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Quasiharmonic Fields: a Higher Integrability Result

PaTRIZ1A D1 GIRONIMO

Sunto. — In questo lavoro si studia il grado di integrabilitd dei campi quasiarmonici.
Questi campi sono connessi con lo studio dell’equazione div(A(x)Vu(x)) = 0, dove la
matrice simmetrica A(x) soddisfa la condizione

E + JA@)E® < K@)(AW)E,E).

La funzione non negativa K(x) appartiene alla classe esponenziale, cioé esiste § > 0
tale che exp(fK(x)) e integrabile. Si dimostra che il gradiente di una soluzione locale
dell’equazione appartiene agli spazi di Zygmund L2 log* 'L, 0 < a = a(p). Inoltre si
prova come il grado di migliore regolaritd dipende da .

Summary. — In this paper we study the degree of integrability of quastharmonic fields.
These fields are connected with the study of the equation div(A(x)Vu(x)) = 0, where
the symmetric matrixc A(x) satisfies the condition

[P + JA@E < K@)A@E &),

The nonnegative function K(x) belongs to the exponential class, i.e. exp(fK(x)) is
ntegrable for some f > 0. We prove that the gradient of a local solution of the
equation belongs to the Zygmund spaces L2, log* 'L, 0 < a = a(f). Moreover we show
exactly how the degree of improved regularity depends on p.

1. — Introduction.

Let Q C R"™ be a connected open set.
IfB:Q2— R", E:Q — R" are integrable vector fields on © such that

. n 631
divB = Z; o 0
@b y OE; OE
curl E = ( i——]) =0,
axj 8901 1,7=1,....m

in the sense of distributions, the scalar product (B, £) is referred to as a div-curl
product.
In this paper we shall study the degree of integrability of a class of div-curl
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fields (B, E) which are coupled by the distortion inequality
(1.2) IBF + |E]* < Kx)(B,E)  a.e.inQ

where 1 < K(x) < oo is a measurable funection in Q.
A div-curl field (B, E) satisfying (1.2) is called a quasiharmonic field.
An example of quasiharmonic fields grew out of the study of the equation

1.3) divA(x)Vulx)) =0
where the symmetric matrix A(x) € R"*" satisfies the condition
1 2 2
. — < <
(1.4 Rl < MWL <Kl

and K(x), K(x) > 1 a.e., is a measurable function on Q.
It is well-know (see [IS2]) that it is possible to express (1.4), equivalently, by
using just one inequality

(1.5) EF + JA@)E)? < K@)(A@)E, &)

1
for almost every « € 2 and all ¢ € R", with K(x) = K(x) + m

There are two vector fields associated with a solution of the equation (1.3).
The first one, denoted by E = Vu(x), is curl free, while the second
B = A(x)Vu(x) is divergence free. The condition (1.5) shows that the pair
F =[B, E]1is a quasiharmonic field.

Throughout this paper we shall assume that

(1.6) (B.E) € L},.(Q).

The function KC(x) in (1.5) belongs to the exponential class Exp(€2) , defined via
the Orliz function P(t) = ¢’ — 1. Precisely, we assume that

1.7 feﬁ’c(“)dac < + 00
o

for some f > 0.

By assumptions (1.2), (1.6) and (1.7) we deduce that B and £ belong to the
Orlicz-Zygmund spaces L2 log* 1L(Q2, R") (see [RR]).

It is our goal here to investigate the degree of integrability of a quasi-
harmonic field, under the assumptions (1.6) and (1.7).

Our theorem not only shows a higher integrability, but it also indicates ex-
actly how the degree of improved regularity depends on f.

THEOREM 1.1. — Let (B, E) a div-curl field verifying (1.2) and (1.6). Assume
that the distortion K(x) > 1 satisfies (1.7) for some f > 0. Then there exists
a = cm)p > 0 such that B € L? log* 'L(Q,R"), E € L? log* 'L(Q, R").

loc loc
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As a consequence we deduce a higher integrability result for the gradient of
“finite energy” solutions of the equations (1.3) verifying (1.5)(see Prop.3.3).

Recently regularity results for quasiharmonie fields have been investigated
in [ISz], [IMMP], [M]. The aim of the previous paper is to establish regularity
results for B and E without fixing f in (1.7). There the result states a higher
integrability of B and E, provided f is sufficiently large.

In [MM], assuming that K(x)”,y > 1, belongs to the exponential class, the
authors prove that B and ¥ belong to L%Oclog“L for any a > 0.

When K(x) is bounded higher integrability results of quasiharmonic fields
have been investigate in [ISz]. (See also the references therein).

Recently a result similar to Theorem 1 has been obtained by [FKZ] for
mappings of finite distortion.

2. — Preliminary results.

Define Lflog*L(2),1 < s < +00,a € R as the Orlicz-Zygmund space gener-
ated by ¢(t) = t*log*(e + 1), at least for sufficiently large values of t, i.e. the space
of all measurable functions f on Q such that

@.1) Ifll; = inf{A >0 :fcj:(%)dx <1},
Q

Let us recall that for a > 0 the non linear functional

) ol AN
[l [ Qf |#T'log (” IIfIIS)]

is comparable with the Luxemburg norm defined by (2.1).

A central ingredient in our arguments is the classical Hardy-Littlewood
maximal function. Recall that, give a function g € L} (Q), we define the Hardy-
Littlewood maximal function Mg of ¢ by

loc

Mg(x) = sup|B | f|9(?/)|d?/,

for every ball B, of Q2 containing the given point x € Q.
The following proposition is classical. The proof involves Vitali’s covering
lemma and the Calderon-Zygmund decomposition, [S].

PROPOSITION 2.1. — Let h € LY(R"). For any t > 0, we have

Z”t
| >t [hl>%
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The next Lemma is crucial to establish Theorem 1.1. For a proof see [1S;],
[GIM], [MM].

LEmMA 2.2. — Let (B,E) be a nonnegative div-curl product such that
B € LPlog 'L(Q,R"), E € Lilog 'L(Q, R") with 1 < p,q < + o, %+$ =1 Then

forany 0 <o <1
Jf<B,E>dx < c<f|B|’"dx)%<f|E|8dx>%
B, B,

aB, 7 7

1 1 1
where B, = B(x,p) CC Q’;+§:1+ﬁ’ 1<r<p l1<s<qgandc=cn,p,q).

3. — Proof of Theorem 1.1.
Now we fix a ball By = B(xg, 7)) CC 2 and assume that
3.1 f(B,E)dac _1
By

for homogeneity property, under our assumptions this condition is not re-
strictive.
Define the following auxiliary functions

(8.2) hi(x) = d"(x)(B, E)
(3.3) ha(x) = d@)(|B[ + |E|")
(3.4) h3(x) = yx,(®)

where d(x) = dist(x, R*\By) and yj is the characteristic function of the set £.
The following Lemma will be useful to establish Theorem 1.1.

LEMMA 3.1. — If (3.1) holds, then we have

3.5) (fm@de)’ < coo( f i) +eo( f ns@de)"
B 2B 28
for allzballs B C R", where hi(x), ho(x), h3(x) are defined by (3.2)-(3.4) and
"
=T

ProoF. — We need to prove it only if B intersects By, otherwise one can easily
see that (3.5) is trivial. We split the proof of (3.5) in two cases, precisely when 38 is
or is not contained in B
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CASE 1: 35 C By. By a geometric consideration we have that
max d(x) < 4min d(x).
xeB xe2B

Applying Lemma 2.2

( Jf hl(x)dx)% < max d(ac)( Jf B,E) dac)
B B

< ey min d(@) ( ]f |B|n+1dac)% ( ]f \E|n+1dac)

1

n+1

<c(n)m1nd(x)[(1( |B|(~+1>ndac) ” ( Jf |E|<n+1~dac) ]
< ctf f[aw (1B + 18F)| Tas}

2B

= c(n) ( f hg(x)dm)%
35

CASE 2: 3B ¢ By, BN By # 0. We have that

max d(z) < maxd(@) < cn)[2B N By
xeB xe2B

By using (3.1), we conclude that
( J[ hl(m)dac) < maxd(w)(| 5 ] <B,E>dw)%
< c(n)(% é[ <B,E>doc)%

< (:(71)('21—3| l hg(oc)dxﬁ.

Combining these two cases we get the inequality (3.5). O

Proor oF THEOREM 1.1. — According to Lemma (3.1), we observe that (3.5) is
true for all balls B C R". So the following point-wise inequality for the maximal
functions yields

M)W < coMEDY + c)IMhs)pT, vy € R
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from which, for 1 > 0, we also deduce that

{x € R"/M(hy)(@) > 2"}| < {x € R"/c(n)M(hd)(x) > AT}|
+ {x € R" /e(m)M (h3)(w) > A"}].

The definition of kg implies that M(hg)(@) <1 in R", then the set
{x € R"/M(h3)(x) > 1"} is empty for 1 > 1; = 4;(n). Hence

{w € R"/M(hy)w) > 7"} < |{w € R" /c())M(hS)() > 1}|

for all A > 4. We use Proposition 2.1 to deduce

(3.6) f hi(@)dx < c(m)A* 1 f hi(x)da

hy>2" c(n)hg>7

for all 2 > ;. We may assume that the constant c(n) in (3.6) is bigger than one.
Let us define the function

W) = ? log®/. + log®~17,
’I/Z/Z

n+1
equation (3.9) below.

Observe that

where q = as above, and a is a positive constant that will be fixed in

/}/l/_
A

_ d _ q a—1 a—1 a—2
¢(/1)—al//(/1)— log /1+Tlog >0

for all A > Ay = exp (nT—i-l) and that
150y = L m=110ge17)
d. V

So we can multiply both sides of (3.6) by ¢(7), integrated with A over (4, ), for
j large and 4y = max(41, 42). Changing the order of the integration we get

<

h c(n)hs

f ha(@)dze f | $()d2 < ¢(n) f H3()dae f IS,
20

_7.>C(7I/)h2>;(0 ).0

Jr>hy> 2

that is,

[ i@ —poom@dr <con [ m@log e,

G >l > F>c(m)he(@)> 2o
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Then it follows easily from (3.1) that

f hl(x)log“hé(ac)dxgc(n) f R (@)log” L (c(m)hg(x))da
3.7 b s>t J>eha>1o

+ c(n, a)|Bo|

where c(n) > 1.

In the remaining part of the proof, by using the distortion inequality, we want
to absorb the right hand side of (3.7) on the left.

Using the following elementary inequality (see [FKZ])

ab log*~ 1(C(n)(oab)ﬂ) < (ﬁ )alog (m) + C(a, f, n)exp(fb)
with a = hi(x), b = K(x), we deduce by (1.2) that

f h()log™ I () dac

Jr>hy>Ag

< 4 f hy (x)log™ ki (@)dae + c(n, a, B) f cap(BK (@))da

3.8) TP i
+ c(n, a)|Bo|
c(n) f hl(x)log“h"(x)dx +c(n,a,p) f exp(SK(x))d.
J>hy> Ay
By (3.8), setting
_ B

we obtain
(3.10) f ha()log™ k() < c(n, f) f eap( BK ())dz.

G >hy> Ay

By letting j — 400, in both sides of (3.10), and using the monotone convergence
theorem we deduce that

f d"(x)(B, E)log“(e + d"@)(B, EY)dx < c(n, f) f exp( K @))dz.
B() BO

Finally, noticing that in oBy = B(xg,or9) with 0 <o <1 we have d"(x) >
1- a)"rg‘ > ¢(n, 0)|By|, and taking into account the normalization (3.1), we have
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the inequality

B.E
ﬂi{B, E)log* (e + m)dx
By

< e(n, B, ) ( ]f e ﬁK(m))dm) ( ]f (B, E>dx)

B() BO

which concludes the proof, by means of (1.2). |

At this point we apply this result to the study of equation (1.3).
Note that (1.3) is the Euler-Lagrange equation of the variational integral

Elu] = f < A@)Vu, Vu > da.
Q

We deal with solution of (1.3) having“finite energy”, namely E[u] is finite.

Ifu e Wllo’i(Q) is a local solution of (1.3), we set B = AVu and £ = Vu so that
divB = 0 and curlEl = 0. Let us remark that (B, E) is locally integrable on €,
since u is a local solution of (1.3) with“finite energy”. By assumptions (1.5), (1.7)
the gradient of a finite energy solution belongs to the Orlicz-Zygmund space
L% log® 'L(Q,R"). From Theorem 1.1 we deduce the following

PROPOSITION 3.3. — Let u be a local solution of (1.3) with “finite energy’.
Assume that the distortion K(x) > 1 satisfies (1.7) for some ff > 0. Then there exists
a=cm)p >0 such that |Vu|cL? log" 'L(Q,R"), |AVu| € L? log" 'L(Q,R").

loc loc
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