BOLLETTINO
UNIONE MATEMATICA ITALIANA

D. SIVARAJ, V. RENUKA DEVI

Some Separation Axioms Via Ideals

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 10-B
(2007), n.3, p. 917-931.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_917_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per
motivi di ricerca e studio. Non é consentito 1’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_917_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2007.



Bollettino U. M. 1.
(8) 10-B (2007), 917-931

Some Separation Axioms Via Ideals

D. SivarAJ - V. RENUKA DEVI

Sunto. - Introduciamo una nuova classe di spazi, detti spazi di Hausdorff modulo Z o Ty
mod T rispetto ad un ideale T che contiene la classe di tutti gli spazi di Hausdorff.
Diamo delle caratterizzazioni di questi spazt e studiamo le loro proprieta. Il concetto
di compattezza modulo un ideale T fu introdotto da Newcomb nel 1967 e studiato da
Hamlett e Jankovic nel 1990. Studiamo le proprieta dei sottoinsiemi I-compatti in
spazi di Hausdorff modulo T e generalizziamo alcuni risultati di Hamlett e Jankovic.
Gli spazi I-regolari furono introdotti da Hamlett e Jankovic nel 1994. Studiamo
ulteriormente il concetto di I-regolarita rispetto alla sua conservazione da parte di
Sfunzioni, sottospazi e prodotto.

Summary. — We introduce a new class of spaces, called Hausdorff modulo I or T mod T
spaces with respect to an ideal I, which contains the class of all Hausdorff spaces.
Characterizations of these spaces are given and their properties are investigated. The
concept of compactness modulo an ideal T was introduced by Newcomb in 1967 and
studied by Hamlett and Jankovic in 1990. We study the properties of I-compact
subsets in Hausdorff modulo Z spaces and generalize some results of Hamlett and
Jankovic. T-regular space was introduced by Hamlett and Jankovic in 1994. We
Sfurther investigate the concept of I-reqularity with regard to its preservation by
Sfunctions, subspaces and product.

1. — Introduction and Preliminaries.

The subject of ideals in topological spaces has been studied by Kuratowski
[13] and Vaidyanathaswamy [19]. An ideal Z on a topological space (X, 7) is a
nonempty collection of subsets of X which satisfies (i) A € 7 and B C A implies
BeTand(ii))A € Z and B € 7 implies A U B € Z. Given a topological space (X, 1)
with an ideal Z on X and if p(X) is the set of all subsets of X, a set operator
() : pX) — pX), called a local function [13] of A with respect to 7 and Z is
defined as follows: for A C X, A*(Z,0)={x € X | UNA ¢ T for every U € t(x)}
where t(x) = {U € t | « € U}. We will make use of the basic facts concerning the
local functions [11, Theorem 2.3] without mentioning it explicitly. A Kuratowski
closure operator cl*(.) for a topology t*(Z, 7), called the x — topology, finer than  is
defined by ¢l*(4) = AUA*(Z, 718l and f ={U — I | U € rand I € T} is a base
for 7*[11]. When there is no chance for confusion, we will simply write A* for A*(Z , t)
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and t* or t(Z) for t*(Z, 7). If Z is an ideal on X, then (X, 7, Z) is called an ideal space.
By a space, we always mean a topological space (X, t) with no separation properties
assumed. If A C X, cl(A) and int(A) will, respectively, denote the closure and in-
terior of Ain (X, 7) and cl*(A) will denote the closure of Ain (X, t*). An open subset A
of a space (X, 7) is said to be regular open if A = int(cl(A)). The complement of a
regular open set is regular closed. Given an ideal space (X, 7, 7), 7 is said to be co-
dense [4] if ZNt={0} and Z is said to be reqular [3], if ROX) N Z={(} where
RO(X) is the family of all regular open sets. Every codense ideal is regular but the
converse need not be true [3].

2. — Hausdorff modulo an Ideal.

DEFINITION 2.1. — An ideal space (X, 1,7) is said to be Hausdorff mod Z or
To mod T if for every pair of distinct points x and y in X, there exist open sets U
and Vsuchthatx c U, ye Vand UNV € I.

Every Hausdorff space is T mod Z, since () € Z. The converse need not be
true as the following Example shows.

EXAMPLE 2.2. - Let X ={a,b,c}, 1={X,0,{a},{b},{a,b},{b,c}} and
T ={0,{b},{c},{b,c}}. Then X is T» mod Z but not Hausdorff (even it is not 71).

The easy proof of the following Theorems are omitted.
THEOREM 2.3. — A space (X, 1) is Hausdorff if and only if (X, 1) is To mod {0}.

THEOREM 2.4. — If an ideal space (X,t,Z) is Te mod T and T C J, then
X, 1, 7) 18 Te mod J.

THEOREM 2.5. - If (X,7,7) is a T2 mod I space and I is codense, then
(X,7,7) i1s Hausdorff.

The following Theorem gives a characterization of T mod Z spaces.

THEOREM 2.6. — Let (X,1,Z) be an ideal space. Then the following are
equivalent.

(a) X,7,7)isTo mod T.

(b) If x € X, then for each y # x, there exists an open set U containing x
such that y ¢ U*.

(e) Foreveryxin X, N{U} | U, € ©(x)} is either  or {x}.
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PRrOOF. - (@) = (b). Let x € X and y € X such that x # y. Then there exist
opensets Uand Vsuchthate e U,y e VandUNV € Z. UNV € 7 implies that
(UNV)y=pandso U*NV =0. Thus y ¢ U* which proves (b).

(b) = (¢). If x € X and y € X such that y # x, by hypothesis, there is an open
set U, containing x such that y ¢ U}. This implies that y & N{U} | U, € ©(x)}
and so {U} | U, € t(x)} is either () or {x}.

(¢)= (). Let x€X and ye€X such that x#y. By hypothesis,
y & N{U} | Uy € t(x)} which implies that y ¢ U for some U, € t(x). Therefore,
there exists V, € 7(y) such that U, NV, € 7 and so (X, 7,7) is T mod 7.

The following Theorem 2.7 shows that T mod Z is a property shared by both
(X, 1) and (X,7*). Corollary 2.8 below follows from Theorems 2.5 and 2.7.

THEOREM 2.7. — Let (X, t,7) be an ideal space. Then (X, t) is To mod T if and
only if (X, 7*) 1s Te mod T.

ProoF. — If (X, 7) is T2 mod Z, then clearly, (X, *) is T2 mod Z. Conversely,
suppose (X, 7*)is Tomod Z. Let x € X and y € X such that x # y. Then there exist
7 —opensets Uand Vsuchthate € U,y € Vand U NV € Z. Moreover, there exist
open sets Gand Hand I1,I € Z suchthatx e G-I cUandyce H—-I, C V.
Therefore, (GNH)—{1UI)=(G —-1))NH —I3) c(UNV)eZ, which implies
that GNH € 7. Hence (X, 7)is To mod 7.

COROLLARY 2.8. — Let (X, 7,7) be an ideal space where T be codense. Then the
Sfollowing are equivalent.

(a) X,1,7)1s Hausdorff.
(b) (X,7,7)1s To mod T.

(¢) X,*,2)is To mod T.
(d) X,7*,7) is Hausdorff.

If X is any set, A C X and 7 is an ideal on X, then Ty ={ANI | €T} =
{I eZ|IcCA}isanideal on A [11]. The rest of the section is devoted to sub-
spaces, product spaces and images and preimages of 75 mod Z spaces.

THEOREM 2.9. — Let (X, 7,Z) be a To mod Z space and A C X. Then (A,t4,Z4)
18 To mod I 4.

PrOOF. — Let « and y be two distinet points of A. Then there exist open
sets U and V such that x e U,y €V and UNV €Z. Now x € UNA € 14,
yeVNAeryand(UNANVNA) =UNV)NA € Zy. Therefore, (4,14) is
Tg mod IA.
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Iff:(X,1,7) — (Y,0) is a mapping, then f(Z)={f(I) | I € 7} is anideal on Y
[7, Theorem 1.8]. If f is an injection and J is any ideal on Y, then f~1(7)
={f"1(J)|J € J} is an ideal on X [7, Theorem 1.11].

THEOREM 2.10. — Let f: (X, 7,7) — (Y, 0) be an open bijection and (X, 7,7) be
Te mod I. Then (Y, 0) is Te mod f(T).

Proor. — Let y and u be distinet points in Y. Since fis bijective, there exist
distinet points « and v in X such that f(x) = ¥ and f(v) = u. Since (X, 7,7) is Ts
mod Z, there exist open sets U and Vsuchthat e e U,jv e Vand UNV e Z. If
UnNV=IecZ, then f(U)NfV)=fUNV)=fU) € f(Z). Since fis open, f(U)
and f(V) are open sets in Y such that y =f(x) € f(U) and u =f() € f(V).
Therefore, (Y, o) is Te mod f(Z).

THEOREM 2.11. - Let f: (X,7) — (Y,0,7) be a continuous injection map
where (Y, 0, J) be Ty mod J. Then (X, 1) is Ts mod f~1(7J).

PRrOOF. — Let & and v be distinct points in X. Since (Y, ¢, ) is T2 mod 7, there
exist open sets U and V in Y such that f(x) e U,f(w) e V and UNV € J. If
UNnV=JeJ, then fAAU)NfIV)=f1UNV)=Ff1J) e f1J). Since
f~Y(U) and f~1(V) are open sets containing x and v respectively, (X, 7) is T> mod

FHD).

Given a space (X, 7) and a collection A of subsets of X, the smallest ideal on X
containing A will be denoted by Z(A) and is called the ideal generated by A [7]. It
is easily seen that Z(4)={A |A C A; UAyU....UA,,A; € Afor eachi,n € N},
where N is the set of all natural numbers.

THEOREM 2.12. — Let (X,, 74, Z,) be a collection of ideal spaces for each a in an
ndex set A, where each (X,,t,,Z,) be Te mod Z,. If P, is the projection map for
each a, Az{P{;l(la) | I, € Z,, a € A}, T(A)1isthe smallest ideal generated by A
and Z s an ideal on [[ X, such that T D Z(A), then [| X, with the product to-
pology is To mod T.

PrOOF. — Let « and y be points in [[X, such that x # y. Then for some
a € 4, x, # Y, Since each (X,, 7,) is T2 mod Z,, there exist open sets U, and V,
such that x,€ Uy, o€V, and U,NV,eZ,. If U,NV,=1,€Z,, then
PAUHYNPNV,) =P Y (U,NV,) =P;U,) € I(A) C Z.Since P, is continuous,
P;l(Ua) and P, 1(V,) are open sets containing x and y respectively. This com-
pletes the proof.

THEOREM 2.13. — Let (X,, 7,) be a collection of spaces for each a in an index set
Aand T be an ideal on [[ X,. If [[ X, is Te mod T, then (X,,,) is To mod Py(Z)
for each a in A, where each P, is the projection map.
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Proor. — Itis well known that each X, is homeomorphic to a subspace Y of the
product space [[X, and so each P, |Y :Y —X, is a homeomorphism. By
Theorem 2.9, Y is 7o mod Zy and so X, is Te mod (P, |Y)(Zy). Since
(Py | Y)Tv) C (Po)Ty) C Py(Z), each (X,, 1) is T2 mod P (7).

3. — Z-compact subsets and 7> mod Z spaces.

A subset A of an ideal space (X, 7,7) is said to be Z — compact [7] if for every
open cover {V,|a € 4} of X, there is a finite subset 4 of 4 such that
A—U{V,|ae A} € T.Xis said to be Z-compact if X is Z-compact as a subset of
X. Clearly, (X, 7) is compact if and only if (X, 7) is {0} —compact. X is QHC if every
open cover of X has a finite subfamily whose closures cover X. (X, 7) is QHC if and
only if (X, 7) is N'—compact [7] where N is the ideal of all nowhere dense sets in
(X, 7). In [7, Theorem 2.3], it is stated that every Z-compact subset of a Hausdorff
space is t*—closed. t*—closed sets are also called x—closed sets. Note that, A is
*—closed if and only if A* C A [11]. The following Theorem shows that the con-
dition Hausdorff on X in Theorem 2.3 of [7] can be replaced by Ts mod Z.

THEOREM 3.1. — Let (X,7,7) be a Te mod I space and A C X. If A is Z-com-
pact, then the following holds.

(@) For every x & A, there exist open sets U and V and I € T such that
xelU, UnNnVeZandA-ICV.
(b) A is x—closed.

ProoF. — (a). For each y € A, since y # «, there exist open sets U, containing
x and V,, containing y such that U, NV, € Z. Since {V, | y € A} is an open cover
of A, there is a finite subset B of A such that A-uU{V, |yeB} eI If
V=U{V, |y € B}, then V is an open set such that A—V =7€7 and so
A-IcV. It U=n{Uy |y € B}, then U is an open set containing x. Since
UnVyeZforallyeB, UNV, eI for all y € B and so UNV €7, which
proves (a).

(b). If x € A, by (a), there exist open sets U and V and I € 7 such that
xreUUNV=JeZandA-1CV.Now

ANUcCcWVuDNU=VnOHudn)=JudnU)=JuhnJulU)cJUl .

Therefore, AN U € Z for some open set U containing x and so x ¢ A* which
implies that A* C A. Hence A is x—closed.

COROLLARY 3.2. - Let (X, t,Z) be a Hausdorff ideal space and A C X be I-
compact. Then A is x—closed [7, Theorem 2.3].
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IfZ7={0}, in the above Theorem 3.1(a), then we have the following well known
result: In Hausdorff spaces, a point and a compact subset not containing the
pownt are separated by disjoint open sets.

THEOREM 3.3. — Let (X, 1,Z) be a Te mod I space and A and B be disjoint
subsets of X which are I-compact. Then there exist open sets Gand Hand 1,J € T
suchthat A—J CcG, B—ICHandGNHeT.

ProOF. - Fix a in A. By Theorem 3.1(a), there exist open sets U, and V,
and I; € Z such that ac U,,U,NV,€Z and B—1; CV,, equivalently,
B —V, € Z. The collection {U, | @ € A} is an open cover for A and so there is a
finite subset A of A such that A —U{U, |ae A} €Z. If G=U{U,|a € 4}
and H = n{V, | @ € A}, then G and H are open sets such that G N H € Z. Also,
A — G € T implies that A —J C G for some J € Z. Since B — V,, € T for each
aced, B—H=B-n{Vy|aed}=U{B-V,|laed}eZT andso B—ICH
for some I € Z. This completes the proof.

If 7 = {0}, in the above Theorem 3.3, then we have the following well known
result : In Hausdorff spaces, disjoint compact subsets are separated by disjoint
open sets. If T is codense, we have Corollary 3.4 and if Z = N, the ideal of all
nowhere dense sets, we have Corollary 3.5.

COROLLARY 3.4. — Let (X, 7,7) be a Hausdorff ideal space where T be codense
and A and B be disjoint subsets of X which are I-compact. Then, there exist
disjoint open sets G and H and I,J € T such that A —J C Gand B—1 C H.

COROLLARY 3.5. — Let (X, 1) be a Hausdorff space and A and B be disjoint
subsets of X which are N —compact. Then there exist disjoint open sets G and H
and nowhere dense sets I and J such that A —J C Gand B—1 C H.

THEOREM 3.6. — The intersection of any collection of I-compact subsets of a
Te mod T space (X, 7,7) is Z-compact.

Proor. — Let {A,|a € 4} be a collection of Z-compact subsets. Let
A =n{A,|a € 4}. By Theorem 3.1(b), each A4, is x—closed and so A is x—closed.
By Theorem 2.4 of [7], A is Z-compact.

The proof of the following Theorem 3.7 is omitted.

THEOREM 3.7. — The union of a finite collection of Z-compact subsets of any
ideal space (X, 1,T) is Z-compact.

A function [ : (X,7,7) — (Y, 0) is said to be pointwise Z-continuous [12]
if f:(X,7%,Z7) — (Y,0) is continuous. Clearly, every continuous function is
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pointwise Z-continuous but the converse need not be true. A function
f:X,1,7) - Y,0,J) is called a x—homeomorphism with respect to 7,7Z,0
and J [5] if f: (X, 7*(2)) — (Y,0*(J)) is a homeomorphism. We say that f is
*—closed if f: (X,7*(Z)) — (Y,0*(J)) is closed. The following Theorem 3.8
shows that in Corollary 2.8 of [7], the condition Hausdorff on Y can be re-
placed by T2 mod Z. Theorem 3.9 below shows that in Theorem 2.9 of [7], the
condition Hausdorff on Y can be replaced by T2 mod Z. Corollary 3.10 and
Corollary 3.11 are generalizations of Theorem 2.12 of [7] and Theorem 2.11 of
[7], respectively.

THEOREM 3.8. — Let f: (X,7,7) — (Y, 0, f(Z)) be pointwise I-continuous,
X,7,2)be Z-compact and (Y, 0, f(Z)) be Te mod f(Z). Thenf : (X,7) — (Y,0)isa
*—closed function.

Proor. — Let A € X be t*—closed. By Theorem 2.4 of [7], A is Z-compact in
(X, 7,7)and so by Lemma4.1 of [6], A is Z-compact in (X, t*, Z). By Theorem 2.2 of
[7], f(A) is f(Z)-compact in Y. By Theorem 3.1(b), f(A) is o*—closed. Hence f
is a x—closed function.

THEOREM 3.9. — Let f : (X,1,Z) — (Y, 0, f(D)) be a pointwise T-continuous
byection, (X,t,Z) be Z-compact and (Y,o,f(X)) be Te mod f(Z). Then
f: X, ) — (Y,d%) is a homeomorphism.

Proor. — By Theorem 3.8, f is x—closed. It is enough to prove that
f:(X,7) — (Y,0*) is continuous. Let V € ¢*(f(Z)) and x € f (V). Then
f(x) =y € Vandsothereexist G € cand I € 7 suchthaty € G — f(I) € V which
implies that x € f~1(G) — I c f~1(V). Since fis pointwise Z-continuous and G is
og—open, f~1(G) is t*—open and so f~1(V) is *—open, since I is 7*—closed.
Therefore, f : (X, 1) — (Y, 0*) is continuous. Hence f'is a x—homeomorphism.

COROLLARY 3.10. — Let (X, 7,7) be an Z-compact space and o be a topology on
X such that o C . If (X,0,T) is To mod I, then t* = o*.

Proor. — The identity mapping 7 : (X,7,7) — (X,0,Z) is pointwise Z-con-
tinuous and so by Theorem 3.9, ¢ is a x—homeomorphism. Hence t* = ¢*.

COROLLARY 3.11. — Let (X, 7,Z) be an Z-compact, Te mod I space. Then
18 the largest Z-compact topology containing t.

PRrOOF. — Suppose t C g and (X, g,7) is Z-compact. Since 7 C ¢* and (X, 0*,7)
is Z-compact by Theorem 1.7 of [7], by Corollary 3.10, 7 = ¢* and so 7* is the
largest Z-compact topology containing 7.
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An ideal space (X,7,7) is said to be countably Z-compact [15] if for every
countable open cover {V; |7 € N}, where N is the set of all natural numbers,
there is a finite subset M of N such that X— U {V; | i € M} € Z. A space (X, 7) is
feebly compact or lightly compact [17] if for every countable open cover
{Vi | i € N}, there is a finite subset M of N such that X = U{cl(V;) | ¢ € M}. The
following Theorem 3.12 is a generalization of Theorem 1.4(1) of [7].

THEOREM 3.12. — If (X, 7,7) is Z-compact and T is regular, then (X, 1) is QHC.

Proor. — Let {V, | a € 4} be an open cover of X. Then there exists a finite
subset A of 4such that X —U{V, |a € A} e ZTandso X — U{cl(V,) | a € A} € T.
Since cl(V,) is regular closed for every a € A, X — U{cl(V,) | a € A} is regular
open and so X — U {cl(V,) | a € A}=0 which implies that X = U{cl(V,) | a € A}.
Hence X is QHC.

The proof of the following Theorem 3.13 is similar to the proof of Theorem
3.12 which is a generalization of Theorem 2.4(1) of [9].

THEOREM 3.13. - If (X, 1,7) is countably T-compact and I is reqular, then
(X, 1) is lightly compact.

4. — T-regular spaces.

Z-regular space was introduced and studied in [10]. In this section, we further
investigate the properties of Z-regular spaces. An ideal space (X, 7,7) is said to
be Z-regular if for every closed set F and x ¢ F', there exist disjoint open sets U
and V such that x € U and F —V € Z. Clearly, if Z = {0}, regularity and Z-
regularity of topological spaces coincide. Every regular space is Z-regular and
the ideal space (X, 7,Z) in Example 2.2 is Z-regular but not regular. The fol-
lowing Theorem characterize Z-regular spaces.

THEOREM 4.1. — Let (X,1,Z) be an ideal space. Then the following are

equivalent.

(a) X s Z-regular.

(b) For each x € X and open set U containing x, there is an open set V
containing x such that cl(V) — U € T.

(¢) Foreach x € X and open set U containing x, there is a closed neigh-
borhood F of x such that I — U € T.

(d) Foreachx € X and closed set A not containing x, there is an open set V
containing x such that cl(V)NA € Z.
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ProoF. - (a) = (b). Let x € X and U be an open set containing «. Then, there
exist disjoint open sets V and W such that x eV and X - U)-WeZ. If
X-U)-W=IleZ,thenX-U)cWUILNowVNW=0=VcCcX-W=
cdVycX—-WandsoclV) - UcCcX-W)ynWulh)=X-W)nIclel.

(b) = (d). Let A be closed in X such that & ¢ A. Then, there exists an open set
V containing & such that cl(V) — (X — A) € Z which implies that cl(V)NA € 7.

(d)=(a). Let A be closed in X such that & ¢ A. Then, there is an open
set V containing « such that cl(V)NAeZ. If cd(V)NA=I1¢€Z, then
A-X—-clV)=1€Z. V and (X —cl(V)) are the required disjoint open
sets such that x € V and A — (X — cl(V)) € Z. Hence X is Z-regular.

The equivalence of (b) and (c) is clear.

COROLLARY 4.2. — Let (X, 7,T) be an ideal space where T be codense. Then the
Sfollowing are equivalent.

(a) X is Z-regular.

(b) For each x € X and open set U containing x, there is an open set V
containing x such that V> — U € 1.

(¢) Foreachx € X and closed set A not containing x, there is an open set V
containing x such that V-NA € I.

ProoF. — Follows from the fact that 7 is codense if and only if cl(V) = V* for
every open set V [16, Remark 4].

Theorem 4.3 below shows that Z-regular is a hereditary property and
Theorem 4.4 shows that it is a topological property.

THEOREM 4.3. - If (X,7,7) is Z-reqular and Y C X, then (Y,ty,Zy) 1is
Zy—regular.

ProOOF. — Let FCY be closed in Y and x € Y such that « ¢ F. Then
F =Y N K,where Kisclosedin X and alsox ¢ K. Since (X, 7, Z)is Z-regular, there
exist disjoint open sets U and Vin X suchthatx ¢ Uand K —V € Z.Now Y N U
and YNV are open sets in Y such that x e YNU and Y NnU)NET NV) =
UnV)yNnY =0.IfK-V =IeI thenKclIUVandsoYNKCcYNUUV)=
Y nDHuUu nV)whichimpliesthat F — (Y NV)cC Y NI € Zy.Hence(Y,ty,Zy)
is Zy—regular.

THEOREM 4.4. — If (X,1,7) 1is Z-reqular and f : X,7,Z) — (Y, 0, f(D)) is a
homeomorphism, then (Y, o, f(2)) is f(Z)—regular.

ProOF. — Let F be closed in Y and y € Y such that y ¢ F. Let x = f1(y).
Since fis continuous, f ~1(F) is a closed set in X not containing x. Since (X, 7,7) is



926 D. SIVARAJ - V. RENUKA DEVI

Z-regular, there exist disjoint open sets U and V in X such that « € U and
fUF)-VeZ. LetfY(F)—V=IcZ.Then fTI(F)cIUV.

FIE) cIuV = f(fAF) cfAuV)=F cfA)UfV)
=>F—-fV)cf)ef@)=F—-fV)ef@.

Since f(U) and f(V) are disjoint open sets in Y such that y € f(U) and
F —f(V) e f(2), it follows that (Y, g, f(Z)) is f(Z)—regular.

THEOREM 4.5. — Let (X,,1,) be a collection of spaces for each a in an index
set 4 and I be an ideal on [[X,. If [[X, is Z-regular, then (X, t,) s
P,(@)—regular for each a in A, where P, is the projection map.

PROOF. — Similar to Theorem 2.13 and hence omitted.

THEOREM 4.6. — Let (X, 7,,Z,) be a collection of ideal spaces for each a in an
mdex set A where each (X,,tq,Z,) 18 Ly—reqular. If P, is the projection map for
each a, A={P;'I,) | I, € T, a € A}, Z(A) is the smallest ideal generated by A
and T is an ideal on [[ X, such that T D Z(A), then [[ X, with the product to-
pology is Z-regular.

ProoF. — Let & = (x,) be a point in [ [ X, and U be an open set containing x.
Then there exists a basic openset Vin [[ X, suchthatx € V C U. Since V is basic,
there is a finite subset A of 4 such that V =[]V, where V, € 7, if a € 4 and
Vy=X, if a € A. For each a € 4, x, = P,(x) € P,(V) =V,. Since (X,,14,Z,) i
Z,—regular, there exists an 7, open set G, such that x, € G, and
cl(G,) =V, € Z,. Let G = N{P,;1(G,) | @ € A}. Then G is an open set containing
x and cl(G) = N{P; 1 (cl,(G,)) | a € A}, where cl,(A) is the closure of A in []X,.
Now, for each a € 4, cl,(G,) — V, € T, implies that cl,(G,) — V,=I, € Z, and so
cly(G,) — I, C V,. Therefore,

NP M cl(G) — PM) | a € A C n{P;X(V,) | a € A}

= N{P 1 cl(Gy) | a € A} — U{P;\I,) | a € A} € N{P; (V) | a € A}

= N{P 1l (Gy) | a € A} —n{P;' (V) |a € A} CU{P,'U,) |a € A eT(A)CT
=cl(G)-V eI

Thus, there exists an open set G in [[ X, such that x € G and cl,(G) — V € T and
so [[ X, with the product topology is Z-regular.

THEOREM 4.7. — Let (X, 7, 7) be an Z-regular space and x and y be two distinct
pownts in X. Then either cl({x}) = cl({y}) or cl({x}) Necl({y}) € T.
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Proor. - Let x € cl({y}) and y € cl({x}). Then cl({x}) C clcl{y})) =
cl({y}) C cl(cl({x})) = cl({x}) and so cl({x}) = cl({y}). Suppose y & cl({x}). Since
(X, 7,7)is Z-regular, by Theorem 4.1(d), there exists an open set V containing y such
thatcl(V) Nnel({x}) € Z.8incey € V, cl({x}) Nncl{y}) C cl{x}) Nel(V) € Z. This
completes the proof.

THEOREM 4.8. — Let (X, t,7) be an ideal space. If each point of X has a closed
neighborhood A which is T o—regqular, then (X, t,7) is T-regular.

Proor. — Let  €X and G be an open set containing x. By hypothesis, there is
a closed neighborhood A of x such that (A,z4,7Z4) is 74 regular. Then A N G is an
open set in A containing x. By Theorem 4.1(c), there is a closed neighborhood F
of xin A such that FF — (A N G) € Z4. Since F is a closed neighborhood of x in A,
F is a closed neighborhood of x in X and FF—(ANG) € T, implies that
F—-G=1€Z4CZ. Thus, F is a closed neighborhood of x in X such that
F — G € Z. Therefore, (X,1,7) is Z-regular.

THEOREM 4.9. — If an ideal space (X, t,7) is Z-regular, then for every none-
mpty set A and a closed set F'in X such that F N A = (), there exist disjoint open
sets U and V such that ANU £ Qand F -V € I.

Proor. — Suppose (X, 7,7) is Z-regular. Let F be closed in X and A be any
nonempty set such that 7 N A = (). Then for x € A, there exist disjoint open sets
Uand Vsuchthatx € Uand F —V € Z. Clearly, AN U # 0.

THEOREM 4.10. — If an ideal space (X, t,T) is Z-regular, then for every pair of
disjoint sets A and B where A is Z-compact and B is closed in X, there exist
disjoint open sets U and V, and I and J in T suchthatA — I C UandB —J C V.

PrOOF. — Suppose (X, 7,7) is Z-regular and A and B are disjoint subsets of X
where A is Z-compact and B is closed. For each « € A, there exist disjoint open
sets U, and V,, such that x ¢ U, and B—-V,eZ. If I, =B -V, €Z, then
B — 1, C V,.Since {U, | x € A} is an open cover of A, there is a finite subset D of
Asuchthat A—U{U, |xeD}eZ. fU=U{U,|xeD}andI=A-U¢€1Z,
then U is an open set such that A—IcU. If V=n{V,|xe D} and
J =U{l, |2 €D}, then U and V are disjoint open sets and J € Z. Since
B—-V,=1, for every x in D, U{B -V, |2 € D} =J and so B —V =J which
implies that B — J C V. This proves the theorem.

COROLLARY 4.11. — If a space (X, 7) is regular, then for every pair of disjoint
sets A and B where A is compact and B 1s closed in X, there exist disjoint open
sets U and V such that A C U and B C V.
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THEOREM 4.12. — Let (X, t,7Z) be Z-regular and A be an Z-compact subset of X.

If G is an open set containing A, then there exists a closed set F and I,J € T such
that A—ICF cCcGUJ.

Proor. — Let A be an Z-compact subset of X and G be an open set containing A.
Since X — Gisaclosed set suchthat (X — G) N A = (), by Theorem 4.10, there exist
disjoint open sets U and V and I and J in 7 such that A -7 Cc U and
X-0)-JcV.X-G)-JCcV=X-V)cGUJ and so cl(U)cC GUJ.
cl(U) is the required closed set such that A — I C ¢l(U) C G U J. Hence the proof.

If Z = {0} in the above Theorem 4.12, we have the following well known re-
sult. If Z = AV in the above Theorem 4.12, we have Corollary 4.14.

COROLLARY 4.13. — Let (X, 1) be a regular space and A be a compact subset of
X. If G is an open set containing A, then there exists a closed set F' such that
AcCF CQG.

COROLLARY 4.14. — Let (X, t,N) be N —regular and A be an N —compact
subset of X. If G is an open set containing A, then there exist a closed set F and
nowhere dense sets I and J such that A —1 Cc F Cc GUJ.

In general, a topology larger than a regular topology need not be regular. But
for ideal spaces, the following Theorem 4.15 shows that if an ideal space (X, t,7)
is Z-regular, then (X, t*,7) is always Z-regular.

THEOREM 4.15. — If an ideal space (X, t,T) is Z-reqular, then (X,t*,7) is Z-
regulayr.

PrOOF. — Let F be t*—closed and p ¢ F. Since X — F' is a t*—open set con-
taining p, there exists U € vt and I € Z such that pe U -1 Cc X — F. Since
(X,7,7) is Z-regular, there exists an open set V such that p eV and
cl(V)— U € Z, by Theorem 4.1(b).

cdWV)-UecI=cdV)-U=JecI=cV)-JCcU=cdV)-JCX-F)UI
=>cdV)-X-F)cJUuleI=dV)NFel=cdV)NFel.

Hence (X, t*,7) is Z-regular, by Theorem 4.1(d).
The following Example 4.16 shows that the converse of the above Theorem
4.151s not true but is true, if the ideal is codense, as shown by Theorem 4.17 below.

ExamMPLE 4.16. — Let X ={a,b,c}, 7= {X,0,{a},{b},{a,b},{b,c}} and
Z ={0,{b}}. Then (X,7,Z) is not Z-regular. Since t* = p(X), (X,7*,7) is Z-
regular.
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THEOREM 4.17. — If (X, t,7) is an tdeal space such that (X, t*,T) is T-reqular
and T s codense, then (X, t,7) is T-reqular.

PrOOF. — Let A be closed and « ¢ A. Since A is t*—closed, by Corollary 4.2(c),
there exists a t*—open set V of & such that V* N A € Z. Since V is a t*—open set
containing x, there exists U €t and I €Z such that x ¢ U -1 CV. Now
U-IcV=U"CV*andsoU*NA Cc V*NA € Z.By Corollary 4.2(c), X, 7,7)
is Z-regular.

The ideal space (X,7,Z) in Example 4.16 is a T mod Z space which is not
Z-regular. The ideal space (X, 7,7Z) in the following Example 4.18 is Z-regular
which is not 72 mod Z. Hence Z-regular and T mod Z are independent concepts.

ExaMpLE 4.18. — Let X ={a,b,c,d}, ={X,0,{c},{a,b},{a,b,c}} and
T ={0,{a},{d},{a,d}}. Then (X,7,7) is an Z-regular space which is not Ty
mod Z.

5. — ZT-Hausdorff and quasi Z-Hausdorff Spaces.

A subset A of an ideal space (X, 7,7Z) is Z-open [8]if A C int(A*). The family of
all Z-open sets is denoted by 10(X, 7,7) or I0(X, 1) or IO(X). A subset A of an
ideal space (X, 1,7) is quasi Z-open [1]if A C cl(int(A*)). Every Z-open set is a
quasi Z-open set but the converse implication need not be true. The family of all
quasi Z-open sets is denoted by QZO(X, 7). A space (X, 7, Z) is called Z-Hausdorff
[2] if for each pair of distinet points, there exist disjoint Z-open sets containing
the points. A space (X, 7,7) is called quasi Z-Hausdorff [14] if for each pair of
distinct points, there exist disjoint quasi Z-open sets containing the points.
Every Z-Hausdorff space is quasi Z-Hausdorff [14]. The following examples
show that T mod Z and Z-Hausdorff (resp. quasi Z-Hausdorff) are independent
concepts.

ExampLE 5.1. - Let X ={a,b,c},7={X,0,{a},{b},{a,b},{b,c}} and
T ={0,{b},{c},{b,c}}. Then QZOX,7) =10X,7) = {0,{a}}. X,7,Z) is Ty
mod Z but not Z-Hausdorff.

ExampLE 5.2. - Let X ={a,b,c,d}, 1=1{X,0,{a,b}} and Z = {0,{d}}.
Then

QI0X, 1) =10X,1)
={X,0,{a},{b},{a,b}.{a,c},{a,d},{b,c},{b,d}.{a,b,c}.{a,b,d},{a,c d}.{b,c,d}}.
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Then (X, 7,7) is Z-Hausdorff but for a and b, there exist no open sets U and V
such that UNV € 7 and so (X, 7,7) is not T mod .

Theorem 3.1 of [14] gives a characterization of quasi Z-Hausdorff spaces in
which it is assumed that (i) if U and V are disjoint quasi Z-open sets, then
cl(U) NV = P and (ii) every open set is a quasi Z-open set. In Example 5.1 above,
{a, b} is an open set but not a quasi Z-open set and so condition (ii) is false. The
following Example 5.3 shows that the condition (i) is also false.

ExaMPLE 5.3. — Consider the ideal space (X, 1,Z) of Example 5.2. {a} and
{b} are disjoint quasi Z-open sets containing a and b, respectively, such that

cl{a}) = cl({b}) = X and so cl({a}) N {b} # 0.

The following Theorem 5.4 gives a sufficient condition for an ideal space
(X,7,7) to be a quasi Z-Hausdorff space, if Z is codense.

THEOREM 5.4. — Let (X,t,7) be an ideal space where I be codense. Then
X, 1,7) 1s quast Z-Hausdorff, if for every pair of distinct points x and y € X,
there exists a quasi T-open set U such that x € U C U* C X — {y}.

ProoF. — Suppose the condition holds. Let # and ¥ € X such that « # y. Then
there exists a quasi Z-open set U such that x € U C U* C X — {y} and so
yeX —U* LetV =X — U*. Then V is open. Since Z is codense, V C V* and so
U NV = 0. Since cl(int(V*)) D cl(int(V)) = cl(V) D V, V is quasi Z-open. Hence
(X, t,7) is quasi Z-Hausdorff.

The following Example 5.5 shows that the converse of the above theorem
need not be true.

ExampLE 5.5. — Consider the ideal space (X, 7,7) of Example 5.2. (X, 7,7) is
quasi Z-Hausdorff. For the points a and b € X, there exists no quasi Z-open set
U such that e € U Cc U* € X — {b}.
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