i@ [l gy 221
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Let u € A;_1(Q) and let m = m{%nu <t < 0. We recall the following Reilly
equality (see [13])

2.9) f Sy (D) f \DulPH_1(Z) dH" L.

Now we can define the following functional, known as (p, k)-Hessian Integrals

0
(2.10) L. 2] f dt f Hy (2| DufP ™" dH 1,

m

and by the following statements (see [15])

Du
Hir(5) = [D—} . i Du 0,
|Dul] ),
F“(Dzu)D%uD%u—|Du|’”1{ g"d . if Du#0,

we see that definition (2.10) coincides with (1.2).
In the case p =k + 1 and u = 0 on 02, we have

2.11) Tivfu, Q) = k f F(D*w)u| dz,
Q

and Jj.41 is called k- Hessian Integral.
In the radial case the (p, k)-Hessian Integrals can be written as follows

2.12) i . Brl=n ( )wn f P (™ E )

where f (o' ") = [Vu_,@).
Finally for (p, k)-Hessian Integrals the following extension of Polya-Szego
principle holds, (see [15]),

(213) Ip,k[u, .Q] Z Ip,k [u;;il,BR], yu Z 1.

3. — The Hardy-Sobolev inequality.

In this section we prove some inequalities that extend the result in [15] and
which can be seen as analogous to Hardy-Sobolev ones which are known for
Sobolev functions, (see [11], [12], [8],[2]).
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THEOREM 1. — Let Q be an open, bounded and (k — 1)-convex set of R" and let
beu € Ap_1(Q), (withk =1,...,n). If1 <p <n —k + 1then exists a constant C
depending only from n,k,p,s, Q, such that

P

q q
|t g,
J 1ol

forq < n_p(ly%s) and 0 < s < p+k — 1. The constant C is given by

(31) ka[u,.Q] 2 C(nap7k7Qa$aQ

p+1
o_(n1 ptk—s—1\i !zt p—1 \"!
k-1 p n—s n—p—k+1
(1~ 5) (n—s) \1°
3.2 pn —s p(n—s =
32) F<1+2(p+k—s—1))rco+k—s—1)

PrOOF. — Let u € A;_1(Q), and consider the (k — 1)-symmetrand of u, uj,_,. If
we set R = &,(Q) and R = &,_;,.1(Q) we have:

q wk q wr q
(3.3) f'”' ng||x°L dxgﬂ |’;|;| d
By Bg

where the first inequality is a consequence of Hardy-Littlewood inequality for
rearrangements (see [1], [2]) and the second inequality is a consequence of (2.6).
Then Polya-Szego principle for Hessian Integrals (2.13) and (3.3) allow us to prove
inequality (3.1) only for the (k — 1)-symmetrand of u, i.e. u;_,. Now writing

w1 () = up_ (j2)) = p(r), =z,
we have, by (2.12):

R

(3.4) Ly [ui_1(|%)), Bg| = nw, (Z : i) f (P )P " dre
0

In order to prove (3.1) we have to show that the following one-dimensional
inequality holds true

P

E q
(35) na)n< ) f /7 (7,.) P n— de > noy, |:f |p|q7,.n 1- gd?"]
0
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Let s < p + k — 1 and let us make the change of variable ¢ = #P/(+%=5=1 Then
the inequality (3.5) becames

RP/(p+k—s=1) RP/(ptk—s=1) q
(3.6) f ()t dt > C { f Ip()[7td-1 dt]
0 0
where
__pm—s)
(3.7 R —— and

. n—1 -1 D Lip-1
(85) C_C(k—1> (,m) |

Now, extending to zero the function p in R™ inequality (3.6), and then (3.5),
follows immediately from Lemma 2 in [14]. The constant in such Lemma is sharp
and a straightforward computation gives the constant in (3.2). We finally observe
that after the change of variables, the inequality (3.6) can be viewed as a Sobolev
embedding theorem in the fractional dimension d in (3.8) and we must require

p<d ie. p<n—k+1 0

REMARK 2. — We observe that in particular cases inequality (3.1) reads as
follows:
(i) If we take s =0 we obtain the Sobolev inequality for (p,k)-Hessian
Integrals (see [15]).
(ii) If we take k = 1 then we have

Ipafu, @) = f \Dul? de
Q

hence the inequality (3.1) becames the well known Hardy-Sobolev inequality
([11], [2], [12], [9]) and if we take also s = 0 we have the classical Sobolev in-
equality with the best constant (see [14]).

Moreover if we take only s = 0 and we obtain the Sobolev inequality for (p, k)-
Hessian Integrals (see [15]).

For inequality (3.1), as the classical case for s =p, in the limit case,
s=p+k—1, we have the following Hardy type inequality for (p,k)-Hessian
Integrals.

THEOREM 2. — Let Q be an open, bounded and (k — 1)-convex set of R" and let
u€cAp 1(Q), k=1,...,n If1 <p <n—k+1the following inequality holds:

n—10\(m—-k—p+1\"r |uf
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Before proving the inequality (3.9), we need following Lemma about the
Hardy type inequalities in one dimension that we find in [2].

LEMMA 1. - Let w be a nonnegative measurable function on (0,00) and
suppose —oo < A< land 1l < d < oco. Then the following inequality holds:

o % d i - 3
1-7 1 1 1 1-7 il
(8.10) {f (t !W(8)5d8> Edt} fﬁ{f(t 70) ;dt}

0 0

Now we proceed with the proof of (3.9).

ProOF OF THEOREM 2. - We will see that the inequality (3.9) is an immediate
consequence of the previous Lemma. In fact we can rewrite (3.9) as one-di-
mensional inequality.

Let u € A;._1(2) and we consider u;,_,(x). Using the same arguments of the
proof of Theorem 1, we again can prove inequality (3.9) only for u;_,(x).
Writing
g1 (@) = w1 (J[) = p(),

we must prove the following one dimensional inequality:

R
n—1
I, 1 [u, Br] = nawy, (k - 1) f () dr
0

(3.11) "
n—1\(n—k—p+1\’
> P m—k—p )
(e ) (=52 Jore e
Then taking
y(s) = p'(s)s
g tk-n-1
p
d=p
and extending the function p to zero for r > R, by inequality (3.10) we have
(3.11). a

REMARK 3. — We observe that inequality (3.1) and (3.9) are sharp.

Now we show the optimality of the constant in (3.9). A similar argument can
be repeated for (3.1). For all ¢ > 0 we define the following functions:

n—k+1 n—k+1

u, (%) = w(|]) = (qu_;'_gq> - (WJlreq) P
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—k— 1
where q = %’ R =¢, 1(Q) and 7 = |x|.
We prove that
lim e n—1\/n—k—-p+1\’
3.12 tpilue 2] —.
o o) ()

t~>0
f p+k— 1
2 1l

First we prove that u, € A;_1(Q). We observe that

o %, € C¥@QNCOQ), Ve>0
e %4, <0 inQandu,=0 onoR

Computing the derivative of u, we have:

S{D(ﬁ—iﬁ)} :sl[D(%)} - (7_‘3) <%>l>o Vi=1,... k-1

hence the property (1.5) in the definition of A;_; is checked. Moreover

n—k+1 ri—2 o
Sk*l [Dzuﬁ} = <q 71k+p+1>
p (r1 4 e2) " »

n—1 N n—1 1 o m—k+1 7!

k-1 p-2)\1 1 D 7l + &4
B 1 1 [(m—1 n—1 o om—k+4+1
o () () (e 2k

>|Du|" " g(|a])

where

1

and C(n, k,p) = (lc ;) (1 +q2 W_Tlﬁl)

We note that g € L}(Q) since k < n, hence also the property (1.6) is checked
and we obtain that u, € A;_1(22) and the claim is proven.
Now we consider the limit (3.12). We have:

R
-1
I, x[u., Br] =naw, (k— 1>f (u;,)p n—tk gy

R/e 1 n—k+p+1
2
n—k——"__
(W) I% Nt 1 d/y*

n— 1) <nkp+l)p
=nw - - £ -
n(k_l p f Y n—k+1 +1

0



960 NUNZIA GAVITONE

On the other hand we have:

a1 n—k+1 P

R
|| 3 1 ! 1 ’ n—k—p
3.13) [ it da = Il ) ] [
0 n—k+ o

o B

Setting y(r) = , the limit (3.12) can be written as follows:

n—k—p+1
Yokl 4 1

Ip,k [u87 Q]

e=0 f |uz: |p
dx
k—1
2 ol

S
2
— P
fl//(r)" WLk gy

— lm <n—1) (n—k—p+1>” 0
(314) e k B 1 p "*}/; n— k+1

f [ —y(s)
0

. (m—=1\(n—k—p+1\’
“im () ()

Now we set

} rRP qy

S
2
_ Py S
fl//(y)n Fp Lyt

)n k+1f (WEZ;) P

P
—11 PP e

1y

g y(s)
n—k+1

ag n—k—p+1
=1
" [w(s) ]

Hence the integral in the denominator of (3.14) becomes:

n—k+1 (7‘)
w(s) f K (8)>
1 n—k+1
n— k + 1 n—k 1\ »
(n “k-p+ 1>“’(S) f KE)

p n—k
g
-1 — =1 d
} (w(s) ) ’
w(s)

1 n—k+1 p
n— k+1 nk n—k—j n—k—j n—k 1 T i
(o p+1>]20( v (" |(G) T e

w(s)

= k+1

P
1} i

(3.15)
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Now we observe that:

1 n—k+1 p
- 15" . 1
. n—k—j 1 _ j _ ip - B
(316)  Tim y(s) ﬂ<°’> 11 oo = s iitn—k
w(s
and
1 n—k+1 P
f[(l) ! —1] " *do
g

(3.17) lim ' —1

§-00 —log w(s)

Using (3.14), (3.15), (3.16), (3.17), we have,

S
2
_ .
fy/(r)” ktp+lpn—k—teg de
0

. (n—=1\(n—k—p+1\’
élerolo <l{} — 1) ( p ) S n—k+1

l//(S)n—ka[(%) P

0

P
—1] i /%

s
2
_ P
fl//(?”‘)n k+p+lq,,n k—t dr
0

_(m=1\(n—k-p+1 pl'
S \k-1 P agglc< n—k+1

n—k—-p+1

)( —log w(s))

-1 —k— 1\?
Hence (3.12) holds and " nok-ptl is the best constant in the
. . k—1 p

inequality (3.9).

4. — An improved Hardy inequality.

In the previous section we have proved the Hardy inequality for (p,k)-
Hessian Integrals and we have given the best value of the constant.

In this section we show that an improved Hardy inequality holds for (p, k)-
Hessian Integrals. Such inequality is obtained by adding on the right-hand side

)
1
of (3.9) a second term involving the singular weight 7>> . Moreover we

will prove that the optimal value of yis y = 2. log (ﬁ
The main result is the following
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THEOREM 3. — Let Q be an open, (k — 1)-convex and bounded set of R" with
O0<k<mn Let C be a positive constant such that C > sup(|ac|ep) and
1< p<n—k+1 Then the following statements hold:

i) there exists a constant C; > 0 depending on n,p, k,C such that

n—1N\(m—k—p+1\"r |uf
Ip‘k[uag] > (k _ 1) ( P > !|x|p+kl dx
(4.1) , ’
+af [ ! dae

|x|p+k—l (C)
Q log [ —
||

for every functions u € Ap_1(Q) if and only if y > 2.
il) For 2<p<mn—k+1 there exists a constant Co > 0 depending on
n,p,q,C, Q such that for any u € Ap_1(Q2) we have

n—1 n—k—p+1\’r |uff
Iy lu, 2] ><kl> ( p )Qfx|p+k—1 dae

(4.2) 2 )

g
ul” 1 |ul?
G — de+Csy | | — du
s oe (©) ol

]

wherel<q<%<md0§ﬁ<p+k—1.

This theorem extends the results in [6] and [4].
ProOF. - We organize the proof in the following manner: first we prove the

validity of inequalities (4.1) and (4.2) and finally we show the optimality of y = 2.
y
Let u € Aj_1(Q), since the singular weight (log (‘ |)> is a decreasing

function with respect to » = |x| under our assumption on C, we can prove both
inequalities, (4.1) and (4.2), only for the (k — 1)-symmetrand of u, i.e. u}_,(x) by
Hardy-Littlewood inequality for rearrangements (see [1], [2]) and Polya-Szego
principle for Hessian Integral (2.13).

Writing

uzfl(|x|) = /)(T)7

and setting d = n — k + 1, the inequalities (4.1) and (4.2) that we have to prove
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become respectively the following one-dimensional inequalities

R

-1
Ll e B =2 1) [ ooy ar
0
, B
n=1\(m—k—p 1\ LIl 4s
ey i
R
P
+ le |p| C 5 ,},,dfl dr
p J—
0 7 <log <r )>

R
]p,k [ultfqu')vBR] :(Z - ::II:) f (pl(,',,))Pq,.d—l dr
0

(4.4) E
+ le |p| Tdfl dr

2
0 yPlog <%>

3
R q
|p|q d—1dr
+ Cg [ R 7 .
0

We observe that (4.3) and (4.4) follow from Theorem 1.1 in [6] where the di-
mension 7 is replaced by d.

Now we shall prove the optimality.

We supposethatl < p <n —k+ 1land 0 <y < 2. We observe that in the case

N . -1 —k— L
7 = 0 the optimality holds true since f, ,; = (Z B 1) (%) is the

best constant in the Hardy inequality (2). Hence we can suppose 0 < y < 2.
Now we define the following functional

n—1\(n—k—p+1\"r |uff
il 21 (k - 1) ( p ) / et
2

45) )= ;

Q

jul” 1
— dx
f|x|p+k ' log (C>
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To prove optimality of y = 2 we shall prove that

(4.6) inf J,(u) = 0.
7!614]\.7 1 [(®)]
u#0

To prove (4.6), we will construct a sequence u, € A;_1(£2) Ve > 0 such that

(4.7) lim J, () = 0.

Now, without loss of generality, we suppose that Q is the unit ball B;(0), we

—k— 1
set a = w, and for every ¢ > 0, we define the following functions
_ % 0<r< &
2a
1 e
eae**log <8>
»
log (=
2
i - T alogf(f? &<r<de
(48) Uy = eaezalog (-) r )
&
log (£
— Og(ﬁzl) Ber<r<ce
1,.alog ©
log (r)
_ m e<r<l,

where r = |x|.

We observe that this function is negative, increasing, continuous and null on
the boundary of B1(0) but it is not a smooth function, hence %.¢A;_1(B1(0)).

Moreover it is easy to check that in every interval where #, has the second
derivatives, u, fulfils the properties (1.5) and (1.6) of the class A;_1(B1(0)).

We observe that if we compute J,(u,) we obtain that (4.7) holds true. In fact
using the same arguments of [6] we have:

i, P 2nw,. (1
4.9 dx > 1 -
Y Bfw”’“—l B ESRLAT

Moreover we have

2nwy, (Z : i) a? 1 1
(4.10) = Tlog (E) +0
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Hence by (4.9) and (4.10) we obtain that the numerator of J,(u,) is:

n—1\(n—k—p+1\'[ |uf L
(411)  Ipkfu, Q] - (k _ 1) ( p ) !IWMH =0 lo (1>
g

&

Now we consider the denominator of J,(it,) and we have

y

Juf? 1 . 1\ "7
(4.12) f|x|p+k—l C dx > C| log (E) ,
Q log (—)

]

where C is a positive constant depending only by =, p.
Finally, by (4.12) and (4.11) and since 0 < y < 2 we have
(4.13) Jy(u;) — 0 for &¢—0,

hence the claim is proved.

Now in order, to have a sequence u, € A;_1(B1(0)) that fulfils (4.7), we reg-
ularize u.. But before, to have that the regularization of #%, converges to u,
uniformly in B;(0), we extend %.(r) up to » = 1 + ¢ as follows

(1) 0<r<i1

(4.14) U, = %fr—log (%) 1<r<1+e
log (8)
Now we define the regularization of %, as follows
_ R T =Y\ _
(415) ux,h(%) =h . j;o)p( h—> ug(y) dy,
1+e

where 2 > 0 and such that h < dist(x, 9B1..(0)) and p is the usual mollifier.
Now we prove that %, ;, € A;_1(B1(0)). First of all we need to have %, (x) =0
on 0B1(0). Hence we define the following function

(4.16) Ve (@) = Ty, (x) — C,
where E = ﬁsyh(.’)ﬁ) |,931(0).
Using the property of u,, it is not difficult to prove the following statements:

e v, is a radially function on B;(0).

e v, is increasing with respect to » = |x| on B1(0), for h sufficiently small.
® Ve = 0 on 831(0)

e v, is a negative function on B1(0).

e v, fulfils the properties (1.5) (1.6) of the class A;_1(B1(0)).

Hence Ve € Ak,1(31 (0))
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Finally we shall prove that
(4.17) JyWep) — 0 for e — 0.

Since v, , is a radially function and setting v, ;(Jx|) = ¢(r), we have

n—1\/m-k-p+1\\r |uf
Tole @) = (k - 1> ( P ) f jop P e
Q

Jy(u) = 7
[uf” 1
JWP%I log (C d”
0
(4.18) n—1\ n—1\ (n—k—p+1\" [
/ p,m—k ]0+1 n—p—k
(k_1>0f((ﬂ(7”))”r dv—(k_1> <T> OIIW)IPT Pdr
; :
f I(/)(T)C\ _ppk gy
' (log(;D

By the following
Ve — U, fore—0 uniformly on B1(0);
Dv,j, = (Dv,), — Du, fore—0 uniformly on B1(0),
we have
(4.19) Sy e p) — J (%) for h — 0.
Finally, by (4.13) and (4.19), we have
JyWep) — 0 for ¢ — 0,

hence the optimality is proved.
This completes the proof of the theorem. O
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