BOLLETTINO
UNIONE MATEMATICA ITALIANA

STEFANO MONTALDO, IRENE I. ONNIS

A Note on Surfaces in H? x R

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 10-B
(2007), n.3, p. 939-950.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_939_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per
motivi di ricerca e studio. Non é consentito 1’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_939_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2007.



Bollettino U. M. 1.
(8) 10-B (2007), 939-950

A Note on Surfaces in H?> x R

STEFANO MONTALDO - IRENE I. ONNIS

Sunto. — In questo lavoro si considerano le superfici nel prodotto HZ x R del piano
iperbolico con la retta reale. I risultati principali sono: la descrizione geometrica di
alcune proprieta dei grafict minimi; la determinazione di nuovi esempi di grafici
manimi completi; la classificazione locale delle superfici totalmente ombelicali.

Sammary. — In this article we consider surfaces in the product space 2 x R of the
hyperbolic plane F2 with the veal line. The main results are: a description of some
geometric properties of minimal graphs; new examples of complete minimal graphs;
the local classification of totally umbilical surfaces.

1. — Introduction.

In the last decade the study of the geometry of surfaces in the three-di-
mensional Thurston geometries has grown considerably. One reason is that
these spaces can be endowed with a complete metric with a large isometry group;
another, more recent, is the announced proof of the Thurston geometric con-
jecture, which ensures the dominant role of these spaces among the three-di-
mensional geometries.

Leaving aside the space forms R?, S* and H®, among the remaining five
Thurston geometries the Heisenberg space is probably the most studied and the
geometry of surfaces is well understood. In recent years the study of the geo-
metry of surfaces in the two product spaces H? x R and S x R is growing very
rapidly, and the interest is mainly focused on minimal and constant mean cur-
vature surfaces [1, 2, 5, 6, 7, 8, 9, 10, 12, 14, 15].

The purpose of this paper is first to investigate on some geometric properties
of minimal graphs in H? x R (Theorem 2.1 and Proposition 2.5) and to produce
some new examples including complete ones. In the last part (Theorem 3.4) we
classify, locally, the totally umbilical surfaces in H? x R, giving their explicit
parametrizations.

We shall recall some basic notions on [ x R. Let 1% be the upper half-plane
model {(x,y) € R? |y > 0} of the hyperbolic plane endowed with the metric
g1 = (da? + dy?)/y?, of constant Gauss curvature —1. The space H?, with the
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group structure derived by the composition of proper affine maps, is a Lie group

and the metric gy is left invariant. Therefore the product H? x R is a Lie group
with the left invariant product metric

da® + dy?

= T

With respect to the metric g an orthonormal basis of left invariant vector fields is

0 0 0
_y%> Ez_ya_y7 E3_§a

+ d72.

(1.1) B

and the non zero components of the Christoffel symbols are:

1 1
(12) F%Z:F%I:I%Z:—g, F%:

2. — Minimal graphs.

The natural parametrization of a graph M in H? x R is
¢, y) = (x,y,f (@, y)), (x,y) € 2,

where the domain @ C [1? is relatively compact, with a differentiable boundary
and f : Q — R is a C?-function. The unit normal vector field ¢ to M is given by

21) top=-m - fg, Lg,
wy wy wy

where

w:%\/y%f; +fH+1.

The coefficients of the induced metric & = ¢*g are
1 1
E =9, ¢, =ff+?ﬁ, F=9@,.¢)=ff), G=9¢,9,) =fl,2+?,

while the coefficients of the second fundamental form are given by

N = _g(vqﬁyév ¢y) = yfyy —gf‘:y )

wy
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where V is the Levi-Civita connection associated to the metric g. The mean
curvature function is then

2.3) H:y—zdiv(vif) :ldiv-[{z(%f),

20 M 1w’ 2

where V and div stand for the Euclidean gradient and the Euclidean divergence,
while div, is the divergence in (Hz,g“). The equation H =0 is called the
minimal surfaces equation in 12 x R, and can be also written as

24) A+ D e —y A+ DLy = 207 fefy oy + A+ 0Dy = 0.

This equation was first found by B. Nelli and H. Rosenberg, in [9], where they
showed that in H? x R there exist minimal surfaces of Catenoid-type, Helicoid-
type and Scherk-type. Moreover, they proved that Bernstein’s theorem fails,
that is there exist complete minimal graphs in 1% x R of rank different from
Zero.

The first geometric property of minimal graphs is that, as in the Euclidean
case, solutions of (2.4) define graphs of “minimal” area.

THEOREM 2.1. — If f satisfies the minimal surfaces equation (2.4) in 2 and f
extends continuously to Q, then the area of the surface M, defined by f, is less
than or equal to the area of any other surface M defined by a function f in Q
having the same values as f on 9Q. Moreover, equality holds if and only if f and
f coincide on Q.

ProoF. — The theorem follows by an argument similar to that used for mini-
mal graphs in R? (see, for example, [13]) and for completeness we give the proof.
In the domain @ x R of % x IR, consider the unit vector field V(x, y, z) given by

Writing V = V' (9/0x;) and denoting by div, ., the divergence of I* x R, we
have

. vf
V= —delv(m)

divye, g

Since f(x, ) satisfies (2.4), it follows that
divie, V=0 on QxR

The surfaces M and M have the same boundary, and therefore M U M is an
oriented boundary of an open set ® in Q x R. Denoting by # the unit normal
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corresponding to the positive orientation on M U M and using the Divergence
Theorem, we have:

2.5) 0=[div,e, V= [ gv.mda.
@ MUM
From the definition of the vector V and from (2.1), it follows that
V=ng on M,

hence, from (2.5), and since V and 7 are both unit vector fields, it results that

AM) = [ gV, ndA = [ gV, - da < [ dAa = AD.
M by i

Furthermore, equality holds if and only if g(V, —7) = 1, that is, if and only if
on Q f,=f, and f, =f,. Finally, since fjso = fjoe, we must have that
fl,y) = fx,y) for all (x,y) € Q. O

In the following we show some solutions of (2.4).

ExampLE 2.2. — If a solution of (2.4) has the form f(x,y) = ¢(x), we have that
¢"(x) = 0 and, then, f(x,y) = ax + b, with a,b € R. These are the only minimal
planes in H? x R that can be described as graphs.

If now we look for solutions of type f(x, %) = w(y), then (2.4) assumes the form
v'(y) —y ' (y)® = 0, and, by integration, we get

w(y) = arcsin (a y) + b, 0<y<l/a, a,beR, a>0.

ExampLE 2.3. — We can find interesting examples of minimal graphs seeking
for radial solutions of (2.4) of type f(z,y) = h(z?> + ?). In this case, it results
that zh"(2) + K/(2) = 0, thus the desired function is

(2.6) fl@,y) =aln(@®+ 4> +b, a,beR.

This surface, called the funnel surface, defines a complete minimal graph. We
observe that the Gauss map of this surface is of rank 1. On the right hand side of
Figure 1 there is a plot of the image, under the Gauss map, of the funnel
surface, which is plotted on the left hand side.

ExampLE 2.4. — Let f(z,y) be a solution of the minimal surfaces equation of
type
a(x)

f(%y):m»
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Fig. 1. — Complete minimal graph of rank 1 (left) and the image of its Gauss map (right).

where a(z) is a real function. Then, (2.4) gives
[(@® + 12" + 49" a(@)?]d" (@) — 4% + y?)P [z d (x) — a(@)] = 0,

of which a solution is a(z) = cx, with ¢ € R. The corresponding minimal
function is
(2.7) flz,y) =

cx

m, CGR,

which produces the minimal graph plotted in Figure 2 (left). We observe that
the Gauss map of this complete graph is of rank 2.

This example can be generalized considering, for a given real function %, a
solution of (2.4) of type f(x,y) = h(ﬁw) or of type f(x,y) = h(xzi—yz) In the
first case we essentially find (up to translations) the example given by (2.7). In
the second case it results that 2”(z) — z#/(z)® = 0 and, therefore,

h(z) = arcsin (az) + b, a,beR.

The corresponding minimal function
: ay
— _d b
f(x,y) = arcsin <x2 y2> +

does not define a complete graph. A plot of this surface is given in Figure 2
(right).

We now study the relations between the minimality of a surface in
(H? x R, g), defined as the graph of a differentiable function f, and the harmo-
nicity of f.

Let M be a minimal graph of a C?-function f, defined in a domain Q of 1% and
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Fig. 2. — Minimal graphs of rank 2: a complete one (left) and a non complete one (right).

(e, y) = (x,y,f(x,y)) its global parametrization. We know (see, for example, [4])
that ¢ : (2, h) — H? x R is harmonic, that is ¢ satisfies the system
oo og
A * Y Fa T — == 1 2
h¢ +h /}y (9901 8967 Oa a ’ 737
where 4, is the Beltrami-Laplace operator with respect to the induced metric
h = ¢*g. Consequently, from (1.2), it follows that A,f = 0.

As an immediate consequence of the this fact, we can prove that there exist no
compact minimal surface without boundary in the product H? x R. In fact, let

w: M— (2 x R, g)

(2.8)
pr— (w1(p), w2(p), w3(p))

be a minimal immersion of a compact surfaces M in 1% x R. Then, Dyrgys =0
and, from the Hopf maximum prineciple, w3 must be constant.

To state the next result we recall that a curve is called a pregeodesic if there
exists a reparametrization which is a geodesic.

PROPOSITION 2.5. — Let M C H* x R be a minimal surface defined as the
graph of a non constant differentiable function f : Q C H?> — R. Then, the level
curves of f are pregeodesics of H* if and only if f is harmonic with vespect to the
flat Laplacian.

PrOOF. — Let f be a solution of (2.4) and let y(t) = (x(t),y(t)) be the para-
metrization of a level curve of f. If the function x(¢) is constant, it results that
fy =0 and thus, using Example 2.2, the surface M is a piece of the plane
z=ax+b,a,becR.

Thus we can assume that there exists a point ¢, such that «/(f) #0 in a
neighborhood of ¢y. Therefore, we can parametrize y as y(x) = (x,y(x)), with
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y(x) > 0, in a neighborhood of y(t). It follows that

o — B Y@
y(x)_y(ac) Yy %

and

L 2 Y@y @) — y' @) +1
Vyy =- E Es.
' y(@)* ( Y@y ) E:

The geodesic curvature k, (in %) of y is then

o 9TV Y@y @) +y @° +1

! 112 (1 + y'@)?)*?
Using
oy Ja(@, y(@)
Y = @)
and

_fmc + 2fxy?// "’fyy(?/’)z
Ty ’

the minimal surfaces equation (2.4) can be written as
Af = y@ ky [V e,

which completes the proof. O

y/l(x) —

REMARK 2.6. — Since the functions given in the equations (2.6) and (2.7) are
harmonic with respect to the flat Laplacian, from the above result we conclude
that the corresponding minimal graphs are ruled. Another example of harmonic
minimal function is given by

f(x,y) = a arctan (#) + b, a, be R7

which gives (locally) the helicoid.

3. — Totally umbilical surfaces of H? x R.

We start this section by studying the totally geodesic surfaces of I? x R. For
this we need the following lemma.

LemMA 3.1. ([11]). — Let M be a regular surface in 12 x R. Then, there exists
an open dense set in M, of which the connected components admit one of the
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following parametrizations:

Xu,v) = (u,v,f(u,v)), v>0,
Y(u,v) = (u, a(u),v), a(u) > 0,
Z(u,v) = (c,u,v), u >0,

where ¢ € R and a(u) is a real function.

The parametrizations Y (u,v) and Z(u,v) of Lemma 3.1 define surfaces that
we shall call vertical surfaces.

THEOREM 3.2. — The totally geodesic surfaces of 12 x R are the horizontal
planes z = ¢, ¢ € R, and the vertical cylinders over the geodesics of 2

PROOF. — Since a totally geodesic surface in 1% x R is not compact, using
Lemma 3.1, we only have to classify the totally geodesic graphs and the totally
geodesic vertical surfaces. We start by proving that the only totally geodesic
graphs are the horizontal planes z = ¢, ¢ € R. Let M be a totally geodesic surface
defined as the graph of a differentiable function f. From (2.2), it follows that

My

fam - y 9
(3.1) Sy = —%,
fxy = _f;-

First, observe that f(x,y) = ¢, ¢ € R, satisfies (3.1) and, therefore, defines a to-
tally geodesic surface. Then, since f;, = 0if and only if f, = 0, there exist no totally
geodesic graphs defined by a (non constant) function f that depends only on one
variable. Thus, we can suppose that f,, # 0 and f,, # 0. From the second and third
equations of (3.1), we find that there exist two functions p(x) and g(x) such that
fy = p@)/y and f, = q(x)/y. Now, replacing in the first equation of (3.1), we have
the contradiction

yq'(x) — plx) = 0.

To complete the proof observe that the vertical cylinders over the geodesics
of 1% are totally geodesic surfaces of 11? x R. In the following, we prove that
these cylinders are the only vertical surfaces which are totally geodesic in
HZ x R. Let M be a vertical surface. From Lemma 3.1, it follows that either M
is the totally geodesic plane x = ¢, with ¥ > 0, or it is parametrized by

(3.2) X, v) = (u, a(u),v), a(u) > 0.
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The unit normal vector field to the surface M, defined by (3.2), is

!

=% g —;E
Jit@?r L Vit@g o

It is then straightforward to compute that

(3.3)

o 1 o 1
Vy,é= + E +{ - }E
o K\/H(a'f)u a\/1+(af)2} Hovirer e ™
and
erf:(L

hence M = N = 0. Consequently, M is totally geodesic if and only if
L =-9(Vx, ¢ Xy) =0,
that is, the function a(u) satisfies the following ODE:
ad" +@)P?+1=0.

The latter equation implies that

a(u):\/—u2+2clu+02, c1,c2 € R with c§+cz>0,

and the curve (u, a(w)) is the geodesic of 1? given by the upper semi-circle with

center at (c1,0) and radius 1/c§ + ¢2. This completes the proof. O

REMARK 3.3. — From the proof of Theorem 3.2 it follows that, if M is a vertical
surface, then F = M = N = 0 and so the mean curvature is given by H = L/2FE.
Thus a vertical surface is minimal if and only if it is totally geodesic.

We are now ready to state the main result of this section.

THEOREM 3.4. — The totally wmbilical surfaces of I x R are locally:
i) the totally geodesic surfaces given in Theorem 3.2;
ii) the surface given as the graph of the function

A, y)

Vi — A, y)

1rec
i(oay):g[%(x2+y2)+02x—63}, ¢1,62,¢3 € R,

f(x,y) = arctan ( +c, ceR

where

and

j=1—63—26163>0.
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Proor. — Using Lemma 3.1 we only have to classify the totally umbilical
graphs and the totally umbilical vertical surfaces. Let M be a totally umbilical
surface of % x R parametrized by

¢, y) = (e,y.f@,y), (r,y) €QC P
Let p € M and let & be an unit normal vector field defined in some neighborhood
U of p. Since M is totally umbilical, by definition, there exists a function

4 : U — R such that the shape operator A, satisfies A: = Al in U. The expres-
sion of A with respect to the basis {¢,, ¢, } is

e G,

Adp) =
1, Ja J;
o)t WG,
Thus M is totally umbilical if and only if
(),
1, Jo
34 (o). = oy
fa J
()= G,

The first and second equations of (3.4) imply that there exist two functions a(x)
and b(y) such that

fe

yw = a(x), % =— f a(x)dx + b(y).

Then, from the third equation of (3.4), we conclude that
c
a(x) = c12 + ¢, b(y) = Elyz + c3,
where ¢, ¢z, ¢3 € R. Thus f, /w = 4 (y* — «%) — ¢t + ¢3, which implies that

1
(3.5) )»(ac,y):y(;—yw)y=§{C2—1(902+y2)+0290—03 .

From the Codazzi’s equation for totally umbilical surfaces (see, for example, [3])

and using

e

wys

R($,.$,)0)" = MfggEl — e,
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it follows that

PR
~x*wy2a
(3.6) p
Jy =L
Y wyz

Now, using the identities

(WL?JZL _ _y[m (@f_”y)y +fy (@{}‘_?!y)y}

()=l (5. +0 ()]

and (3.5), a simple calculation gives
1
2

(3.7) yw= :
Vi— 7

where j(x) =1 — cg —2¢; c3 > 0. Substituting (3.7) in the first equation of (3.6)
we have

fle,y)

x = arctan ( ) + h(y),

— f /“7“ d. L
\[j— 22 \[j— 22
for a certain function 2(y). From the second equation of (3.6), we conclude that
h(y) is constant.
To complete the proof, we must study the case when M is a totally umbilical

vertical surface. From Lemma 3.1, it follows that either M is the totally geodesic
plane x = ¢, or it is given by:

X(u,v) = (u, a(u),v), a(u) > 0.

In the last case, we have A:X,, = —Vx,¢ = 0 and, therefore, 4 = 0. This concludes
the proof of the theorem. O
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