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A New L!-Lower Semicontinuity Result

D. GRAZIANI

Sunto. — L'obiettivo di questo lavoro é quello di dimostrare una nuova regola di deri-
vazione per funzioni composte e un teorema di semicontinuitd inferiore rispetto alla
topologia L' per un funzionale integrale definito su BV(Q). St applica poi quest’ul-
timo risultato per ottenere nuovi risultati di rilassamento e I'-convergenza in as-
senza di coercivitd e in assenza di continuitd della funzione integranda f(x,s,p)
nella variabile s.

Summary. — The aim of this work is to prove a chain rule and an L'-lower semi-
continuity theorems for integral functional defined on BV(Q). Moreover we apply this
result in order to obtain new relaxation and I'-convergence result without any
coerciveness and any continuity assumption of the integrand f(x,s, p) with respect to
the variable s.

1. — Introduction

The L!-lower semicontinuity of an integral functional of the type:

(1.1) Faw) = [ fe,u, Vuyda
Q

where Q is a bounded open subset of RY and u € W1L1(Q) has been extensively
studied, in order to find the minimal assumptions on integrand f that ensure its
L'-lower semicontinuity on W1(Q), and to obtain an integral representation for
its relaxed functional in the larger space BV (Q).

The most of recent studies on this subject originate from celebrated result by
Serrin. In [24] the author establishes the lower semicontinuity of (1.1) with re-
spect to the L!-topology by requiring that f is continuous in all its variables,
convex in the last variable and by assuming on the integrand one of the following
conditions: f is coercive; f is strictly convex in the gradient variable; the deri-
vatives f,(x, s, p), f,(x, s, D), fop(e, s,p) exist and are continuous (for further im-
provements see, among others, also [11, 13, 15, 21, 22]).

It is well known that a natural extension of (1.1) to the larger space BV (Q) is
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given by the functional

Dy
1.2 = o0 U D¢
(12) F) !f(%u,Vu)deerf (ww(u))dl ul
+f ffoo(x,s,vu)ds]dHNl.
Jy Lu~

Indeed, in [6] it is proved, by assuming continuity and coerciveness on in-
tegrand f, that F coincides with the relaxed functional of F' on BV (). Also for
this functional, in the literature there exist several L!-lower semicontinuity
results. Among others we recall [10, 12, 18, 19] and the reference therein. In
particular in ([12]) the authors prove an L!-lower semicontinuity result for the
functional (1.2), by assuming W dependance of the integrand in the variable
x. Moreover in that paper no continuity with respect to « is considered and
this lack of regularity is compensated by assuming on the contrary the con-
tinuity with respect to s.

In this paper we investigate a similar problem. Roughly speaking in the same
W1 dependance on x as in ([12]), we prove an L!-lower semicontinuity result for
the functional (1.2), by weakening the regularity assumptions with respect to s,
but assuming the continuity with respect to x.

In this direction, after Serrin’s theorem, many authors extended his result by
assuming weaker conditions. We recall, for instance, a classical result due to De
Giorgi-Buttazzo-Dal Maso (see [15]), where they proved that for autonomous
functionals the continuity of s is not necessary in order to obtain the L!-lower
semicontinuity of (1.1). A similar result for the functional (1.2) was proven by De
Cicco in [10]. In this last paper the lower semicontinuity is stated with respect to
the weak* convergence of BV (Q), instead of the L!-convergence and then ex-
tended to non autonomous functionals in [9].

Here, we generalize both the result of De Giorgi-Buttazzo-Dal Maso and of
De Cicco, by proving the lower semicontinuity for the functional (1.2) with re-
spect to the L!-convergence on BV(Q) (see Theorem 4.2). This theorem is stated
by only requiring that the integrand f is W' in 2 with a uniform control of the
weak gradient (see hypothesis (4.1)) and continuous in # (not uniformly with
respect to the other variables). Our result improves also the lower semicontinuity
theorem of Fonseca-Leoni (see [18]), since they assume a continuous dependance
of integrand f in « uniformly with respect to the other variables (see [20] for the
consequence of this assumption). Moreover, we generalize also the lower semi-
continuity result of Fusco-Giannetti-Verde (see [19]), where they assume the
continuity of f in all its variables. Finally our result is an extension of the lower
semicontinuity theorem of De Cicco-Leoni (see [13]), since they deal only with
the space Wh1.

The main tools of the proof of the lower semicontinuity theorem are a new



A NEW L-LOWER SEMICONTINUITY RESULT 799

u(x)
chain rule formula for the function x — f b(x,t)dt (see Theorem 3.1) and an
approximation result for convex functions due to De Giorgi.

Moreover,we generalize a relaxation result stated in [18] (where no coer-
civeness assumption and continuity with respect to s are assumed), by removing
also the uniform continuity of « with respect to the other variables.

Finally, we apply this result in order to obtain a I"-convergence result for a
sequence of functionals whose integrals pointwise converge. This last result
generalizes an analogous theorem proven in [6], since here no continuity with
respect to s and no coerciveness condition are required.

The paper is organized as follows: Section 2 is devoted to notations, defintions
and preliminaries. In Section 3 we state the new chain rule formula. In Section 4
we establish the lower semicontinuity theorem and we give an improved version
of this result. In the last section we state and prove the relaxation formula and I"-
convergence theorem.

Acknowledgments. I would like to thank Micol Amar and Virginia De Cicco,
for suggesting me this research work and for many useful discussions.

2. — Definitions and Preliminary Results.

2.1 — BV-functions

In this section we give basic definitions and we collect some technical results
on BV (Q).
Let Q be a bounded open subset of R and u € L} ().

We say that «# has an approximate limit in «x if there exists u(x) € R such that

ygBinmn—mmwy:o

The set C,, of all points where u has an approximate limit is a Borel set.
The function # : C,, — R, called precise representative of u, is a Borel function.
We say that u is approximately continuous at « if « € C,, and w(x) = u(x).

We say that a point x ¢ C,, is an approximate jump point if there exist u*(x),
u= () € R with = (x) < u"(x) and v,(x) € S¥ ! such that

. o o
lim ) —wt@ldy =0, lm o f ju) - @ldy =0,
B:r (xﬂ)u (x)) B: (%UU(.%'))

where B (x; v,(x)) = {y € By(x) : (x,v,(x)) > 0} and B, (x;v,(x)) is defined ana-
logously. Alsothe setJ, = {x € 2 : u~(x) < u*(x)} of all approximate jump points
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of u is a Borel set and the function (u*(x), u= (), v () : J, — R x R x SN lisa
Borel function.

Let x € C,. We say that u is approximately differentiable at x if there exists a
vector P € RY such that

m;f luy) — @) — (P,y — x)|dy = 0.

The vector P is called the approximate differential at x and it is denoted Vau(x).
The set D,, of all points where u is approximately differentiable is a Borel set and
the map Vu(x) : D, — RY is a Borel map.

We recall that, if u € BV(Q), we have HY"1(Q\ (C,, UJ,)) = 0 and we can
split the measure Du in the following way

Du = D" + D*u = D"u + D°u + Diu
where
(2.1) D = vulLN|D,, D°u = Du|(C, \ D,), D'u = (" —u~) @ v, HN 1| J,,

where Vu € L1(Q) and HY ! denotes the (N — 1)-dimensional Hausdorff mea-
sure in RY (see Proposition 3.92 pag. 184 of [3]).
For every u € BV (Q2) we define the subgraph of  given by

(2.2) Su) = {(x,s) € 2 x R:s <u'(x)}.

We recall (see Theorem 3.2.23 of [23]) that S(u) is a set with locally finite
perimeter in Q2 xR, ie. Xs@ € BV;,.(2 x R). We indicate by a(u)=
(a1(w), .., ay41(w)) the distributional derivative of XS

We recall also the following results

ProprosITION 2.1 (see [3], Proposition 3.64 pag. 160). — Let u : RY = R and
{0, } be a mollifying sequence. Then, if u is approximately continuous at x € RY,
(p, * w)x) — w(x) fore— 0.

PROPOSITION 2.2 (see Appendix of [8]). — Let u € BV(Q). Let M C R such
that LY(M) = 0 and let E = C,, N ()" “(M). Then |Du|(E) = 0.

2.2 — Preliminary Lemmas

LEMMA 2.1 (see [13], Proposition 2.5). — Let E be an open subset of RY and G
a Borel subset of RY. Let g: E x G — R be a Borel function in L3, (E x G) such
that for LN almost every x € E the function g(x, ) is continuous in G. Then there
exists a set M c RN with £N(M) = 0 such that for every t € G the function g(-,t)
s approximately continuous in E \ M.
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LemMmA 2.2 ([10], Lemma 7). — Let u be a positive Radon measure on Q x R
and let {f.} be a sequence of monnegative functions of LY(Q x R;du). Set
f:=supfi > 0. Then for every open subset A of 2 x R we have

xeN

Jfdn =53 [ fo@ 90w

A D el A
where D is the set of all families (rc;, p;,w;)icr with I finite, x; € N, ¢; € C3o(Q),
y; € C*(R), 9, >0, y; >0, 3" 9; @y; < 1 and supp(p;) x supp(y;) C A.

iel
2.3 — Functionals and their properties
If f is a Borel function such that the map p — f(x, s, p) is convex on RY for
every (x,s) € Q x R, we consider the following functionals defined on the space

BV(Q):

ff(xau7 vu)d% if u € lel(Q)
Q

2.3) Flu) =
+ oo if u € BV(Q)\ WH(Q);
00 ~ Dcu C
24) Flu) = Qf fae,u, Vada + Qf f (x,u,m>d|0 ul
+[| [ re@.s, vu)dS] dHV,
J, Lu~

where f*°(x, s, p) is the recession function, defined by

[, s, pt)

= am 2

We define also
p
f(:)c,s,?)t t>0,

fox,s,p) t=0.

It is easy to verify that f is a Borel function and that for each (x,s) € Q x R the
map (p,t)— f(x,s,p,t) is convex and positively homogeneous of degree 1.
We assume, for any Borel function, the following convention:

(2.5) fe,s,p,t) = {

b 1/
(2.6) frwir={b—a J moat azb,
¢ () a=b.
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We notice also that, taking into account (2.6), the functional (2.4) can be rewritten

as
u+ 00 D8u S
@7 Fu) = Qf fw,u, Vuydi + ! f f (x,s,m>ds]dD ul.

Let us recall the following result:

LemmA 2.3 ([6], Lemma 2.2). — Let f: Q x R x RN — [0,00) be a Borel
function such that, for each (x,s) € Q x R, the map p— f(x,s,p) is convex on

RN, Then
[ a(u)
F(u) —Qigf (x S,—|a(u)|)d|a(u)l(9c, s).

2.4 — Approximation of convex functions

One of the main tool in order to prove the lower semicontinuity of the funec-
tional (2.4) is an approximation result for convex functions due to De Giorgi.
This result states that any convex function f : RY — R can be approximated by
mean of a sequence of affine functions a, + (b, p), where

2.8) a0 = [ FD) (0 + Do) + (Va(p), 2)) dp
R"
29) b=~ [ F@)Vap)dp,
R"
witha € Cl(R ) anonnegative function and f a(p)dp = 1. The main feature of De

Giorgi’s theorem is that the coefficients a, and b, explicitly depend on f. When f
depends also on «, s the explicit formulas permit to deduce regularity properties
of De Giorgi’s coefficients from hypotheses satisfied by f. We recall therefore De
Giorgi’s theorem.

THEOREM 2.1 (see [14]). — Let f : RY — IR be a convex function and a4, b, be
defined as in (2.8) and (2.9) then:

@) f(p) > aq + (ba,p) for any p € RY;
@i1) f(p) = sp [ag + (bg, p)] forp € RY,

where B:= {f : p&) := 1N alk(q — 2)),k € N, q € OVz € RV}
(i12) f(p) = hm ]3(]0) for any p € RN, where fip) == sup{a,;l (bg,,p)} for

any p e RN where f5; is an ordering of the class B
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2.5 — Relaxation and I'-convergence

Let F' be the functional defined in (2.3). For every u € BV(£), we can define
the relaxed functional F' of F, with respect the L!-topology, given by

(2.10) Flu) = inf{hm inf F(uy) : w, € W"Q),w, — u in Ll(g)}.

We recall that F is the greatest lower semicontinuous functional not greater
than F.

We recall also the defintion of I"—convergence for a sequence {F},} of func-
tionals defined on BV (Q) of the type (2.3), with respect to the L}(2)-topology. We
recall that the functional F' := I' — lim F),, if it exists, is characterized by the
following two inequalities:

for every u € BV(Q) and every {u;} € W-(Q), such that u; — u strongly in
LYQ),

(2.11) Flw) < lilgn inf Fj,(uy,),

for every u € BV(Q) there exists {u;,} € W1(Q), such that 7%, — u strongly in
LY(Q),

(2.12) Flw) = lim F,(0y).

We recall that F' is Ll—lolver semicontinuous functional on BV (Q). If F';, = F for
every h € N, then F/ = F and from every sequence of functionals, it is possible

to find a I'-convergent subsequence. For further properties of the relaxation and
I'-convergence we refere to [4, 7, 16, 17].

3. — Chain rule.

In this section we improve both the chain rule of [13] and of [19]. Indeed with
respect to [13] we deal with the space BV (2), and with respect to [19] we do not
require continuity with respect to ¢.

THEOREM 3.1. — Letb: Q2 x R — R be a bounded Borel function with compact
support in 2 x R, satisfying the following properties

@) b(-,t) € WH(Q) N C(Q) for almost every t € R,
(1) Vb e LYQ x R).

Then for every ¢ € C}(Q) and for every uw € BV(Q) we have:
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w(x)

_f( f b(aat)dt) Vodx :fb(x,u)(qudx
Q 0

(3.1)

u(x)

+f ( ]fb(x it ) pdD*u -+ f ( f Vb, Ot ) pde.
Q

ProOF. — Let {y;}s., be a mollifying sequence in R. Let us define
bs(x,t) = [ws(t — s)b(x, s)ds. We claim that, for evey & > 0, bs(x, t) is a continuous

function 1?1 Q x R. In order to prove this, we notice the following properties: for
every 0 € R, the function y;( - —s)b(-, s) is continuous in 2 for almost every s € R
thanks to the hypothesis () and to the regularity properties of mollifiers.
Furthermore, since b has compact support, there exist two compact sets K C Q
and A4 C R such that the support of b is contained in K x A and the support of the
function b(x, -) is contained in A for every x € K. Hence we have that, for almost
every s € R, |yst — )b, s)| < |10l wsllox,(8) € LAR). Tt follows, by the
dominated convergence theorem, that bs(x, t) is continuous in Q x R. Let us show
that, for every 6 > 0, bs(-,t) € W'(Q) for every t € R. Indeed using Tonelli’s
theorem we get:

f Ibs(ae, B)|dae < f de f st — $)b(, 8)|ds = f st — 9)| bz, 3)|dads
QxR

- f st — 9)| b, 8)|dads < LN(K)||bHOCf|t//(5(t—s)|ds <c,

KxA R

so that bs(-,t) € L1(Q) for every t € R. Furthermore the following equality holds
in the weak sense for almost every « € Q2 and for every ¢t € R,

(3.2) v, ( f Wt — )b, s)ds) - f w5t — )V.b(, $)ds.
R R

In fact, let S be the set of s € R such that b(-,s)¢ W1(Q). By hypothesis (i),
£1(S) = 0. Multiplying by ¢ € C3(&; R¥) the righthand side of (3.2), integrating
over Q, and applying Fubini’s theorem (taking into account hyphotesis (¢1)), we get

f oz f Wit — $)V.b(x, s)ds = f vyt — $)ds f b, s)div,p

R\S

__ f div, pda f Wyt — )b, $)ds
Q R

and (3.2) is proved.
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It remains to show that V,bs(-,t) € L'(Q) uniformly with respect to ¢ € RR.
From (3.2) and hypothesis (¢7) we have:

f IV ubs(e, O)|die < f dae f st — )| |Vab(, $)|ds
Q

2 R\S
- f ws(t — s)ds f Vb, $)|de < vyl f IV,b(x, 8)|dzds < C.
R\S Q QxR

This implies that bs(x, t) satisfies all the hypotheses of Lemma 2.4 of [19] and so
(3.1) holds for bs(x, 1), i.e.

u(x)

_f( f ba(%,t)dt)V(pd/ac :fb(i(%,%WVudx
(3.3) @ 0 Q

u(x)

+f ( .‘uf bf"(x’t)dt)q’st” + f ( f V.bs(x, t)dt)cod%
Q u- o) 0

for evey ¢ € C}. Now we pass to the limit as  — 0.

Let us consider the first term in (3.3). We remark that bs(x, t) is continuous in
Q x R and there exists M C R with £}(M) = 0, such that by Lemma 2.1, b(x, -) is
approximately continuous in R\ M for every x € Q. Then, by Proposition 2.1,
bs(x,t) — b(x,t) for every x € Q2 and every ¢t € R \ M. It is not difficult to prove

that
J( f() bo(e, it ) Vodz — [ ( Tx) b, tydt ) Voda
2 0 5%
Sf ( f X[O‘u(m)]|b5(x’ t) — b(x, t)|dt) |V(ﬂ|dﬂc — 0,
Q R\WM
since

(34)  Kjoulbs(@, t) — b, 8)| [V
< (Ibsloe + 101, Vel < 2110l [Veliy € LHQ2 x R),

for a proper compact set H C 2 x R and independent of J.

Let us consider the second term of (3.3). As we have already remarked
bs(x,t) — b(x, 1) for every x € Q and every ¢t € R \ M. Moreover, reasoning as in
(3.4), it follows

(3.5) [ba(@, t) — b, )| o] [Vl < 2[1b]lJo||Vu| € L),

for every 6 > 0.
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Hence by Proposition 2.2, we get

)

f bs(x, w)pVudr — f b, w)pVudx| = f bs(e, w)pVudxr — f b, w)pVudax
Q Q @) Q\@ D)

and, letting 0 — 0,

— 0,

‘ f bs(e, w)pVudx — f b, uw)pVudx
Q@) Q\@ )

as a consequence of (3.5) and the dominated convergence theorem.
Let us consider the third term of (3.3). Thanks to (2.1) and (2.6), we can re-
write this term as

u+
(3.6) f ( ]f bs(, t)dt) od D (u) + f b, () pd DCu.
ong, u- QNCy
Clearly for every « € 2N J, we have

ut

]f Ibs(ae, t) — b, H]dt — 0, as & — 0.

u-

u+
Furthermore, the function gs(x) = |p(x)| JC |bs(x, t) — b(x, t)|dt satisfies the fol-
lowing estimate "

0 < g5(x) < 2[[bl|. o[l € L@ Ny, D))
so that, letting 6 — 0, we get

f ( ;f b,;(x,t)dt)(pdpf(u)— f ( Jf bz, t)dt)¢dD7(u)

ong, ong,  u

— 0.

As far as the second term of (3.6), for every tc€ R and for every
xeQnC,\ @) (M), we have

(3.7 bs(a, t) — b, D) |o| < 2||b]|. 0| € LNR N Cy, |Dul),
so that, by the dominated convergence theorem and Lemma 2.2, we obtain
[ st w@pdneu — [ oG, a@)pdDeu,
Qne, one,

so that

ur ut

f( fb&(%‘, t)dt)(pstu —>f( ][b(x, t)dt)godDSu,
Q  u o u
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Let us consider the last term of (3.3). Thanks to the hypothesis (i7), we have
that for £N-almost every x € Q the function V,b(x,-) € L'(R). Therefore, from
(3.2), it follows that for £N -almost every x € Q,

Vaebs(, ) = ws* Vb, ) — Vib(x,-) in LY(R),
as 0 — 0. This implies that, for £Y-almost every x € @2, we obtain

u(x)

lim f IVubs(ae, £) — Vab(@, £)]dt = 0
0

In order to conclude, we note that, thanks to the hypothesis (i),

u(x)

0@ [ Vabste, 0] <ol [ dt [ wst - 9)|V.b, 9)lds
0 R R

- f IV,b(a, 8)|ds f vyt — s)dt = f IV.b(, 5)|ds € L),
R R R

for a.e. x € Q and hence

u(x) u(x)

J (] Vabstwndt)pde — [ ([ Vb, vit)gde
Q 0

Q 0

as 0 — 0. The proof is now complete. O

We establish a refinement of previous result, which will be useful in the next
section.

THEOREM 3.2. — Let @ ¢ RY be a bounded open set. Let b : @ x R — RY be a
Borel function with a compact support in Q x R satisfying the following prop-
erties

(@) there exists g € LN(R) such that |b(x,t)| < g(t) for every x € Q and for
everyt € R;
(@) b(-,t) € WH(Q; RY) N C(2; RY) for almost every t € R,
(111) Vzb € LYQ x R).

Then for every u € BV(Q) such that
f{b(x,u), V) Tdx < + oo;

Q

'M/+

!(uf <b( z, 1), "|Dsu ‘>+dt)d|Dsu| < +o0.
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and for every ¢ € CA(Q) we have

ut

[ bt . Vo + [ ( ][<b(9c D |>dt)(pd|D*u|
Q u-

(3.8) @

u(x) w(x)

- f < f bz, t)dt, Vgo>dx - f ( f divxb(x,t)dt)godac.
Q 0 0

Q

ProOF. — Let us define
by (e, t) = bz, t);{Ah(t) where A;, = {t € R: g(t) < h}.

Clearly b, € L>*(2 x R) for every h € N and b,(x,t) — b(x, ) for a.e. x € Q and
for a.e. t € R. Therefore (3.8) holds for by, i.e.

ut

f (ba(ae, ), Vauypdiz + f ( J( (batee, 1), |D |> dt)gd|D*u
Q u-

2
(3.9) o

_ f < f by (e, D), Vgo>dac - f ( jfx)divxbh(x,t)dt)(pdac,
Q 0 Q 0

for every ¢ € CO(Q) Moreover, div,b,(x,t) = x 4, (t)div,b(x,t) — div,b(x, t) for a.e.
(x,?) € 2 x R. Since |divyby(x, 1) < |Vib(x,1)] forae (x,t) € Q x R, and, by (211),
|V.:b(x, )| € LY(R) for a.e. x € Q, we get a.e.
en) u(x)
(@) f div,by (@, Ot — () f div, b, t)dt.
0 0

Using again (¢117), it follows

v
u(e) u()

f ( f divxbh(ac7t)dt)(pdac—> f ( f div,b(z, t)dt>(pdac,
Q 0 o 0

Let us consider the lefthand side of (3.9). Since (b, (x, s), p>+ and (by,(x,s),p)” are
increasing sequences which converge to (b(x,s),p)” and (b(x,s),p)” respec-
tively, from Beppo Levi’s theorem and hypothesis (i7), we obtain that

w(x)
f div, by (x, t)dt‘ < lg| f V,b(x, H]dt € LY(Q),
0 R

and hence

im [ (b, w), V) pdee = f (b, w), Vi) pdc.

h—+00
Q Q
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Analogously, using again hypothesis (i7), we get

hE‘POOQ (Juf <bh(9c D D |> dt)gd|D*u _Qf(f <b(ac D |>dt>(pd|D5u|

Therefore passing to the limit, as 2~ — +oo, in (3.9) we get (3.8). The thesis is
achieved. O

4. — Lower semicontinuity.

In the same spirit of [13] and [19], but on the space BV (£2) and without con-
tinuity with respect to the variable s, we obtain, by using Theorem 3.1, a lower
semicontinuity result with respect L!-topology for the functional (2.4).

Letf: QxR x RY [0, 00) be a Borel function such that:

(@) f(x,s,-)is convex on RN for every (x,s) € Q x R;
(i) f(-,s5,p) € C(Q) N WEL(Q) for almost every s € R and for every p € RY;

loc

(##3) for every boundedset B C R x RY, there exists a costant L(B) such that

(4.1) f IVof (e, s,p)|dz < L(B) for every (s,p) € B.
Q

THEOREM 4.1. — Let f: Q x R x RN —[0,00) be a locally bounded Borel
Sfunction, satisfying (4.1), such that

(4.2) fx,s5,00)=0 V(r,s)eQxR.

Then the functional (2.4) is lower semicontinuous on BV (Q) with respect to the
L-topology.

Proor. — By Theorem 2.1 there exists a sequence {a,} C C;°() with a,, > 0

and [ a,dx = 1 such that for any (x,s,p) € 2 x R x RY we have
RY
[, 8,p) = sup (@, (, 8) + (b, 8),p) "

xeN
and
fcx:(x,s,p) = Sup<bK(xv S)ap>+7

xeN

where, recalling (2.8) and (2.9),

ax(@, ) = [ £a,5,0) (00 + Dap) + (Vap),p) ) dp
(43) R
bu(w,) = = [ fla,5, p)Vap)dp.

R™
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Hence, if we set fi(x,s,p) = (a.(x,s) + (b(x,s),p))*, we obtain f(ac s p,t) =
sup f.(x, s, p, t). Therefore, applying Lemma 2.2 with f, f;, and y replaced by 7, f A
and |a(u)| respectively, we obtain

- a(u)
Flu) = f f(x,s,m)d|a(u)|(x,s)

—sup > [ i (s e Jeiow a0l

1€l QxR

= SUPZ { f W) (@, ) + (b (e, 0), V) py(@)dee
el

ut

+ f ( f vi(5)(be, (2, ), |1D)zz|>+ds)(pi(x)d|Dsu|},
5

where the first and the last equality are due to Lemma 2.3 and we used the
notation in (2.7). Let us define

Gi(u) := f yi(w) (axi(ac, w) + (b, (x, w), Vu>)+(pi(90)dac
(4.5) @ .
NI T e

We remark that, by (z) of (4.1) and (4.3), (-, s) is continuous for almost every
s € R. By Scorza-Dragoni theorem it is possible to find an increasing sequence
K), of compact subsets of R such that, if we set £ := U K, L'(R\ E) =0, and

for every x; € N q,, € CY%Q x Kj;). We remark that, by hypothe51s (4.2), we have
a; <0, hence, by Lemma 2.2 it follows that

Gitw) = [ 100 (0, ) + (b, 0), V)
Q

J( OO 00(0.9. ) ds o@D
Q  u

=sup { f 1K, (W, (u) (a,q(.oc, w) + (b, (@, u), Vu>)+ @;(x)dx
Q

heN

+f ( Juf XK/I(S)'/’i(S)<bm(x,8),%>+d8)¢i(x)d|0"’u|}.
Q u-
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As £" and |D*u| are mutually singular measures,

it =sup sup { [ omaon oo oyt
Q

heN 0<n<1

(16) [ 1, 0@ @, 0, V@)
Q

+f( ;[ XKh(t)ﬂ(%)<l//i(t)bK,;(x7s),|gizl>ds)goi(x)d|Dsu|};
s\

where 7€ Cie(Q2). Since a, € C%(Q x K;,) and o, <0, the function
Xk, (S i(s)ay,(x, s) is lower semicontinuous with respect to s € R. Therefore, as a
consequence of Fatou’s lemma, the first term in (4.6) is lower semicontinuous
with respect to the L!-topology. Now we prove the lower semicontinuity with
respect to the L!-topology of the last two terms of (4.6). Since u,, — u strongly in
L1(Q), without loss of generality, we may assume that u,, — u almost everywhere
in Q. Let us define

H(uy) := f 1k, W) (i (Wb, (2, ), Vi ) () (2)dic
Q

+

+ f ( ][ 1K, (8)77(96)<1//1(8)b,g(96 S) D |>ds> 0;(@)d|D¥u,|.

We claim that the scalar function n(x)w(s)bf;.i(x, s) satisfies for 1 <j <n all the

hypotheses of theorem 3.1. Indeed n(x)z//l(s)bi (x,s) has compact support in

Q x R and it is bounded in Q x R, since f € LlOC(Q x R x R™). Moreover, by (i)

of (4.1) and the dominated convergence theorem, it follows that #( - )z//i(s)bfq(-, s)

is continuous for almost every s € R. Finally by (2) and (i22) of (4.1), we have that

7 W()bL (-, 5) belongs to W(Q) with V, (Iy(ac)t//i(s)bfq (x, s)) e LI(Q x R).
Therefore, by applying Theorem 3.1, we get

U ()

limian(un)_nErfm{ _ f ( f div, (b, @, S))(Kh(s)y/i(s)n(ac))ds)(/)idac
Q

N—+00
0

U ()

- f < f b, (@0, )y, (S (s)ds, V¢i>dx},
Q 0

From (i77) of (4.1) and from the absolute continuity of the integral it follows that
asn — + oo
U () u()

dim [ diva (b sy Owimnds = [ diva by . 7 i
0 0
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Moreover,

Uy (20)
0@ [ divibr, @, sk, O Emands
(4.7) 0

< il [ 100V (b, @ 97, (S m@)|ds € L),
R

so that
Uy ()
lim f ;(x) f divy (b, (@, )y, (S)yi(s)n(a))ds
Q 0 U¢)

= 0@ [ ivalb @, 9, G m@)ds.
0

Analogously we get

Uy, ()

tim [{ [ b5y, On@w )ds, Vo, )de

N—+00
0

u(x)

= f < f b @, )1, @y (s)ds, v¢i>dx_
Q 0

Therefore letting n — +oc in (4.7) we obtain

w(x)

lim inf H(u,) = — f ( f divm(bki(ac,s)th(s)wi(S)n(x»dS)widw
0

n—-+00
Q

(4.8)

u(x)

‘f < f b"i(x7S)XK,,(S)W(m)l//i(S)d&V(ﬂi>d90.
Q 0

Hence, applying Theorem 3.1 to (4.8), we obtain the lower semicontinuity of the
second and the third term of (4.6). This implies that G;, being the supremum of
lower semicontinuous functions is lower semicontinuous itself, so that, by (4.4)
and (4.5), F is lower semicontinuous too.

The thesis is then achieved. O

REMARK 4.1. — It is not very difficult to verify that Theorem 4.1 continues to
hold under a weaker assumption than (i) of (4.1), which is the following

(4.9) Vof € L1 (Q x R x R").

loc

Indeed in the proof of the previous theorem we only need to know that
n- )wi(s)b7,;i(~,s) belongs to Wh1(Q) with V,, (n(oc)y/i(s)b’,;i(ac, s)) € LY(Q x R), and it
is guaranteed by hypothesis (4.9).
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In the same spirit of the papers of De Giorgi-Buttazzo-Dal Maso (see [15]) and
Ambrosio (see [2]) we give a further lower semicontinuity result, where as-
sumption (4.2) is replaced by a weaker one.

THEOREM 4.2. — Let f: Q2 x R x RN [0,00) be a locally bounded Borel
Sfunction satisfying (4.1) such that:

(a) f(x,-,0)1is lower semicontinuous on R for LN aexeQ
(b) there exists a Borel function

J: QxR — RV,
with Ax,s) € Opf(x,s,0) for every (x,s) € Q x R, such that
(@) g(s) = sup |A(x, 9)| € Li,(R)
reQ

(@) AC,s) € C(Q;RN)for L' aese R
(@ii) AC,s) € WY@, RN) for £ a.e s € R with V1 € L

loc

Q2 x R).

loc

Then the functional (2.4) is lower semicontinuous i BV (Q) with respect to
the strong L'-topology.

Proor. — Without loss of generality, we may suppose that there exists a
constant C > 0 such that f(x,s,p) =0 for every (x,s,p) € Q x RY x R, with
|s| > C. Indeed, in the general case, we can write

S, s,p) = supf(x, s, Py ()
keN '
Moreover since A(x,s) € 0, f(x,s,0) and that f > 0, it follows that f(x,s,p) >
</1(yc,s),p>+ for every (x,s,p) € Q x R x RY. Hence we may assume that

Mx,s) =0 for every x € Q and s € R, with |s| > C. Besides, since f is locally
bounded, 2 is locally bounded, too. Let g : @ x R x RY — [0, +00] be defined by

g(%, Svp) :f(xa S;P) _f(xvsa O) - </1(907 S)ap>'
Then for every ¢ € C;°(22) and for every open set A CC Q we have

(410) fA(f7 u, (ﬂ) = ]:A(g7 U, ¢) + GA(f7 u, (0) + HA()H u, (ﬂ)y
where
u* N Dsu )
Falf,u,0) =!f(x,u7w)qodx +Af [u][f (X, 8, 5 D) )dS] pd|D*ul,

Ga(fyu,9) = [ Go,u,00pde
A

u+

HaGow,0) = [[ (e, ), Vuypiac + [ [ f (i, D )|>ds}q)d|0m\.
JLJ

A
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Let u, — u € BV(Q) strongly in L'(©). Without loss of generality, we may
suppose that u, — u almost everywhere in Q and that F(u,) < M, for every
n € N. Since the function g¢ satifies all the hypotheses of Theorem 4.1 we obtain
that

(4.11) Falg,u,p) < lqilm+inf]:A(g, Un, P).

Moreover, by hypothesis (@) and Fatou’s lemma it follows that

(4.12) Ga(f,u. 9) < liminf Ga(f, s, ).

Sinee f(x,s,p) > (A(x,s),p)" we have, for every n € N,

(4'13) f</1(x7u’77/)3 vun>+d90 <Flu,) <M
A
and
. Diu
* A my* s n < n < .
(4.14) Af[f (20,9, ) ds|diD*w, | < Fu,) < M

We remark that, since 1 is locally bounded, we have

(4.15) f (e, ), Vo) de < M
A
and
(4.16) A[ [Jf (i, s),%>*ds} d\D"u| < M.

Furthermore, if we define

_ 1 B
(4.17) i, s) = { (x,s) (x,8) €suppo x[—C,C],

0 (m78)¢supp(ox[_c7c]

The function 4 satifsfies all the hypotheses of Lemma 3.2. Then using, by (4.13)
and (4.14), Lemma 3.2, we get

liminf H4 (4, u,, @)
n—+00 Uy () U (00)

= lm {- f ( f M, 5)ds, Vg )dao — f ( f div, (e, 5)ds ) g |
Q 0

N—+00
Q 0
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so that, by (4.15) and (4.16), using again Lemma 3.2

u(x) wu(x)

a1g) T v ) = Qf ( Of e ds, V) ~ Qf ( Of div, iz, ds ) pd

=H,(,u,p).
Therefore from (4.10) (4.11), (4.12) and (4.18) we have

fA(fv U, (9) < 1},Lm+1nf-/TA(fv un,(ﬂ) < lzbmlnffg(fa U, (0)
Then, since A is arbitrary, the functional u — Fo(f,u, ¢) is lower semicontin-
uous. The conclusion follows by

Fu) = sup{Fo(f,u,9): p € C;7(Q), 0 < ¢p <1}. O

5. — Applications.

In this section, as a consequence of the result in §4, we give first an integral
representation theorem for the relaxed functional (2.10), then we prove I -limit
result for a sequence of functionals {F},} of the type (2.3).

5.1 — Relaxation

Here we will show that for every u € BV(Q) the following representation
holds

(5.1) Flu) = Fw),

where F(u) is defined in (2.10) and F(x) in (2.4). In order to get (5.1) we need a
result due to Fonseca and Leoni (see [18], Theorem 1.6). We will assume that
f:2xRx RY — [0, +00) is a Borel function such that

(5.2) 0<f@e,s,p) <CA+|p) forall (x,sp) e xRxRY

PROPOSITION 5.1. — Let f: Q x R x RN — [0, o) be a Borel function convex
with respect to p for every (x,s) € Q x R, and continuous with respect to x for
every (s,p) € R x RN, Assume that f satisfies (5.2), and f>(-,s,p) is upper
semicontinuous i 2 for every (s,p) € R x RY. Then

F(u) < Fu).

REMARK 5.1. — Following the proof in [18], it is not difficult to see that the
Proposition 5.1 holds even if the hypothesis that f is continuous with respect to x
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for every (s,p) € R x RY, is replaced by
If (@, 51,0) — f(@, s2,0)] < Cpls1 — s2),

for every x € Q and sq, sz € R, where p is a modulus of continuity, i.e. a non-
negative, increasing and continuous function p such that p(0) = 0, or by the as-
sumption that for every s € R exists N  Qsuch that HN"1(N) = 0 and £(-, 5, 0) is
approximately continuous in Q \ N (these conditions are in particular implied by
f(x,s,0)=0).

THEOREM 5.1. — Let f: Q x R x RY — [0,00) be a Borel function, which
satisfies hypotheses (4.1), (5.2) and (a), (b) of Theorem 4.2. Assume that
fo(,s,p) is upper semicontinuous in Q for every (s,p) € R x RY. Then
F(u) = F(u).

PROOF. — Since F is the greatest lower semicontinuous functional not greater
than F, F < F and, by Theorem 4.2, F is L'-lower semicontinuous, it follows that
Fu) < Fu).

The opposite inequality is stated in Proposition 5.1. O

5.2 — I'-convergence

In this subsection, in the same spirit of [1, 6], we state a I"-convergence result
for a sequence of integral functionals of the type (2.3), whose integrands point-
wise converge to an integrand, which is not necessarily continuous with respect
to s nor coercive.

THEOREM 5.2. — Let fj, : @ x R x RY —[0,4+00) be a sequence of Borel
Sfunctions such that

(5.3) 0 <fulx,s,p) < AQ + |p]) for every (x,s,p) € 2 x R x RY,

where 0 < A < 400 1s a fixed costant. For every uw € BV(Q) we define
Jule,u(@), Vu@)de if u € WH(Q)

(5.4) Frw) = Qf

+ 00 if w € BV(Q)\ WH(Q).

Assume that {f,} converges pointwise to a locally bounded Borel function

f:2xRx RY = [0, + c0) satsfying all the hypotheses of Theorem 5.1.
Finally, let {¢,} be an infinitesimal sequence, such that

(6.5) A +ep)filx,s,p) > f(x,s,p) — &, for every (x,s,p) € QxR x RY,Vh e N.
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Then for every u € BV (Q), we have
Fr(w):= I —lim Fy(w) = F(u).

Proor. — By the compactness of I'- convergence, we may assume that, up to a
subsequence, there exists I" — lim F,. Firstly, we will prove that I” — lim F;, > F.
Given u € BV(Q), by (56.5), for every h eI\ we obtain that Fj,(u) >
Fu) —g, (2N Q) + Fj,(u)], where F' is defined in (2.3). By (2.12), we have that for
every u € BV(Q), there exists u;, — u strongly in L!(Q), such that

(r - lim Fh)(u) = lim F,@0).

We may assume that the previous limit is finite (otherwise the conclusion is tri-
vial). Therefore, taking into account Theorem 5.1, it follows

(1= fim 1) 0

= lim F,y) > liminf F@i) — lim &,[£Y(@Q) + Fy@)] > Fu) = Fw).
In order to prove the opposite inequality, we note that, by dominated con-
vergence theorem, we have

lim Fy(u) = F(u) for every u € WH(Q).

Hence, by (2.11)
(r ~ lim Fh>(u) < F(u) for every u € BV(Q).
So that, by the lower semicontinuity of the I" — lim and Theorem 5.1, it follows
(r — lim Fh) () < Fu) = F(u) for every u € BV(Q).

Since this in independent from the subsequence, we obtain that the whole se-
quence F, I'- converges to F. Then the thesis is achieved.
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