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Bounded Solutions for Some Dirichlet Problems
with L1(Q) Data

ToMMASO LEONORI

Sunto. — I'n questo lavoro viene dimostrata l'esistenza di una soluzione per un problema
il cut modello e:

—Au—o—L:y\Vulz + f(x) in Q,
o — [ul
u=0 on 09,
con f(x) in LN(Q) e g,y > 0.

Summary. — In this paper we prove the existence of a solution for a problem whose
model 1s:

o= [u|

M= WVul +f(x) in Q,
u=20 on 89,

with f(x) in LY(Q) and o,y > 0.

1. — Introduction.

In this paper we want to prove the existence of an L*(£) solution for a
nonlinear elliptic equation whose model is:

u . 2 .
(11) { A+ =l 7IVul” +f(x) in Q,
u=0 on 0Q,

where 7, ¢ > 0 and f(x) € L1(Q).

For Dirichlet problem with lower order terms having quadratic growth with
respect to the gradient it was proved (see [6] and references cited therein) that a
bounded solution u of

—du+ agu = y|Vul? +f@) inQ,
u=20 on 09,
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N
exists for any y, ap > 0, f(x) € L1(Q), q > 5 and it satisfies the following esti-
mate:

%l (@) < Clao, | o) 7N, €) -
On the other hand for semilinear equations like

—Mu+gu) = f@)  inQ,
u=20 on 02,

where g(s) is a real function such that g(s) - s > 0and f € L™(Q),1 < m < +oo, it
is well known (see [2],[7] for the semilinear problem and L'(Q) data and [1], [4]
for the nonlinear one) that there exist a solution u satisfying:

||g(u)\|z,m(g> < ||f||Lm(Q)-

In particular if the nonlinearity is a power, i.e. g(s) = s\s|’ul, r > 1, it implies that
u € L"(Q); in other words the nonlinear term improves the summability of the
solution.

In [3] it was studied the semilinear problem with a nonlinear term g(s) that
blows up at some point ¢ > 0: in this case for any L'(Q) data there exist a solution
u such that |u| < o a.e. (see also [8] for general measure data).

We want to study this kind of problems in presence of both the “blow-up term”
and the quadratic nonlinearity with respect to the gradient: we prove that a so-
lution u of (1.1) exists, belongs to Hé(!)) N L>*(Q) and satisfies |u| < o a.e., too.

2. — Assumptions and result.

Let @ c RN bean open, bounded set, N > 3, and let us consider the following
problem:

{ —div (a(x, u, Vo)) + gla,u) + H(w,u, Vu) = f(x) in Q,
2.2)
u=0 on 09,

where a(x, s, &) and H(x, s, &) are Carathéodory functions such that, for almost
every x € Q, Vs € R, Vén € RN, &4 p:

2.3) Ja>0 ¢ a@s,d-E> alf;
(2.4) >0 alx,s,O)| < pE;
(2.5) (alw,s, &) — alx,s,m) - (€ —n) > 0;
and

(2.6) 3h >0 suchthat [H(x,s, )| <h|Ef,
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Moreover let us consider g(x,s) : Q2 x (—o; 0) — R, ¢ > 0, Carathéodory func-
tion and m(s), I(s) : (— o; g) — R continuous, increasing functions such that:

(2.7) g(,s)-s>0, Vse(—o;0);

(2.8) lUs)| < g, s)| < p@)mis)|, @) e LNQ), @) >0;
(2.9) m(0) = 1(0) = 0;

and

(2.10) >0 lim I(s) = %o,

Now we can state and prove our result:

THEOREM 2.1. — Suppose that a(x,s,&), H(x,s, &) and g(x,s) satisfy (2.3)-
(2.10). Then for any f(x) € LX(Q) the problem (2.2) admits a weak solution
u € HY(Q) N L>(Q), i.e. the following equality holds true:

(2.11) f a(e, uw, Vu)Vy + f g, Wy + f H(w,u, Vu)y = f f@y,
Q Q Q Q

for any y € HY(Q) N L>(Q).

Before proving the theorem let us recall a property of the real function
2

0,(8) = se’” we will often use in what follows: Ya > 0,6>0,Vl> 32 we have:

(2.12) ap’(s) —bp,(s) >1,Vs e R.
ProoF oF THEOREM 2.1. The proof is divided into two steps:
STEP 1: f(x) € L*™(Q).
Let us denote by
H(x,s,0)

gn(x,8) = Ty(9(x,s)), Hy(x,s,¢) = :
1+—H(x, s,

n
and by u, € H})(Q) N L>°(Q) a solution (that exists by [9]) of the problem:

(2 13) —div (a(xa U, vun)) + gn(w’ un) + Hn(xy Up V?/Ln) :f(m) in Q )
| U =0 on 0Q.

Now let us choose ¢, [(uy — I71(|| f|| <) "] as test function in the weak for-
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2
mulation of (2.13) and fix any 1 > S}L? = ], so that:

fOL(DG, Uy, V) - V(U — l_l(HfHLoc(Q)))-‘—(o; [(un - l_1(||f||L0C(Q)))+]
Q

+fgn(-%', Un)P; [(%n - lil(”f”Lx(Q)))ﬂ
Q

+ f Hy (@, 2, V)p; [ = M| fll o)) ]
Q
= [ £@p; [ = LU 0]
Q

Hence (we often omit the dependence of the function ¢, and ¢/ on
(U = U2 fll ()" for brevity) we find:

[Veu* (a0, — hy;)
{20 2171 fl| oo @)}

+ f (7)) = f @), [ — U | e @) ] <0,
Q

and thanks to the choice of 4 and (2.12), the first term is positive and we drop it.
Thus, defining 1,,(s) = T, ((s)),

[Lo(un) — F@)0; [ — U fll @) ] 0.

{ln(un)znfﬂLx‘(!l)}

Note that since ¢; [(u, — l‘1(||f||Loc(Q>))+] > 0 a.e., it must be 1,(u,) — f < 0; let
us split the above integral in

(1) = 1f @) 02 [tn = U HUF )]

{n>Uwn) > fll Lo @}

+ [ 1 l@)ele = U le@) ] 0.

{lu)>n>|| fll oo}
Observe that the arguments of the above integrals are positive, so we can deduce
that u, < I71(| fll ~(), that implies by (2.10) that J& > 0 such that:
un(x) <og—¢ ae.

Repeating the same argument with ¢, [(, + I 7(|| f||z~@)) | as test function we
are able to prove that u,, is bounded from below, i.e. 3&2 > 0 such that:

() > —0+ & a.e.
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Putting together the above inequalities we obtain that:
(2.14) |un(@)] < o —¢ae &=max{e, &}.

Our next goal is to prove that g,(x,u,) is strongly compact in L}(Q). Let_us
choose ¢,(u,) as test function in the weak formulation of (2.13), for any 1 > 4,

fa(xa U, Vi) - Vb, (/711(7/%1) +fgn(907 un)(ﬂ,l(un)
Q Q

+fH77/(xaun7 vun)(”,‘b(un) :ffﬂﬂ)v(un),
2 Q
and using again (2.12) we have:
[ 190+ [ e, w00,0) < 0, f 0
2 Q

Hence (by (2.7)) {u,} is bounded in H}(€2) and so there exists u € H}(Q) N L>(Q)
such that, up to a subsequence (still denoted by u,,), %, — u weakly in H (1)(9), a.e.
and (by (2.14)) x-weakly in L*(Q). In particular g,(x,u,) converges toward
g(x,u) almost everywhere and so, in order to prove that {g,(x,u.)},cn is
strongly compact in L'(Q), we want to prove that such sequence is equiintegr-
able. So, if £ is a measurable set,

[ 19wt < [ 196, w)] < [ iy < mie - o [ ),
E E E E

and since y(x) € L}(Q), this implies that {g,(x, ,,)} is equiintegrable and thus by
Vitali’s Theorem

(2.15) (@, u,) — g, u) strongly in  LY(Q).

We want now to prove t}_lat uy, strongly converges in H}(Q) to u.
So let us fix any A > 1 and choose y = ¢,(u,, — u) in the weak formulation of
(2.13):
f @, tn, Vi) -V y, — Wy, — u) + f G (@, wn ), (U, — 1)
(2.16) ? ?
+ f Hy (e, tn, Vit )p) (wn — u) = f Fo,(uy —u) .
Q Q

From now on we will indicate by ¢, every quantity such that lim ¢, = 0. If we
add to both sides of (2.16) B

B, = | alx,uy,, Vu) - V(u, — u)(ﬂi{(un —u)
Q
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and observe that B, = ¢,, since Vu € L%(Q), V(u,, — u) weakly converges to 0 in
L%(Q) and ¢/,(u, — u) < ¢,(20); hence

f (@, wy, Vi) — @, Uy, V) - V(2 — W, (uy —u) — b f NV [P0, (i, — 10)
Q Q

+fgn(907 %n)(ﬂz(%n —u) Sff(ﬂg(un —u)+ &, .
Q Q
From (2.3)
1
f|vu7z|2(ﬂ:1(un —u) < 0 fa(ac,un, V) - Vi, (ﬂ;(un —u),
Q

Q

80, since

f a(x, Uy, V) - Vi ¢, (Uy, — u) = &, and f a(@, un, V) - Vg, Uy, —u) = &,
Q Q

we obtain:

f(a('%'a U, V) — a/(x7 U, V’LL)) -V, —u) <(0l)(un —u) — %ﬂ”i(un - M))
Q

+fgn(90, un)(ﬂjy(un - u) + &y Sff(ﬂ},(un - M) .
Q Q

Now using the property (2.12) of the function ¢,(s), (2.15) and the x-weak L>(Q)
convergence of ¢;(u, —u) towards 0, we have

f(a/(xa U, Vi) — (X, Uy, VU)) - V(U —u) < & .
Q

We can now use Lemma 5 in [5] and obtain that
(2.17) uy — u  strongly in Hy(Q).

In particular Vu,, — Vu a.e. and |Vun|2 strongly converges in L'(Q) towards
|Vu|2. This implies that H,(x,u,, Vu,) converges to H(x,u, Vu) a.e. and it is
dominated by a strong L!(2) compact sequence (namely {|Vu,|*}). Hence
Vitali’s Theorem allow us to conclude that H,(x,u,, Vu,) strongly converges in
LY(Q) to H(x,u, Vu).

Moreover (2.17) allows us to pass to the limit in the weak formulation of (2.13)
and deduce that u € H{(Q) N L>(Q) is a solution of the problem. Observe that
from (2.14) there exists ¢ > 0 such that |u(x)| < g —e.
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STEP 2: f € L'(Q).

Let f,(x) be a sequence of L>(Q) function that converge strongly in L!(Q)

towards f(x), || fullziq /" I1f i@ (for example f,(x) = T,(f(x))). Then a weak
solution u,, € HL(2) N L>(Q) of problem

(2 18) —div ale, wy, Vi) + g, uy) + H@, Uy, Vib,) = fr(®) in Q
' Uy =0 on 02,

exists from the previous step. In particular from the estimate (2.14) we know
that |u,| < o — &,, where ¢, depends on the L*°(Q2) norm of f,(x). So if we try to
pass to the limit we can only conclude that (let us call  as the a.e. limit of u,,)
that |u| <o a.e. Our first goal is to prove that |u| <o, a.e. that is
meas{x € Q : u(x) =+oc} =0.

First of all let us fix 4 > 1 and choose ¢ , () as test function in (2.18):

f a(@e, Uy, Vity) - Vo, ¢ (Uy) + f 9@, un) e, (Uy) + f H(x, w, Vo, (Uy) = f fo,(uy).
Q Q Q Q

Now we can use (2.12) to obtain

f(a(olg(un) - h@l(un)) |V7/Ln|2 +f9(907 un)(ﬂa(un)
Q Q

<0, @ fullie < 0Dl

which implies that

(2.19) Hun”H(l)(_Q) <C and fg(x,un)(o;v(un) <0, f 1) -
2

So there exists u € H})(Q) N L>(2) such that, up to subsequence (not relabeled),
u, — u weakly in H, (1)(9), a.e. and x-weakly in L>°(Q). In order to prove that

meas{x € Q : |ulx)| =g} = nlir+n lim meas{r € Q : s < |u®)| <o} =0,

let us consider the second of (2.19). For any s € 10, o[ we split the above integral
into

f 9C, un)p,; (Uy) = f 9@, un)p; (Uy)
Q

{0< |un |<s}

(2.20)
+ [ e < Iflper).

{s<|un|<a}
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Using (2.28) and (2.29), we have

I(s)p,(s) meas{s < |u,| < o} < f 9w, un)p; (Uy)

{s<lun|<a}

< [ 1l0:0)] < 0,1 130
Q

where I(s) = min{l(s), —l(— s)}, that is:

Q|

(2.21) meas{s < |u, ()| < g} < 0. 1s)

So we can pass to the limit in s and since lim Z(s) = +o00, we find

S—a
(2.22) meas{x € Q : |u(x) =g} =0;
we can then conclude that |u(x)| < o a.e.

To pass to the limit in the weak formulation of (2.18) we still need the strong
LY(Q) convergence of g(x,u,) towards g(x, ) and the strong convergence of u,
towards u in H{(Q).

Let us prove the first one: Vs € 10, o[ we can use y = ¢,(G,_s(u,)) as test

function in the weak formulation of (2.18), where Gy, (t) =t — T},(t) and A > 1. So
we have:

a f ‘Vun|2(0;v(G(rfs(un)) +fg(-%', un)go/l(Gafs(un))
Q

{s<|uy|<a}

<o [ 1@+ [ VoG,

{s<|uy|<a} {s<|uy|<o}

Hence using the sign condition on g(x, s) and (2.12) we get:

(2.23) f [V, [* < 9;(0) f | fu(@)] .

{s<|un|<a} {s<|un|<a}

1
Let us now take as test function v = - T.(Gs(u,,)) in the weak formulation of
(2.18), s € 10, of; so ¢

o vl [ @< [on@in [ vl

{s<|un|<s+e} {s+e<|uy|<o} {s<|uy| <o} {s<|un|<a}

We can drop the first term (since it is positive), take the limit as ¢ — 0 and
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substitute (2.23) in last inequality, so that:

(2:24) [ gwuw)<twp@+1 [ 1@l

{s<|un|<0} {s<|un|<a}

Now we can prove that g(x, u,,) is equiintegrable. Take any ¢ > 0 and £ C Q and
consider

f g, un)| = f g, u,)| + f lgCae, u)|
E

En{0<|u,|<s} En{s<|u,|<a}

so we can use (2.24) on the last term and choose s close enough to ¢ such that,
since f;,(x) is strongly compact in L'(Q) and by (2.21),

[ wewis [ geww<e@rn [ 1f@<].

En{s<lu|<a) {s<in|<0} {s<lia|<0}
Moreover
lg(a, u,)| < 1m(s) f [y(@)], m(s) = max{m(s), —m(—s)};
EN{0<|u,|<s} E

so, thanks to the fact that y(x) € L'(Q), there exists J, > 0 such that

VE : |E| <6, m(s)f\y(xn g%.
E

Since {g(x,u,)} is equiintegrable and it converges a.e. towards g(x, u), we can
apply Vitali’s Theorem to conclude that g(x, u,) — g(x,u) strongly in L}(Q).

Let us prove that {u,} is strongly compact in H}(Q); take y = ¢, (u,, — u) as
test function in the weak formulation of (2.18) for any A > 4, so:

f al@e, wy, V) - Vb — w0y — u) + f 9@, wn)@; Uy — u)
Q Q

7hf |vun‘2§9,1(un —u) < f;z(ﬂj(un —u) .
Q Q

As before let us add on both sides of the above inequality

f a(e, wy, V) - V(uy, — w)g(uy, — u) = &,
Q
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thus, since ¢/ (u, —u) and ¢,(u,, — ) are uniformly bounded, Vu € L2(Q) and
V(u, —u) weakly converges to 0 in L?(Q), we have:

f (@, wy, Vi) — @, Uy, V) - V(2 — W, (uy —u) — b f NV [P0, (i, — 10)
Q Q
""fg(xaun)(ﬂg(un —u) Sff(m(un —u)+ey.
Q Q

Moreover observe that

h h

afa(ac,un, Vu) -V, 0,(u, —u) = ¢, and p (X, Uy, V) - VU g, (), — u) =&y,
Q Q

S0:

[ @t Vo) — ate,w,, Vu) - 9, — g, — ) — g, 1, —w)
Q

h
+E Qf 9@, un)p; Uy — u) < Qf fo,uy —u)+ ¢, .

Since g(x,u,) and f,(x) strongly converge in L'(Q) to g(x,u) and f(x) respec-
tively, and ¢,(u,, — 1) to 0 x-weakly in L*>°(Q) (recall that both u, and u are
bounded by o), we can apply again Lemma 5 in [5] to obtain the strong H{}(<2)
convergence of u,, towards u.

Let us follow the same idea of the previous step in order to pass to the limit in
the weak formulation of (2.18): in fact the strong convergence of u, in H, (1)(.(2)
towards u implies the a.e. convergence of the gradients and the convergence of
I, ||12q(1)(9) — ||u||?{(1) (- S0 we can apply, once again, Vitali’s Theorem to prove that
the lower order term that has natural growth with respect to the gradient
strongly converges in L'(Q) to H(x,u, Vu). Hence we can pass to the limit in the
weak formulation of (2.2) and so u € H(l)(Q) N L*>°(Q) is a weak solution of (2.2)
such that |u(x)| < o a.e. a

REMARK 1. — Actually hypothesis (2.6) can be weakened and in particular we
can assume that 3y > 0 and y € L(Q) such that

H(x,s,&) < )|éf + ).

Such condition is more general than (2.6) and allow us to choose nonlinearity of the
type

H(x,s, &) = pla)|é]?

where 1 < ¢ < 2 and p(x) € LZ%q(Q).
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