Eleonora Crestani

A Generalization of Quasi-Hamiltonian Groups

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_829_0>
A Generalization of Quasi-Hamiltonian Groups

Eleonora Crestani

Sunto. – Iwasawa classifica i gruppi finiti G in cui tutti i sottogruppi V sono permutabili, cioè $UV = VU$ per ogni sottogruppo U di G. Tali gruppi sono detti quasi-hamiltoniani.

Noi classifichiamo i gruppi finiti in cui i sottogruppi non permutabili hanno tutti lo stesso ordine e quelli che hanno una sola classe di coniugio di sottogruppi non permutabili.

Summary. – Iwasawa classifies finite groups G in which all subgroups V are permutable, that is $UV = VU$ for all subgroups U of G. These groups are called quasi-hamiltonian.

We classify the finite groups whose non-permutable subgroups have the same order and the ones which have a single conjugacy class of non-permutable subgroups.

Introduction.

The structure of groups whose subgroups are all normal (hamiltonian groups) has been completely described by R. Dedekind and R. Baer. A long series of papers has dealt with generalizations of this result; let me mention two of them.

A first generalization studies groups which satisfy conditions on the numbers of non-normal subgroups. Brandl (see [1]) classifies groups in which non-normal subgroups are in a single conjugacy class.

G. Zappa (see [5] and [6]) classifies finite groups whose non-normal subgroups have the same order. In addition to the groups found by Brandl, Zappa finds only the p-groups described in Theorem 1 and 2 in [6].

A second generalization studies groups whose subgroups have a property close to being normal. Iwasawa (see [2]) classifies finite groups G in which all subgroups V are permutable, that is $UV = VU$ for all subgroups U of G. These groups are called quasi-hamiltonian. Our aim is to study finite groups whose non-permutable subgroups have the same order. This will also allow to classify the ones whose non-permutable subgroups are in the same conjugacy class.
1. – Preliminaries.

Definition 1. – A subgroup H of G is permutable in G if $HK = KH$ for all subgroups K of G. We will write $H \operatorname{perm} G$.

Such subgroups are also called quasinormal.

We list here a number of well known properties of permutable subgroups:

1. if $H \operatorname{perm} G$, $K \triangleleft G$ then $H \cap K \operatorname{perm} K$;
2. if $H, K \operatorname{perm} G$ then $HK \operatorname{perm} G$;
3. if $H \operatorname{perm} G$, $N \triangleleft G$ then $HN/N \operatorname{perm} G/N$;
4. if $H \leq G$, $N \triangleleft G$, $N \leq H$ then $HN/N \operatorname{perm} G$ if and only if $H \operatorname{perm} G$;
5. if $H \operatorname{perm} G$, $K \leq G$ and $(|H|, |K|) = 1$ then $K \leq N_G(H)$;
6. if H is a Sylow subgroup of G and $H \operatorname{perm} G$ then $H \triangleleft G$;
7. if H is a maximal subgroup of G and $H \operatorname{perm} G$ then $H \triangleleft G$;
8. if H is a cyclic permutable subgroup of G then each subgroup of H is permutable in G.

Proposition 1.1. – G is a finite non-nilpotent group whose non-permutable subgroups have the same order if and only if $G = N \times P$ split extension where $N \triangleleft G$ is of prime order q, P is a cyclic p-group with $p \neq q$ and a generator of P acts on N as a nontrivial automorphism of order p.

Proof. – Assume first that the non-permutable subgroups of G have the same order. Since G is a finite non-nilpotent group, there exist a non-permutable Sylow p-subgroup P and a maximal non-permutable subgroup M of G. As non-permutable subgroups have the same order, $|M| = |P|$ and non-permutable subgroups are cyclic. It follows that P is a p-Sylow, maximal, non-permutable and cyclic subgroup.

Let N be the subgroup generated by all Sylow q-subgroups of G where q runs over all prime and $q \neq p$. These Sylow q-subgroups of G are permutable, as their order is different from $|P|$, and so they are normal. Set $g \in N$ an element of prime order q. (g) permutes with $P, P \langle g \rangle = G$ and so $N = \langle g \rangle$.

$\Phi(P) \triangleleft P$, it is permutable in G and then $g \in N_G(\Phi(P))$. It follows that $\Phi(P) \triangleleft G$ and $[N, \Phi(P)] \leq N \cap \Phi(P) = 1$.

Finally P and N do not commute, that is $[N, P] \neq 1$. Conversely, if G has the structure described in the statement, theorem in [1] proves that in G there is only a conjugacy class of non-permutable subgroup, with P as representative.

Proposition 1.2. – If G is a finite nilpotent group whose non-permutable subgroups have the same order then G is a p-group.
Proof. – Suppose G is not a p–group. Then $G = A \times B$ where A and B are nontrivial Hall-subgroups. The subgroups of G are $H \times K$ with $H \leq A$ and $K \leq B$. Let $H_1 \times K_1, H_2 \times K_2$ be subgroups of G such that $H_1 H_2 \times K_1 K_2 \neq H_2 H_1 \times K_2 K_1$. It follows that either $H_1 H_2 \neq H_2 H_1$ or $K_1 K_2 \neq K_2 K_1$.

Suppose $H_1 H_2 \neq H_2 H_1$: $H_1 \times 1$ and $H_1 \times B$ are non-permutable in G but $|H_1 \times B| \neq |H_1|$, a contradiction. \hfill \Box

We are reduced to study p-groups. We indicate with $T(p^n)$ the class of finite non quasi-hamiltonian p-groups whose non-permutable subgroups have order p^n.

Notation:

$E(p^3)$ is the non abelian group of order p^3 and exponent p ($p \neq 2$);

$M(p^{n+1}) = \langle x, y : x^{p^n} = y^p = 1, x^y = x^{1+p^{n-1}} \rangle$;

$S_{2^n} = \langle x, y : x^{2^{n-1}} = y^2 = 1, x^y = x^{-1+2^{n-2}} \rangle$;

Q_{2^n} is the generalized quaternion group of order 2^n, D_{2^n} is the generalized dihedral group of order 2^n and C_{p^n} is the cyclic group of order p^n. If A, B are non identity p–groups with cyclic centre, $A \ast B$ indicates a central product with central subgroups of order p amalgamated.

2. – The groups in $T(p)$.

Proposition 2.1. – Let G be a group in $T(p)$. Let A_1 and A_2 be subgroups of G of order p such that $A_1 A_2 \neq A_2 A_1$, and let N be a normal subgroup of G of order p. Then:

1. $\langle A_1, A_2 \rangle = A_1 NA_2$ has order p^3 and is isomorphic to D_8 if $p = 2$, non abelian of exponent p if $p \neq 2$;

2. N is the only subgroup of order p which permutes with both A_1 and A_2.

In particular N is the only normal subgroup of order p in G;

3. $A_1 N \leq G$.

Proof. – Let A_1 and A_2 be subgroups of G such that $|A_i| = p$, $A_i = \langle a_i \rangle$ for $i = 1, 2$ and $A_1 A_2 \neq A_2 A_1$, and let $N = \langle n \rangle$.

$A_1 N$ is a subgroup of G of order p^2 and so permutable. In particular $A_1 NA_2$ is a subgroup of G of order p^3 and $A_1 NA_2 = \langle A_1, A_2 \rangle$. As it contains non-permutable subgroups, we have $\langle A_1, A_2 \rangle \cong D_8$ if $p = 2$, $\langle A_1, A_2 \rangle \cong E(p^3)$ if $p \neq 2$, so that: $\langle A_1, A_2 \rangle = \langle a_1, a_2 : a_1^p = 1 = a_2^p, [a_1, a_2] = n \in Z(\langle A_1, A_2 \rangle), n^p = 1 \rangle$.

Let A_3 be a subgroup of G of order p such that $A_1 \neq A_3$ and $A_1 A_3 = A_3 A_1$. Having order p^2, $A_1 A_3$ is a permutable subgroup. In particular the subgroup $A_1 A_3 A_2$ has order p^3 and then $A_1 A_3 A_2 = A_1 NA_2$. Moreover $A_1 A_3$ and $A_1 N$ are
normal subgroups of \(\langle A_1, A_2 \rangle \) and they both contain all the conjugates of \(A_1 \) in \(\langle A_1, A_2 \rangle \). Then \(A_1A_3 = A_1N \). Likewise if \(A_3 \) is a subgroup of \(G \) of order \(p \) such that \(A_2 \neq A_3 \) and \(A_2A_3 = A_3A_2 \) then \(A_2N = A_3A_2 \). In particular \(N \) is the only subgroup of order \(p \) which permutes with both \(A_1 \) and \(A_2 \) and then \(N \) is the only normal subgroup of order \(p \) in \(G \).

We prove now that \(A_1N \) is normal in \(G \). Let \(x \in G \).

Suppose first \(o(x) = p \). If \(a_1x = xa_1 \) then \(A_1^x \leq A_1N \). If \(a_1x \neq xa_1 \) then \(\langle a_1 \rangle \) and \(\langle x \rangle \) do not permute. As seen before \(\langle A_1, x \rangle = A_1N \langle x \rangle \) has order \(p^3 \) and \(A_1^x \leq A_1N \). In particular \(A_1N \trianglelefteq \Omega_1(G) \).

Suppose now \(o(x) = p^n \) where \(n > 1 \). \(\langle x \rangle \) is permutable in \(G \) and we may assume that \(A_1 \ntrianglelefteq \langle x \rangle \). Set \(\langle y \rangle = \Omega_1(\langle x \rangle) \). We have \(\langle a_1 \rangle \langle y \rangle = \langle y \rangle \langle a_1 \rangle \) and likewise \(\langle a_2 \rangle \langle y \rangle = \langle y \rangle \langle a_2 \rangle \). It follows that \(\langle y \rangle = N \). \(\langle a_1 \rangle \langle x \rangle \) is a group with a maximal cyclic subgroup, its order is \(p^{n+1} \) and \(|\Omega_1(\langle a_1 \rangle \langle x \rangle)| > p \). If \(p
eq 2 \), \(\langle a_1 \rangle \langle x \rangle \) is either abelian or isomorphic to \(M(p^{n+1}) \) and then \(x^{a_1} \equiv x \mod \langle y \rangle \). Hence, \(\langle a_1 \rangle^x \in A_1N \).

Suppose now \(p = 2 \). If \(\langle a_1 \rangle \langle x \rangle \) is isomorphic to \(D_8 \) then \(x \in \Omega_1(G) \). Since \(D_{2n+1} \) and \(S_{2n+1} \) with \(n \geq 3 \) contain non-permutable subgroups of order \(4 \), we have that \(\langle a_1 \rangle \langle x \rangle \) is either isomorphic to \(M(p^{n+1}) \) or abelian. Then \(x^{a_1} \equiv x \mod \langle y \rangle \) and \(\langle a_1 \rangle^x \in A_1N \).

\[\square \]

Theorem 2.2. – Let \(G \) be a \(p \)-group. Then:

1. \(G \in T(p) \) where \(p \neq 2 \) if and only if \(G \) is isomorphic to one of the following groups:

 (a) \(E(p^3) \);

 (b) \(E(p^3) \ast C_{p^*} \).

2. \(G \in T(2) \) if and only if \(G \) is isomorphic to one of the following groups:

 (a) \(D_8 \);

 (b) \(D_8 \ast C_{2^*} \);

 (c) \(D_8 \ast Q_8 \).

Proof. – Let \(A_1 \) and \(A_2 \) be subgroups of \(G \) of order \(p \) such that \(A_1A_2 \neq A_2A_1 \), and let \(N \) be the normal subgroup of \(G \) of order \(p \).

By prop. 2.1, \(A_1 \) and \(A_2 \) have \(p \) conjugates in \(G \).

\(C_G(\langle A_1, A_2 \rangle) = C_G(A_1) \cap C_G(A_2) \). Since \(|G : C_G(A_i)| = p \) \((i = 1, 2)\), \(|G : C_G(A_1) \cap C_G(A_2)| = p^2 \).

Set \(H = \langle A_1, A_2 \rangle \); \(H \trianglelefteq G \). \(H \cap (C_G(A_1) \cap C_G(A_2)) = Z(H) = N \) and then \(G = H \ast C_G(H) \).

Moreover if \(K \leq C_G(H) \), \(|K| = p \), we have \(KA_1 = A_1K \) and \(KA_2 = A_2K \). Then \(K = N \) and \(C_G(H) \) is cyclic or generalized quaternion, but if \(n \geq 4 \) then \(Q_{2^n} \) contains non-permutable subgroups of order \(4 \). Hence we get the groups of the proposition.

The groups listed above are in \(T(p) \). In fact \(E(p^3) \) and \(D_8 \) contain non-permutable subgroups of order \(p \), and all subgroups of order different from \(p \) are normal as proved in Theorem 2 in [6].

\[\square \]
3. – The groups in $T(p^n)$ with $n \geq 2$.

Proposition 3.1. – Let $G \in T(p^n)$ with $n \geq 2$ and $|\Omega_1(G)| = p$.

Then G is the generalized quaternion group of order 16 and $G \in T(4)$.

Proof. – If $|\Omega_1(G)| = p$ then G is either cyclic or generalized quaternion. Q_8 and cyclic groups are hamiltonian and, if $n \geq 5$, Q_2^a contains non-permutable subgroups of different orders. $Q_{16} = \langle a, b : a^4 = 1, b^4 = a^2, b^a = b^{-1} \rangle$ is in $T(4)$. In fact $\langle a \rangle$ and $\langle ab \rangle$ are not permutable, whereas the subgroup of order 2 and the subgroups of order 8 are normal. □

Proposition 3.2. – Assume $n \geq 2$ and let G be in $T(p^n)$ with $|\Omega_1(G)| > p$. Let A_1 and A_2 be subgroups of order p^n such that $A_1A_2 \neq A_2A_1$. Then:

1. A_1 and A_2 are cyclic;
2. $|A_1 \cap A_2| = p^{n-1}$;
3. $\langle A_1, A_2 \rangle = A_1 \langle t \rangle A_2$ for every $t \in \Omega_1(G) \setminus \Omega_1(A_1)$;

Moreover $\Omega_1(G)$ has order p^2 and is elementary abelian.

Proof. – Since subgroups of order p are permutable, $\Omega_1(G) = \{g \in G : g^p = 1 \}$ and it is elementary abelian. A_1 and A_2 are cyclic because otherwise they would be product of permutable subgroups. Set $A_i = \langle a_i \rangle$ ($i = 1, 2$). Having order p^{n-1}, $\langle a_i^{p^n} \rangle$ is permutable in G. We consider $\langle a_1^{p^n} \rangle a_2 \leq G$ and $\langle a_2^{p^n} \rangle a_1 \leq G$.

$\langle a_1^{p^n} \rangle \langle a_2^{p^n} \rangle \langle a_1 \rangle = \langle a_2 \rangle \langle a_1 \rangle$ and $\langle a_1^{p^n} \rangle \langle a_1 \rangle \langle a_2^{p^n} \rangle \langle a_2 \rangle = \langle a_1 \rangle \langle a_2 \rangle$.

Hence $\langle a_1^{p^n} \rangle \langle a_2^{p^n} \rangle \langle a_1 \rangle \neq \langle a_1^{p^n} \rangle \langle a_1 \rangle \langle a_2^{p^n} \rangle \langle a_2 \rangle$ and we get $|\langle a_1^{p^n} \rangle \langle a_2 \rangle| = p^n$, $|\langle a_1 \rangle \langle a_2 \rangle| = p^3$, so that $|a_1^{p^n}| \leq |a_2|$ and $|a_2^{p^n}| \leq |a_1|$.

$\langle a_1 \rangle / \langle a_1^{p^n} \rangle$ and $\langle a_2 \rangle / \langle a_2^{p^n} \rangle$ have order p and, as seen in section 2, they generate a subgroup of order p^3, which gives $|\langle a_1 \rangle \langle a_2 \rangle| = p^{n+2}$.

Since $|A_1 \cap \Omega_1(G)| = p$ and $|\Omega_1(G)| > p$, there exists $t \in \Omega_1(G)$, $t \notin A_1$.

Having order p^{n+1}, $A_1 \langle t \rangle$ is permutable in G, and $A_2 \cap A_1 \langle t \rangle = \langle a_1^{p^n} \rangle$. It follows that $|A_1 \langle t \rangle A_2| = p^{n+2}$ and then $\langle A_1, A_2 \rangle = A_1 \langle t \rangle A_2$. Furthermore $N_{\langle A_1, A_2 \rangle}(A_1) = A_1 \langle t \rangle$.

Suppose now that there exists $s \in \Omega_1(G)$, $s \notin A_1 \langle t \rangle$. As proved above, $\langle A_1, A_2 \rangle = A_1 \langle s \rangle A_2$ and $N_{\langle A_1, A_2 \rangle}(A_1) = A_1 \langle s \rangle$. Hence we get $A_1 \langle s \rangle = A_1 \langle t \rangle$ which contradicts our assumptions. □

With the following theorem, we complete the description of p–groups in $T(p^n)$ if $p \neq 2$. This reduces us to study 2–groups in $T(2^n)$ with $n \geq 2$.

Theorem 3.3. – Let G be p–group, $p \neq 2$. The following conditions are equivalent:

1. G is elementary abelian;
2. G is a direct product of cyclic p–groups;
3. G is a direct product of distinct cyclic p–groups.

Proof. – If G is elementary abelian, then G is a direct product of cyclic p–groups.

Conversely, if G is a direct product of cyclic p–groups, then G is elementary abelian.

Finally, if G is a direct product of distinct cyclic p–groups, then G is elementary abelian.

□
1. \(G \in T(p^n) \) where \(n \geq 2; \\
2. \(G \in T(3^2) \\
3. G = \langle a, c, b : a^9 = c^3 = 1, b^3 = a^3, ac = ca, a^b = ac, c^b = ca^{-3} \rangle. \\

Proof. Let \(A_1 \) and \(A_2 \) be subgroups of \(G \) of order \(p^n \) such that \(A_1A_2 \neq A_2A_1 \). By prop. 3.2, \(A_1 = \langle a_1 \rangle, A_2 = \langle a_2 \rangle \) and \(\langle A_1, A_2 \rangle = A_1(t)A_2 \) where \(t \in \Omega_1(G) \setminus \Omega_1(A_1) \). Moreover we can assume \(a_1^p = a_2^p \).

\(A_i(t) \leq G \) is either abelian or isomorphic to \(M(p^{n+1}) \) and \(A_i(t) \cong \langle A_1, A_2 \rangle \) for \(i = 1, 2 \). So we get:
\[a_1^t = a_1^{1+hp^{-1}}, \quad a_2^t = a_2^{1+hp^{-1}}, \quad a_1^{t^s} = a_1^{a_1 t^s} \text{ where } h, k \in \{1, \ldots , p \}, \]
\(s \in \{1, \ldots , p-1 \} \) and \(r \equiv 1 \mod(p) \); from \(a_1^p = (a_1^t)^{a_1} = (a_1^r)^t = a_1^{tp} \) we have \(r = 1 + j p^{-1} \) and then:
\[a_1^t = a_1^{1+hp^{-1}}, \quad a_2^t = a_2^{1+hp^{-1}}, \quad \langle a_1, a_2 \rangle \text{ has class } \leq 3 \text{ and derived subgroup contained in } \langle a_1^{p^{-1}}, t \rangle = \Omega_1(\langle A_1, A_2 \rangle). \]

If \(p > 3 \) we obtain a contradiction. In fact \(\langle A_1, A_2 \rangle \) is regular, hence \((a_2a_1^{-1})^p = a_2^p a_1^{-1} t^p \) for some \(x \in \langle A_1, A_2 \rangle \). So \(a_2a_1^{-1} \) has order \(p \) but \(\langle a_2a_1^{-1} \rangle \) does not normalize \(A_1 \). It follows that there are no groups in \(T(p^n) \) if \(p > 3 \), \(n \geq 2. \)

Suppose now \(p = 3 \). Since \(\langle a_1, a_2 \rangle / \langle a_1^{3^{-1}} \rangle \) has class \(\leq 2 \), it follows that \(\langle a_1, a_2 \rangle / \langle a_1^{3^{-1}} \rangle \) is regular and \(a_1 a_2^{-1} a_1^{-3} \langle a_1^{3^{-1}} \rangle = 1. \)

If \(n \geq 3 \) we obtain a contradiction: \(a_1 a_2^{-1} \) has order \(\leq 9 \) but \(\langle a_1a_2^{-1} \rangle \) does not permute with \(A_2 \). Finally if \(p = 3 \) and \(n = 2 \), two non-permutable subgroups of order 9 generate a group of order 81 whose structure is described above: \(H = \langle a_1, a_2 \rangle, a_1^3 = a_2^3, \quad \Omega_1(H) = \langle a_1^3, t \rangle \). \(\langle a_1, t \rangle \) is either abelian or isomorphic to \(M(3^2) \). Since \([H : C_H(\Omega_1(H))] = 3 \) we can choose \(a_1 \in C_H(\Omega_1(H)) \); further we may choose \(t \) such that \(a_1^{a_2} = a_1 t \). \(a_1 a_2 \) does not normalize \(A_1 \). If \(t_{a_2} = ta_2^{-3} \) then \((a_2a_1^{-1})^3 = 1 \), a contradiction. So we have \(t_{a_2} = ta_2^{-3} \) and this shows that \(H \) is as in 3. Conversely, it can be easily checked that \(G \) is in \(T(3^2) \).

Suppose now that \(G \) is in \(T(3^2) \) and contains \(H \) as a proper subgroup; we may also assume that \(|G : H| = 3 \). By theorem (4.12) in [4], \(G = \langle b \rangle C_G(\Omega_1(G)) \).

We shall prove that \(C_G(\Omega_1(G)) = \langle a, c \rangle \). It will be enough to show that \(C_G(\Omega_1(G)) \) contains no elements of order 9 or 27 outside \(\langle a, c \rangle \).

First we note that \(a^3 \in Z(G) \); indeed \(\Omega_1(G) \cap Z(G) \neq 1 \) and \(c \not\in Z(\langle a, b \rangle) \).

Suppose \(y \in C_G(\Omega_1(G)) \setminus \langle a, c \rangle \) of order 9. \(\langle a \rangle \) and \(\langle y \rangle \) permute. Otherwise we have a contradiction: \(\langle a, y \rangle \cong \langle a, b \rangle \) but \(\Omega_1(\langle y, a \rangle) = \langle a^3, c \rangle \leq Z(\langle a, y \rangle) \) whereas \(\Omega_1(\langle b, a \rangle) \not\leq Z(\langle b, a \rangle) \).

If \(y^3 \in \langle a^3 \rangle \) then \(a^3 = y^{3k}, y^a = y^{1+3k} \) and \((a y^{-k})^3 = 1 \), which gives \(y \in \langle a, c \rangle \).

Assume now \(y^3 \not\in \langle a^3 \rangle \), that is \(y^3 = a^{3k} \). Since \(\langle b \rangle \cap \langle y \rangle = 1, \langle b \rangle \) permutes with \(\langle y \rangle \) and \(y^b = y^{1+3i} a^{3j} \). Now \(c a^{-3} = c^b = (y^3)^b = y^3 = c \), a contradiction.

Suppose \(y \in C_G(\Omega_1(G)) \setminus \langle a, c \rangle \) of order 27. As \(y^3 \in \langle a, c \rangle, y^3 = ac^k \) and then \(y^9 = a^3. b \) normalizes \(\langle y \rangle \) and from \((y^9)^b = y \) we get \(y^b = y^{1+3i} \). But \(a^b = (y^3c^{-k})^b = y^{3+3i}c^{-k} a^{3k} = ac^k a^{-3i} c^{-k} a^{3k} = a^{1+3i+3k} \in \langle a \rangle \), a contradiction. \(\square \)
4. – Groups in $T(2^n)$ with $n \geq 2$: first results.

In view of prop. 3.1 and 3.2, we will assume that the groups G in $T(2^n)$ that we consider satisfy $|\Omega_1(G)| = 4$.

We will be interested in studying the following groups:

$T_1(n) = \langle a, b : a^4 = b^{2^n} = 1, a^b = a^3 \rangle \ (n \geq 2)$ and

$T_2(n) = \langle a, b : a^8 = 1, a^4 = b^{2^{n-1}}, a^b = a^7 \rangle \ (n \geq 3)$.

Proposition 4.1. – $T_1(n)$ for $n \geq 2$ is in $T(2^n)$.

Proof. – $Z(T_1(n)) = \langle a^2, b^2 \rangle$ and the square of every element of $Z(T_1(n))$ is in $\langle b^4 \rangle$. The elements of $T_1(n)$ are z, az_1, abz_2, bz_3 where $z, z_i \in Z(T_1(n))$. Since $\langle abz_2 \rangle$ and $\langle b^2z_3 \rangle$ have order 2^n, we have to prove that $\langle az_1 \rangle$ permutes with both $\langle b^2z_2 \rangle$ and $\langle abz_3 \rangle$.

$(az_1)(b^2z_3) = abz_1z_3 = a^2b^2a^3z_1z_3 = ba^2a_1z_3 = bz_3(az_1)^3z_1^{-2}$. Setting $z_3^2 = b^{4i}$ and $z_1^2 = b^{4i}$, we get: $\langle b^2z_3 \rangle = \langle b^{2i} \rangle$ and there exists an integer r such that $az_1bz_3 = (b^2z_3)^r(az_1)^3$.

The same if we consider abz_2 instead of b^2z_3. □

Proposition 4.2. – $T_2(n)$ with $n \geq 3$ is in $T(2^n)$.

Proof. – One see easily that: $Z(T_2(n)) = \langle b^2 \rangle$, $[a^2, T_2(n)] = \langle a^4 \rangle$, $|T_2(n)| = 2^{n+2}$, and $T_2(n)/\langle a^4 \rangle \cong T_1(n - 1)$. Moreover, for each $g \in T_2(n) \setminus \langle a, b^2 \rangle$ we have $\langle b^2 \rangle = \langle g \rangle$, $|\langle g \rangle| = 2^n$. It follows that non-permutable subgroups of $T_2(n)$ containing $\langle a^4 \rangle$ have order 2^n by prop. 4.1.

A subgroup not containing $\langle a^4 \rangle$ is cyclic; the possibilities are: $\langle a^2b^{2^{n-2}} \rangle$ of order 2 and (if $n > 3$) $\langle ab^{2^{n-3}} \rangle$ of order 4. Now $a^2b^{2^{n-2}}$ normalizes every subgroup of $T_2(n)$, $\langle ab^{2^{n-3}} \rangle$ centralizes $\langle a, b^2 \rangle$ and, if $g \notin \langle a, b^2 \rangle$, we have $|g| = 2^n$, $\langle g \rangle \cap \langle ab^{2^{n-3}} \rangle = 1$, $\lvert \langle g, ab^{2^{n-3}} \rangle \rvert = |T_2(n)| = 2^{n+2}$, so that $\langle g \rangle$ and $\langle ab^{2^{n-3}} \rangle$ permute. □

Proposition 4.3. – Let $G \in T(2^n)$ with $n \geq 2$. Two non-permutable subgroups of order 2^n generate a group isomorphic to one of $T_1(n)$ ($n \geq 2$), $T_2(n)$ ($n > 2$).

Proof. – Let A_1 and A_2 be subgroups of G of order 2^n such that $A_1A_2 \neq A_2A_1$. By prop. 3.2, $A_1 = \langle a_1 \rangle$, $A_2 = \langle a_2 \rangle$ and $\langle A_1, A_2 \rangle = A_1 \langle t \rangle A_2$ where $t \in \Omega_1(G) \setminus \Omega_1(A_1)$. Moreover we can suppose $a_1a^2 = a_2^2$.

$\langle a_1, t \rangle$ ($t = 1, 2$) has a maximal cyclic subgroup and then it is either abelian or (if $n \geq 3$) isomorphic to $M(2^{n+1})$. Then $a_1^t = a_1$ or (if $n \geq 3$) $a_1^t = a_1a_i^{2^{n-1}}$ for $i = 1, 2$. Moreover $\langle a_1, t \rangle \leq \langle a_1, a_2 \rangle$ and then $a_1a_2 = a_1t$ with j odd.
Hence the possibilities are:

1. \(a_1 t = ta_1, a_2 t = ta_2 \).

 From \(a_1^2 = (a_1^2)^a_2 \), we have \(2j \equiv 2 \mod(2^n) \) which gives \(a_1^{a_2} = a_1^{1+2^{n-1}}t \).

 Then we may choose \(t \) such that \(a_1^{a_2} = a_1 t, a_1 t = ta_1 \) and \(a_2 t = ta_2 \).

 Setting \(a = a_1 a_2^{-1} \) and \(b = a_2 \), we get the group \(T_1(n) \).

2. (if \(n \geq 3 \)) \(a_1 t = a_1, a_2 t = a_2^{1+2^{n-1}} \).

 As seen above, we may choose \(t \) such that \(a_1^{a_2} = a_1 t, a_1^t = a_1, a_2^t = a_2^{1+2^{n-1}} \). Now \((a_2^2)^{a_1} = a_2 t a_2 t = a_2 a_2^{1+2^{n-1}} \neq a_2^2 \), a contradiction.

3. (if \(n \geq 3 \)) \(a_1 t = a_1, a_2 t = a_2^{1+2^{n-1}} \).

 As seen above, we may choose \(t \) such that \(a_1^{a_2} = a_2 t, a_1^t = a_1, a_2^t = a_2^{1+2^{n-1}} \). Now \((a_1^2)^{a_2} = a_1 t a_1 t = a_1 a_1^{1+2^{n-1}} \neq a_1^2 \), a contradiction.

4. (if \(n \geq 3 \)) \(a_1 t = a_1^{1+2^{n-1}}, a_2 t = a_2^{1+2^{n-1}} \).

 From \(a_1^2 = (a_1^2)^{a_2} \), we have \(2 = 2j + 2^{n-1} \mod(2^n) \) which gives \(a_1^{a_2} = a_1^{1+2^{n-2}}t \) where \(j = 1, 3 \). Hence we may choose \(t \) such that \(a_1^{a_2} = a_1^{1+2^{n-2}}t \). Setting \(a = a_1 a_2^{-1} \) and \(b = a_2 \), we get the group \(T_2(n) \).

5. – The groups in \(T(4) \).

Theorem 5.1. – There is no group \(G \in T(4) \) having exponent \(> 4 \).

Proof. – By prop. 4.3, a group \(G \in T(4) \) contains a subgroup isomorphic to \(T = \langle a, b : a^4 = b^4 = 1, a^b = a^3 \rangle \). Since \(\exp(G) > 4 \), we can suppose \(G = T \langle z \rangle \) where \(o(z) = 8 \). We note that \(\Omega_1(G) = \Omega_1(T) \).

We first prove that \(\langle z \rangle \trianglelefteq G \).

Since \(\langle z \rangle \) permG, every element of order 2 normalizes \(\langle z \rangle \).

Let \(t \) be an element of \(T \) of order 4. If \(t^2 = z^4 \) then \(t \in N_G(\langle z \rangle) \). Suppose that \(t^2 \neq z^4 \). Then \(\langle z, t^2 \rangle \trianglelefteq \langle z, t \rangle \) but if \(z^i = z^j t^k \), we have a contradiction:

\[
(tz)^2 = (z^i)^2 z^j \in \langle z \rangle, \quad |\langle tz, z \rangle | = 16 \quad \text{whereas} \quad |\langle t, z \rangle | = 32.
\]

It follows that \(T \leq N_G(\langle z \rangle) \).

Suppose now \(z^i \in T \). Since \(\langle ba^{2i}b^2 \rangle \) and \(\langle ba^{2i}b^2 \rangle \) are not normal in \(T \), we have \(z^i \in a^i(a^2, b^2) \). From \((z^i)^a = z^b \), we get \(z^b = z^{3+4k} \) and \((bz)^2 = y^2 z^{3+4k} z = y^2 z^{4+k} \).

Then \(bz \) has order 4 and \(|\langle bz, b \rangle| \leq 16 \), a contradiction because \(|\langle b, z \rangle| = 32 \). It follows that \(z^i \notin T \).

If \(z^i = b^2 \) then \(G/\langle z \rangle \cong D_8 \) and \(\langle z, b \rangle \) is not permutable in \(G \).

Suppose \(z^i = a^2 \). Since \(|\langle z, a \rangle| = 16 \) and \(G = \langle z, a \rangle \langle b \rangle \), we get \(\langle z, a \rangle \cap \langle b \rangle = 1 \), and \(|\Omega_1(\langle z, a \rangle)| = 2 \). Then \(\langle a, z \rangle \) is either cyclic or a generalized quaternion subgroup of order 16. Suppose that \(\langle a, z \rangle \) is cyclic. Then \(z^2 \) is in \(\langle a \rangle \) and we have a contradiction. Suppose now that \(\langle z, a \rangle \cong Q_{16} \). In this case the element \(az \) has order 4 and \(\langle az \rangle \cap \langle b \rangle = 1 \). Then \(\langle az, b \rangle \) has order 16 but it does not permute with
\(\langle a \rangle \), a contradiction. Assume now \(z^4 = a^2b^2 \). If \(t \) is an element of \(T \) of order 4, then
\[[z, t] \in \langle z^2 \rangle. \]
If \([z, t] = z^{2k}\) with \(k \) odd then \(o(tz) \leq 4 \) and \(|\langle tz, t \rangle| \leq 16 \) a contradiction because \(|\langle t, z \rangle| = 32 \). Hence, \([z, b] \in \langle z^4 \rangle\), \([z, a] \in z^4\). Now \(az \) has order 8,
\((az)^4 = \langle z^4 \rangle \) but \([az, b] \not\in \langle az \rangle\), a contradiction. \(\square \)

Observation 1. – A finite 2-group of exponent 4 has derived subgroup contained in \(\Omega_1(G) \). In particular the derived subgroup of \(G \in T(4) \) has order 2 or 4.

Proposition 5.2. – Let \(G \) be a group of exponent 4 with \(|G| = 32\), \(|G'| = 2 \).
Then \(G \) is in \(T(4) \) if and only if
\[G \cong \langle a, b, c : c^4 = a^4 = 1, a^2 = b^2, ca = ac, bc = cb, b^a = b^3 \rangle = M \cong Q_8 \times C_4. \]

Proof. – Since \(|G| = 32 \), \(|G'| = 2 \) and \(T = \langle a, b : a^4 = b^4 = 1, b^a = b^3 \rangle \leq G \), \(G' = \langle b^2 \rangle \). Every element in \(G \setminus T \) has order 4. Let \(c \in G \setminus T \). Now \(c^2 \in \Omega_1(G) = \langle a^2, b^2 \rangle \leq Z(G) \), \([c, a] \in \langle b^2 \rangle \), \([c, b] \in \langle b^2 \rangle \) so that \([c, a] = b^{2k}, [c, b] = b^{2k}. c \) acts on \(T \) as \(a^k b^h \) and then, replacing \(c \) with \(c(a^k b^h) \), we can suppose \(c \in Z(G) \).
We can have neither \(c^2 = a^2 (ac)^2 = 1 \) nor \(c^2 = b^2 ((bc)^2 = 1) \).
Then, \(G = \langle a, b, c : c^4 = a^4 = 1, c^2 = a^2 b^2, b^a = b^3, ac = ca, bc = cb \rangle \).
Repeating \(a \) with \(ac \), we get the presentation of the proposition.
Conversely, in the group
\[\langle a, b, c : c^4 = a^4 = 1, a^2 = b^2, ca = ac, bc = cb, b^a = b^3 \rangle \]
the subgroups \(\langle ac \rangle \) and \(\langle bc \rangle \) are non-permutable subgroups of order 4. Theorem 2 of [6] proves that subgroups of \(M \) of order different from 4 are normal, hence permutable.

Proposition 5.3. – Let \(G \) be a group of exponent 4 with \(|G| = 32\), \(|G'| = 4 \).
Then \(G \) is in \(T(4) \) if and only if
\[G \cong \langle a, b, c : a^4 = b^4 = 1, b^2 = c^2, ca = ac, c^h = ca^2, b^a = b^3 \rangle = R. \]

Proof. – Since \(|G| = 32 \), \(|G'| = 4 \), \(T = \langle a, b : a^4 = b^4 = 1, b^a = b^3 \rangle \) is contained in \(G \) and \(G' \leq \Omega_1(G) = \Omega_1(T) \), we have \(G' = \langle b^2, a^2 \rangle \leq Z(G) \). Let \(c \in G \setminus T \).
Then, \(c^2 \in \Omega_1(G) = \langle a^2, b^2 \rangle \) and \(c^2 \neq 1 \). Since \([c, a] \in \langle a^2, b^2 \rangle, [c, b] \in \langle a^2, b^2 \rangle \) we have \([c, a] = a^2b^2, [c, b] = a^{2k}b^{2k} \) and then \([cb^ia^k, a] = a^{2i}, [cb^ia^k, b] = a^{2k}. \)
Replacing \(c \) with \(cb^ia^k \), we get \(c^i = a^{1+2i} \) and \(b^c = a^{2h}b. \) Since \(a^2 \in G' \), either \(i \) or \(h \) has to be odd. If they are both odd, \((ab)^c = ab \) and we replace \(a \) with \(ab \). So, the possibilities are:

- \(a^c = a, b^c = a^2b \). It can be neither \(c^2 = a^2 ((ac)^2 = 1) \) nor \(c^2 = a^2 b^2 ((cb)^2 = 1) \). It follows that \(c^2 = b^2 \) and \(G \cong R. \)
- \(a^c = a^{-1}, b^c = b \). It can be neither \(c^2 = b^2 ((bc)^2 = 1) \) nor \(c^2 = a^2 ((c)^2 \leq G, G/\langle c \rangle \cong D_8 \) and then \(\langle a, c \rangle \) is non permutable in \(G \). It follows that \(c^2 = a^2 b^2 \). Replacing \(a' = c, b' = a, c' = bc \), we get \(G \cong R. \)
The subgroups $\langle ab \rangle$ and $\langle a \rangle$ of order 4 of R are non-permutable subgroups. Theorem 2 of [6] proves that subgroups of R of order different from 4 are normal, hence permutable.

Observation 2. $- M$ and R are the only groups in $T(4)$ of order 32. Moreover in R there are neither central elements of order 4 nor subgroups of order 8 isomorphic to the quaternion group.

Proposition 5.4. $- M$ is not contained in a group $G \in T(2^2)$ of order ≥ 64. In particular a group G in $T(2^2)$ with $|G'| = 2$ has order ≤ 32.

Proof. $- $ Suppose that there exists a group $G \in T(2^2)$ of order 64 containing M, $G = \langle a, b, c, d \rangle$ where $d \notin M$. Since $G' \leq \Omega_1(G) = \langle b^2, c^2 \rangle$ the possibilities are:

1. $|G'| = 2$. Then $G' = \langle b^2 \rangle$ and $[a, d] = b^{2h}$, $[b, d] = b^{2k}$, $[c, d] = b^{2r}$. Replacing d with db^ka^k, we get $[a, d] = 1$, $[b, d] = 1$, $[c, d] = b^{2r}$. Moreover $d \notin Z(G)$; for each $w \in \Omega_1(G)$ there is $t \in M$ such that $t^2 = w$ and so if $d^2 = w$ then $(db)^2 = 1$. Hence, we get: $[a, d] = 1$, $[b, d] = 1$, $[c, d] = b^{2}$. It can be neither $d^2 = a^2$ ($\langle da \rangle^2 = 1$) nor $d^2 = a^2c^2$ ($\langle dc \rangle^2 = d^2ca^2c = 1$), and if $d^2 = c^2$ then $(dac)^2 = d^2aca^2c = 1$.

2. $|G'| = 4$. Then $G' = \langle b^2, c^2 \rangle$ and $[a, d] = b^{2h}c^{2k}$, $[b, d] = b^{2i}c^{2j}$, $[c, d] = b^{2r}c^{2s}$ where $h, k, i, j, r, s \in 0, 1$. Since $[a, db^ka^i] = c^{2k}$, $[b, db^ka^i] = c^{2j}$ and $[c, db^ka^i] = b^{2r}c^{2s}$, replacing d with db^ka^i, we get $[a, d] = c^{2k}$, $[b, d] = c^{2j}$, $[c, d] = b^{2r}c^{2s}$. If $[a, d] = c^2$, we have $d \notin N_G(\langle a, b \rangle)$ and so $d^2 = a^2c^2$. Now $(da)^2 = d^2ac^2a \in \langle a^2 \rangle$, hence $da \in N_G(\langle a, b \rangle)$, a contradiction. It follows that $[d, a] = 1$. Likewise we prove that $[b, d] = 1$. We can not have $d^2 = a^2$ because in this case $(da)^2 = 1$, a contradiction. Moreover, since $c^2 \in G'$, we get $[d, c] = c^2a^{2i}$. Hence, we have the following cases:

- (a) $d^2 = c^2$. If $[c, d] = c^2b^2$, we have that the groups $\langle dc, ac \rangle \cong Q_8$ and $\langle bd \rangle$ do not permute. If $[c, d] = c^2$, we have that the groups $\langle ac, db \rangle \cong Q_8$ and $\langle ad \rangle$ do not permute;

- (b) $d^2 = a^2c^2$. If $[c, d] = c^2$, $\langle dab, c \rangle \cong Q_8$ does not permute with $\langle db \rangle$. If $[c, d] = a^2c^2$ then $(dc)^2 = d^2ca^2c^2 = c^2$ and, replacing d with dc, we are in the previous case.

In each case we reached a contradiction and then M is not contained in a group $G \in T(2^2)$ of order ≥ 32.

Observation 3. $- $ Let $G \in T(4)$ of order ≥ 64 and let K be a subgroup of order 32 of G. By prop. 5.4, if K contains non-permutable subgroups then $K \cong R$. If K is quasi-hamiltonian then it should be either abelian or isomorphic to $Q_8 \times E$ where E is elementary abelian, but in both cases we should have $|\Omega_1(K)| > 4$.

Hence, a subgroup of order 32 of $G \in T(4)$ of order ≥ 64 is isomorphic to R.
At this point, we note that we are in a situation already considered by Zappa in [5]. The argument of lemma 7 and prop. 3 of [5] allow to prove the following propositions:

Proposition 5.5. - Let $G \in T(2^2)$ with $|G| = 64$. Then:

$$G \cong V = \langle a, b, c, d : a^4 = b^4 = 1, b^2 = c^2, d^2 = a^2, ca = ac, cb = ca^2, b^n = b^3, db = bd, a^d = aa^2b^2, c^d = cb^2 \rangle.$$

Proposition 5.6. - If $G \in T(4)$ then $|G| \leq 64$.

5.1 - The groups in $T(2^n)$, $n > 2$.

Observation 4. - Let $G \in T(2^n)$, $T_1(n) \leq G$. By prop.3.2, $|\Omega_1(G)| = 4$ and $\Omega_1(G) = \Omega_1(T_1(n)) = \langle a^2, b^{2^{n-1}} \rangle$. Let K be a normal subgroup of G containing $\Omega_1(G)$, G/K is quasi-hamiltonian, and so if $u, v \in G$, $o(uK) = 2$ and $o(vK) \leq 4$, we get $[v, u] \in K$.

We always take $K = Z(T_1(n))$.

Theorem 5.7. - If $n > 2$ there is no group G in $T(2^n)$ such that $|G| > 2^{n+2}$ and $T_1(n) \leq G$.

Proof. - Suppose $G \in T(2^n)$, $T_1(n) \leq G$. We may assume that $[G : T_1(n)] = 2$.

The subgroups generated by elements of order 2 or 4 are permutable and so $\Omega_2(G)$ is abelian or isomorphic to $Q_8 \times E$ where E is elementary abelian. Since $\Omega_2(T_1(n))$ is the direct product of two cyclic groups of order 4, we get that $\Omega_2(G)$ is abelian.

Let $z \in G, z \not\in T_1(n)$ of order 4. Since every element of $\Omega_1(T_1(n))$ is a square in $T_1(n)$, we have $z^2 = t^2$ and $(zt)^2 = 1$, a contradiction. It follows that $\Omega_2(G) = \Omega_2(T_1(n))$.

Let $z \in G \setminus T_1(n)$ of order 2^m where $m \leq n$ and $z^2 \in T_1(n)$. The elements of order $\leq 2^{n-1}$ are $ab^{2^i}, a^3b^{2^i}, a^2b^{2^i}$ and b^{2^i} (i an integer).

If $z^2 = b^{2^i}$ then $\langle z \rangle$ and $\langle b \rangle$ permute. Otherwise, since $ba^2 = a^2b$ we would get $\langle b, z \rangle \cong T_1(n), \Omega_2(\langle z, b \rangle) = \Omega_2(G) = \Omega_2(T_1(n))$, $a \in \langle z, b \rangle$ and then $T_1(n) = \langle z, b \rangle$, a contradiction. $\langle z, b \rangle$ is either abelian or isomorphic to $M(2^n)$. In both cases $o(zb^{i-1}) \leq 4$, a contradiction.

If $z^2 = ab^{2^i}$ then, by obs.4, we get $[b, z] \in \langle z^4, b^2 \rangle$ so that $b^2 = b^{i+2}z^{4i}$. Now $ba^2 = b^2 = (b^{i+2}z^{4i})^{i+2}z^{4i} = b^{i+2}z^{8i(1+2)} \in \langle b \rangle$, a contradiction.

If $z^2 = a^3b^{2^i}$, replacing z with z^{-1}, we are in the previous case.
If $z^2 = a^2 b^2$ then, by obs.4, we get $[a, z] = a^{2r} b^{2s}$ and $[b, z] = a^{2k} b^{2k}$. If $[a, z] = b^{2s}$ then $(za)^2 = z^2 a b^2 s a = z^2 a^2 b^{2s} \in \langle b^2 \rangle$ and, replacing z with za, we are in a previous case. If $[b, z] = a^{2b} b^{2k}$ then $(zb)^2 = z^2 a^2 b^{1+2k} b = a^2 b^{2i} a^2 b^{1+2k} b \in \langle b^2 \rangle$ and, replacing z with zb, we are in a previous case.

Finally if $a^z = a^{3b} z b$ and $b^z = b^{1+2k}$, $(zab)^2 \in \langle b^2 \rangle$ and, replacing z with $z ab$, we are again in a previous case.

Suppose now $z \in G \setminus T_1(n)$ of order $2n+1$. Since $G \in T(2^n)$, $\langle z \rangle$ perm G and it cannot contain a non-permutable subgroup. Now all the elements of order 2^n in $T_1(n)$ generate non-permutable subgroups and so this case is not possible.

Theorem 5.8. There is no group G in $T(2^n)$ such that $T_2(n) \leq G$.

Proof. Suppose first $n = 3$, and let $G \in T(8)$, $T_2(3) \leq G$, $[G : T_2(3)] = 2$. $G/\Omega_1(G)$ is quasi-hamiltonian, $T_2(3)/\Omega_1(T_2(3)) \cong Q_8$ and then $G/\Omega_1(G) \cong Q_8 \times C_2$. This proves that elements outside $T_2(3)$ have order ≤ 4.

Let $z \in G \setminus T_2(3)$ of order 4.

If $z^2 = a^4$ then $\langle z, a \rangle$ is either abelian or isomorphic to $M(2^4)$. In both cases $(a^2 z)^2 = 1$, a contradiction.

Suppose $z^2 = a^2 b^2$. Since $(z^2)^2 = z^4$ and $\langle b, z^2 \rangle \cong \langle b, z \rangle$, it can be neither $b^z = y^{1+2i}$ nor $b^z = b^{1+4k} z^2$. Hence we get $b^z = b^{3+4k} z^2$. $(zb)^2 = z^2 b^{3+4k} z^2 b = a^6 b^{3+4k} a^2 b = b^{7+4k} b = b^{4k}$ and so $|\langle b, z \rangle| = 16$, a contradiction because $|\langle b, z \rangle| = 32$.

Finally if $z^2 = a^2 b^6$, replacing b with b^{-1}, we are in the previous case.

Assume now $n > 3$ and let $G \in T(2^n)$, $T_2(n) \leq G$. Since $\Omega_1(T_2(n)) \cap Z(T_2(n)) = \langle a^4 \rangle$, $\Omega_1(T_2(n)) \cap Z(G) \neq 1$, we have $\Omega_1(T_2(n)) \cap Z(G) = \langle a^4 \rangle$. The subgroups of $G/\langle a^4 \rangle$ are $H/\langle a^4 \rangle$ where $\langle a^4 \rangle < H \leq G$ and $b \langle a^4 \rangle$ is non-permutable in $G/\langle a^4 \rangle$. Let $H/\langle a^4 \rangle$ and $K/\langle a^4 \rangle$ be subgroups such that $H/\langle a^4 \rangle K/\langle a^4 \rangle \neq K/\langle a^4 \rangle H/\langle a^4 \rangle$ and H and K are non-permutable cyclic subgroups of G of order 2^n and $\langle a^4 \rangle < H$. It follows that $|H/\langle a^4 \rangle| = 2^{n-1} = |b \langle a^4 \rangle|$, $G/\langle a^4 \rangle \in T(2^{n-1})$ and $T_1(n-1) \cong T_2(n)/\langle a^4 \rangle \leq G/\langle a^4 \rangle$. By theorem 5.7, $T_2(n)/\langle a^4 \rangle = G/\langle a^4 \rangle$ and then we have $T_2(n) = G$. □

6. Conclusions.

The task of classifying finite p-groups in $T(p^n)$ is now completed. Our results are collected in the following theorem:

Theorem 6.1. The following conditions are equivalent:

- The group G is in $T(p^n)$;
- G is isomorphic to one of the following groups:
1. \(\langle a, b : a^4 = 1, b^4 = a^2, b^a = b^{-1} \rangle \) where \(p = 2 \) and \(n = 2; \)

2. \(\langle a, b, c : a^p = b^p = c^p = 1, [a, b] = c, [a, c] = 1, [b, c] = 1 \rangle \)
\[\text{where } p \geq 3 \text{ and } n = 1; \]

3. \(\langle a, b, d : a^p = b^p = d^m = 1, [a, b] = d^{p-1}, [a, d] = 1, [b, d] = 1 \rangle \)
\[\text{where } p \geq 3, n = 1 \text{ and } m > 1; \]

4. \(\langle a, c, b : a^9 = c^3 = 1, a^3 = b^3, ac = ca, a^b = ac, c^b = ca^{-3} \rangle \)
\[\text{where } p = 3 \text{ and } n = 2; \]

5. \(\langle a, b : b^4 = 1 = a^2, b^a = b^{-1} \rangle \) where \(p = 2 \) and \(n = 1; \)

6. \(\langle a, b, c : a^4 = b^4 = a^2 = c^2 = b^2 = b^a = b^{-1}, bc = cb, ac = ca \rangle \)
\[\text{where } p = 2, n = 1 \text{ and } m > 1; \]

7. \(\langle a, b, c, d : b^4 = a^2, b^2 = c^2 = d^2, b^a = b^{-1}, c^d = c^{-1}, bc = cb, ac = ca, bd = db, ad = da \rangle \)
\[\text{where } p = 2 \text{ and } n = 1; \]

8. \(\langle a, b, c : a^4 = c^4 = 1, a^2 = b^2, b^a = b^3, a^c = a, b^c = b \rangle \)
\[\text{where } p = 2 \text{ and } n = 2; \]

9. \(\langle a, b, c : a^4 = b^4 = 1, c^2 = b^2, b^a = b^3, ac = ca, b^c = ba^2 \rangle \)
\[\text{where } p = 2 \text{ and } n = 2; \]

10. \(\langle a, b, c, d : b^4 = a^4 = 1, b^2 = c^2, d^2 = a^2, ca = ac, c^b = ca^2, d^a = ba^2 b^a, c^d = cb^2 \rangle \)
\[\text{where } p = 2 \text{ and } n = 2; \]

11. \(\langle a, b : a^4 = b^2 = 1, a^b = a^3 \rangle \) where \(p = 2 \) and \(n \geq 2; \]

12. \(\langle a, b : a^8 = 1, a^4 = b^{2^{m-1}}, a^b = a^{-7} \rangle \) where \(p = 2 \) and \(n \geq 3. \)

Brandl [1] classified the finite groups in which the non normal subgroups are in a single conjugacy class. We can use the list given above to solve the analogous problem for non-permutable subgroups.

Proposition 6.2. – The group \(G = N \times P \) in prop. 1.1 has only a conjugacy class of non-permutable subgroup.

The groups listed in theorem 6.1 have at least two conjugacy classes of non-permutable subgroups.

Proof. – Let \(G = N \times P \) be a split extension where \(N \trianglelefteq G \) is of prime order \(q \), \(P \) is a cyclic \(p \)-group with \(p \neq q \) and a generator of \(P \) acts on \(N \) as a nontrivial automorphism of order \(p \). Then \(G \) has only a conjugacy class of non-permutable subgroup, whose representative \(P \) has \(q \) conjugates.

In groups 1, 5, 6, 7, 9 and 10, listed in theorem 6.1, the non-permutable subgroups \(\langle a \rangle \) and \(\langle ab \rangle \) are not conjugated. In fact \(N_G(\langle a \rangle) \) is maximal in \(G \) and
\langle ab \rangle \not\leq N_G(\langle a \rangle). \text{ In groups 2, 3, 4, 11 and 12, listed in theorem 6.1, the non-permutable subgroups \langle a \rangle and \langle b \rangle are not conjugated. } N_G(\langle a \rangle) \text{ is a maximal subgroup of } G \text{ and } \langle b \rangle \not\leq N_G(\langle a \rangle). \text{ In group 8 of theorem 6.1, non-permutable subgroups } \langle ac \rangle \text{ and } \langle bc \rangle \text{ are not conjugated. In fact } N_G(\langle a \rangle) = \langle ac, c \rangle \text{ is maximal in } G \text{ and } \langle bc \rangle \not\leq \langle ac, c \rangle.

\square

REFERENCES

Dipartimento di matematica Università di Padova
Via Trieste, 63 - 35121 Padova
e-mail: crestani@math.unipd.it

\textit{Pervenuta in Redazione}
\textit{il 31 maggio 2005 e in forma rivista il 21 settembre 2007}