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Jacobi’s Triple Product Identity
and the Quintuple Product Identity

CHU WENCHANG

Sunto. — La famosa identita di Jacobt riguardante il prodotto triplo viene esaminata
grazie alle due dimostrazioni piu semplict dovute a Cauchy (1843) e Gauss (1866).
Applicando il principio di induzione ed il metodo di differenze finite, lo stesso
spirito ci conduce alla riconferma delle due forme finite dell’identita di prodotto
quintuplo.

Sammary. — The simplest proof of Jacobi’s triple product identity originally due to
Cauchy (1843) and Gauss (1866) is reviewed. In the same spirit, we prove by
means of induction principle and finite difference method, a finite form of the
quintuple product identity. Similarly, the induction principle will be used to give
a new proof of another algebraic identity due to Guo and Zeng (2005), which can
be considered as another finite form of the quintuple product identity.

1. — Jacobi’s Triple Product Identity.

The celebrated Jacobi triple product identity states that

+00

(1) 0,2,/ q) = > (~)fqlat for g <1

k=—o0
where the ¢-shifted factorial is defined by
(@qo=1 and @;q),=0—-2)1—qr)---Q1—q¢" ) for n=1,2,-.
with the following abbreviated multiple parameter notation
[a, B, 7 qloo = (@3 Do (s Do+ (3 Do

There are several algebraic and combinatorial proofs (see [2, 10, 17, 22, 29], for
examples). Here we present the simplest proof by using only the ¢-binomial
theorem, which is originally due to Cauchy (1843) and Gauss (1866). However, it
has not been well noticed up to now (cf. [4, P 497]).
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Recall that the g-binomial theorem reads as

. B m m ,é my (q§q)m
@ o= [ Ja0at where [[] = e—.

This can easily be established by induction principle on m.

Now replacing m and x by m + n and xq~"™ respectively, and then noting the
relation

m m_— (ITm

B) (@€ = (@ "2 9), @), = (—1)"q (e (q/25q),, (2 9),

we can reformulate the g-binomial theorem as

m+n

@ @t/ = 3 (= D" gl )
k=0

which becomes, under summation index substitution k¥ — m + k, the following
finite form of the Jacobi triple product identity

(4) (96‘; Q),Z(Q/Q(I; q)m = i: (*l)k |:m N 7’1/:| q@xk

k=—m m+k

Letting m,n — oo in (4), we get (1) immediately in view of limiting relation

. o 1
[m + n} (CH where g < 1|.

mAk] (@ Dmsi @ D (@; Do

2. — The Quintuple Product Identity.

Just like the derivation of Jacobi’s triple product identity from the ¢-binomial
theorem, we will show that the quintuple product identity is the limiting form of
the following algebraic identity.

THEOREM [Finite form of the quintuple product identity: Chen-Chu-Gu [9]].
For a natural number m and a variable x, there holds an algebraic identity:
- my (1 g
5 1+ g ] kg =1,
®) > g

Performing parameter replacements m —m+mn, & — —qg ™x and
k — k +m and then simplifying the result through (3), we may restate the
algebraic identity displayed in the theorem as the following finite bilateral
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identity

) i (1- qu) [m + n:| ((‘95; Q)Hn(_(I/m; Do 903qu2+(§) =1.

m+k| (a2 Q)1+n+k(Q/x2; Dt
Letting m,n — oo in this equation and applying the relation
(@ 9oe(q/7% Qo
(=2 Qo — ¢/ Qoo
we derive the famous quintuple product identity

k=—m

=g, 2, q/%; qlg?, ¢/2%; ¢l

(¢ P

+00

@ > (1 -2 @ @) = (g2, 9/ 0 e /2% Pl for gl <1

k=—0o0

3. — Inductive Proof of the Theorem.

In terms of basic hypergeometric series, the identity (5) can be derived as the
limiting case M — oo of the terminating very-well poised ¢¢5-series identity (cf.

[19, T1-21]):

q”mw] (92 9),,(q2/M; q),,,
8 ; = .
®) ok BTM] T (gri9), (22 M),

For those who are not familiar with basic hypergeometric series, we offer a very
elementary proof of (5) based on induction principle on m.

When m = 0, it is trivial to see that (5) is true. Suppose that (5) holds for a
natural number m. Then we need to check it also for m + 1.

Replacing « by gx and then k by k — 1, we can restate (5) as

2 _
=, qr, —qx, q WL? v, M
X, —&, quWza qx, qxz/M

1+m
m (90 Qi1 & 12k
9 x= 1+ aqk ol kg R
® > e[ o

Then the linear combination

1— xqm+1 1- x)qm+1
1= a2gnt Eq®) + 71— w2t Eq(9)
leads us to the following
1= 1— xqurl (1 _ QC)QCQMH
1— 902(]m+1 1— m2qm+1

1+m
1+m] Qe gog2
=) (1+wg") { } g
kz:; k (quz; q)m+2

y (1 _ q1+m—k)(1 _ m2q1+m+k) T q1+m—k(1 _ qk)(l _ quk)
(1 _ qm+1)(1 _ xzqm+l)
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which corresponds to the case m + 1 of (5) on account of the fact that the last
rational-factor reduces to one. According to induction principle, this confirms (5).

4. — Constructive Proof of the Theorem.

For a natural number m and a variable x, we will investigate the finite sum
Qp () given by

m

o m (90; q)m+ 2
(10) Quilw) = ;u +aq")| ] G

Let A;, and B, be two sequences defined respectively by

(— DFakq(s)

@ P (141
1—xgk '

A = (@ Oy |

and B :_(—l)k{mk 1}

In view of the boundary condition B_; = B,, = 0 and the finite differences

1 — a2gk+l o ¢4

(1= a1 —agh) "

Ay — Apg = (-1

By — By = (-1)"{1 - 2%¢*} m %q@)

we can reformulate the Q-sum defined in (10) as follows:

ZAk{Bk_Bk 1} = ZAkBk_ZAkBk 1

§ w
H o

A By — Z Ap1Br = Z Byo{ A — A1}
0

=
Il

which leads us to the following relation:

W o, m-1 x2q2k+l m—1 Mxqu”k
1—ocq —wg) | ko] ("), '

From this expression, we can derive the following interesting result.

k=0

LEMMA [Recurrence relation]. For the Q-function defined in (10), there holds
the recursion

(12) Qp(x) = Qp_1(qx) where m=1,2,---.
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Proor. — We further define two sequences Cj, and Dj, respectively by

Cp = (qm_k;(I) (9) 1 quk2+k
('%' Q)k+7n+1

. (% Diiz w

(@ q) (1—2)(1—wg")

In view of the boundary condition C,, = D_; = 0 and the finite differences

Ch— Cppr = {1 — x2q2k+2} (g™ " @)y (s D xquk2+k
(9025 Q)k+m+2

1 — a?g?H1 (2% Q)i -
(1 —xgh)(1 —2g"1)  (q;9);

we can manipulate 2-sum displayed in (11) as follows:

Dy — D1 =

m—1 m—1

ch{Dk—Dk 1} = ZCka—ZCka 1

m—1 m—1 m—1

= Z CiDy, — ZC/ka = Z Dp{Crk — Ci1 }
=0 =0 =0

(S -1 (g% 9) 2
1_'_% k-+1 |: :| 1 )m %'k k+k.
kz:: {1y (@Faz;q),
This leads us to the recursion stated in the lemma. O

Iterating for m-times the recurrence relation:
Q) = 2p-1(q)

we find the following algebraic identity:
(13) Q) = Qu1(q) = Qua(qP) -+ = -+ Qo(q"x) =1

which leads us immediately to the algebraic identity stated in the Theorem.

The informed reader will notice that the procedure just employed is the so-
called “Abel’s lemma on summation by parts”. This method has been shown
powerful to evaluate classical and basic hypergeometric series. The interested
reader may refer to Chu and Jia [11, 12, 13, 14] for more details and further
developments.
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5. — Another Finite Form of the Quintuple Product Identity.

In a recent paper [30], Guo and Zeng found another finite form of the quin-
tuple product identity. Its reduced case m = 2m has appeared in Paule [24,
Eq 27].

ProPOSITION (Guo and Zeng [30, Theorem 9.1] For a natural number m and
a variable x, there holds an algebraic identity:

m

14 1— 902 142k [T ((].’)07 q)m .’)Ck k2 =1.
) 2 kg

In terms of basic hypergeometric series, the identity (14) can be derived as
the limiting case M — oo of the terminating very-well poised ¢¢5-series identity
(cf. [19, T1-21]):

5 0, ¢*Pw, —¢*Pw, g™, qu, M ‘ q_q“mx _ (@ Qulge/M; @
T g2, V2, q2rmat g, 2 /MM | (g2 Q@2 /M @

Analogously, an inductive proof of (14) can be reproduced as follows.

When m = 0, it is trivial to see that (14) is true. Suppose that (14) holds for a
natural number m. Then we need to check it also for m + 1.
Replacing x by gx and then k by k — 1, we can restate (14) as

1+m 2.
15 = 1— 902q1+2k m (q x5 Q)m ﬂcquZ_k.
(19) 2 e o) gl
Then the linear combination
1— xqm+l (1 _ qx)qm-&-l
1= a2qne Eq(d) +—5— TR Eq(5)
leads us to the following
= 1— xqm+1 (1 _ qx)mqn'hq
=1_ xzqurz 1— xzquz
™ 1 2+ |1 T (9% Disr e e
= Z( wq ) k| (g a2 xrq
k=0 q X ’Q)m+2
y (1 _ q1+m—k)(1 _ x2q2+m+k) + q1+m—k(1 _ qk)(l _ x2q1+k>

(1 _ qm+1)(1 _ xzqm+2)
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which corresponds to the case m + 1 of (14) on account of the fact that the last
rational-factor reduces to one. According to induction principle, this confirms (14).

Similar to the last section, a constructive proof of (14) can be provided either.
We leave it to the reader as an exercise.

REMARK For the historical note about the quintuple product identity, the
reader can refer to [8]. More comprehensive coverage has been provided re-
cently by Cooper [15]. Compared with the known proofs of this identity due to
Watson [27, 28] based on functional equations and elliptic functions, Atkin and
Swinnerton-Dyer [5] via function theoretic methods, Gordan [20] through
functional equations, Carlitz and Subbarao [8] by multiplying two triple products
as well as Paule [24] by the WZ-method, the proof presented in this paper is
much simpler and more elementary, which requires only some high school al-
gebra.

Acknowledgement: The author thanks to Richard Askey for having kindly
pointed out the original proof of the Jacobi triple product identity due to Cauchy
(1843) and Gauss (1866).
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