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Morphisms on an Algebraic Curve and Divisor Classes
in the Self Product.

Lucio GUERRA

Sunto. — I morfismi su una curva possono essere visti come classt di omologia nel
prodotto della curva con se stessa. In questo lavoro descriviamo queste classi come
elementi di una intersezione: il luogo dei punti interi di un insieme algebrico nello
spazio di omologia complesso, e il luogo delle classi di divisort effettivi. Scriviamo
equaziont esplicite per linsieme algebrico, e nel caso di genere tre calcoliamo alcune
soluziont esplicite sui razionali.

Summary. — Morphisms on a curve may be seen as homology classes in the self product.
We describe these classes as belonging to an intersection: the locus of integral points of
an algebraic set in the complex homology group, and the locus of effective divisor
classes. We write down explicit equations for the algebraic set, and in the case of genus
three we compute a few explicit solutions over the rationals.

1. — Introduction.

Let X be a curve of genus g > 2. We mean a nonsingular complex projective
curve. Define F(X) to be the collection of equivalence classes of morphisms
f:X — Y onto curves Y of genus ¢’ > 2, up to isomorphisms Y — Y’. This is a
finite set, according to the theorem of De Franchis-Severi.

Associated to a morphism f : X — Y is an effective divisor Z; in X x X, the
(locally principal) divisor defined by f(x) = f(y). It is a reduced divisor. It only
depends on the equivalence class [ f]in F(X), and the correspondence [ f]— Zr is
injective.

The main result about this is the rigidity theorem of Kani [1] saying that,
taking the homology class of the divisor, the map

FX)— Ho(X xX,7)  [f1—1Zf]

is still injective. The aim here is to describe the image of this map.

Define F,(X) to be the collection of equivalence classes of morphisms of
degree n. We describe its image as a subset of an intersection: the locus of in-
tegral points of an algebraic set V,, in Ho(X x X, C), and the locus of effective
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homology classes in the product. Here V,,(7) is a finite set. We write down ex-
plicit algebraic equations for V,, in a remarkably simple form. In the case of
genus g = 3, we present some first computations which lead to a few explicit
solutions in V,,(Q).

We mention that different but related approaches to the subject have been
developed, by Martens [2], in terms of endomorphisms of the Jacobian J(X)
arising from correspondences, and recently by Tanabe [5], in terms of sublattices
of H'(X, 7)) arising via pullbacks, and by Naranjo and Pirola [3], for higher di-
mensions.

Acknowledgment. The author thanks R. Piergallini for help with some in-
tersection orientations, and G. P. Pirola for several useful conversations on the
subject.

2. — Basic facts: morphisms as divisors.

The basic properties of the associated divisor express the concept of an al-
gebraic equivalence relation. One has Z; > 4, in other words Z; = 4+ Sy with S¢
effective. Moreover Z; is symmetric, under the involution (x,y)— (y,x), and
satisfies the fundamental equation in terms of the composition of corre-
spondences:

ZolZ=nZ
if Z=7Z;andn = degf.

REMARK 2.1. — Conversely, if Z is a symmetric effective divisor and
Z o Z =nZ then Z,,q = Zy for some f with n > deg f. Examples: n4, multiple of
the diagonal, and more generally pZ; if n = p deg f. However, if Z is reduced
then Z = Z;.

QUESTION: is there any other non-reduced solution?

The intersection numbers of the associated divisor encode the global in-
variants of the morphism. Assume that f has degree n and ramification », and
that Y has genus ¢'. Consider in X x X the two fibres X x p and p x X, and the
diagonal 4. We will denote the associated homology classes by &; and &, and by 4
again. Then

S-&6=8-&G=n—-1 Z-=4-S=mn
S -d4=r Z-A=2-294+r=n2-2¢9)
S S=m-1)2—-29)+n—-2r Z-Z=n@2-29+7)
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if Z and S are associated to f as defined above. A reference for the present
section is Samuel [4].

3. — Morphisms as homology classes.

The homology classes of divisors in the product surface are described as
NSX xX)=H;;(X xX)NH(X x X, 7), where Hy; is Poincaré dual of the
Hodge space H'!.

DEFINITION 3.1. — Let n > 1 and ¢’ > 2 be integers such that n(g' —1) <
(g —1). Define V,, o C H11(X x X) to be the subset of classes z which are sym-
metric and satisfy: zoz=mz, of degrees z-( =z-E =m, and with
z-A=n@2 —2¢). The integer g’ may be called the virtual genus for these classes.
This V¢ will be described as an algebraic set in the affine space Ho(X x X, C).
Define moreover V, to be the union of V,g for all ¢. Then V,(Z):=
V. NHy(X x X, 7), the subset of algebraic classes, will be the locus of integral
points of the algebraic set.

The basic facts quoted in the previous section say that
FnX) C Vu(2),

and there is a classic argument implying
ProposITION 3.2. - V,,(7) is a finite set.

Proor. —- It is easy to see that V,,(Z) maps injectively into NS(X x X)/ (&1, &).
The key tool is that on the quotient the quadratic form (z - & Y+ (z- 52)2 —(z-2)
is positive definite, cf. Weil [6]. Also recall the intersection formula
(z-2) = ((z02)- A). It follows that if z € V,,(Z) then HzHZ =2n% —n(z - A) = 2ng/,
so ||z|| is bounded; and there is at most a finite number of points of bounded norm
in a discrete subspace. O

Consider moreover the locus E ¢ NS(X x X) of effective divisor classes,
usually denoted by E(X x X). More precisely we have
FuX) C Vo (Z)N (4 +E).
QUESTION: if z belongs to the right hand side is it possible to write z = [Z] for
some Z effective symmetric such that Zo Z =nZ?

REMARK 3.3. — This istrueforn = 2. Let Z = A+ Swith S effective, of degrees
S-& =8-& =1 Then S =1 is the graph of an automorphism g € Aut(X).
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Moreover [Z] symmetric implies I'y ~ I'yr and I ~ A Then 'y - 4 <0 im-
plies I'pp = A and ¢* =1, so g is an involution. If f : X — X /g is the quotient
map, then Zy = Z.

4. — Homological equivalence relations.

We introduce coordinates in homology using the Kiinneth decomposition
Hy(XxX,7)=H(X, 7)o HyX, Z)© Hy(X,7)® Ho(X, 7) © H1(X,7) ® H1(X, 7).

Let & be the fundamental class in Ho(X, 7), let p be the point in Hy(X, 7), and let
Vs Vog be a standard basis in H1(X, 7Z), for which the nonzero intersection
numbers are (y;-y,.) =1 for i=1,...,9, and their opposites. Then in
Hy(X x X, ’7Z) one has the basis

él::éxpa éZ:ZpX§7 VLXV, 7"]6{17729}

We will use the rough notation y;y;.

LEMMA 4.1. - Table of composition of correspondences:

§1oé1 =& LHolo=E Lol =0 &0& =0
flOViVjZO yiijQ:O 520%‘7/]':0 Viyjofzzo
ViVi oVl = 5jh 7iVk  where 5jh = (Vj )

ProOF. — Compute with the definition: z oz = p((z x &) - (¢ x z)), where p is
the projection X x X x X — X x X to the first and third factors, using the
general intersection formula: (u x v) - (u' x V') = (— DP9 u') x (v- V'), where
p’ = codim(¢’) and q = codim(w). O

A class in Hy(X x X,7) may be written as z = a1&; + a2 + 3 a;7;7;- The
condition z - & = z - & = n says that a; = ag = n. Therefore

1 2= +E&)+ ) agy;
Here z is symmetric if and only if
A= (aij)

is antisymmetric (the involution (x,y)— (y,x) implies y; x y;— — ;X 7; in
homology). For instance the diagonal class is

9
@) A= &+ &)+ Y (=i + guit):
1
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It follows that zoz=mn2(& + &)+ Y iy, With coefficients ay =
> a;0;,an;. Therefore z o 2 = nz requires that a;, = nay, for every 4, k, in matrix
I
form

(3) ADA = nA

where D = (dj,) is the standard matrix for the intersection product on H(X, 7).

Writing as a block matrix
A A Ar
Az As

—ApAn +AnAn =nAn —ApAe +A11Asn =ndp
—ApAyr + AnAgs = Az —ApAis + AnAs = nAs

the equation becomes

Finally it is not difficult to compute the intersection number
z2-4=2trAp + 2n,
so the intersection formula in section 2 implies
(4) trAp = —ng'.

Using formula (1) for z, and formula (2) written as 4= (& 4 &) + Y- ;i7;7;, one finds
thatz - 4 =2n + Z aljékh(yiyj . yhyk) =2n — Z aijékh(éihéﬂﬂ) =2n+2 Z Qi gt -

5. — Homology classes of type (1,1).

We introduce coordinates in De Rahm cohomology using the Kiinneth de-
composition

H*XxX,O)>2H*X,O) o H'X,O)eH' X, ) H*(X, ) H'(X, C) H (X, O).
Let 0 be the dual fundamental class in H2(X,7), and let Py Pz 0

HY(X,7) be the dual basis of a standard basis Vis-ens yzg in H1(X,7), so that
f T6=1 and f ¢; = 0y, in the notation of the previous section. Then in

HZ(X x X, 7) one has the De Rahm dual basis
01 :=pi©), 0::=p30), pile) Apslp) i,5€{1,...,2g}

We use the rough notation ¢;¢;.
A reminder of Poincaré duality. The duality H,(X,7) — H'(X,7) is given
by 7i+ @gyis Vgri— — @5 1t follows that the duality P:H(X x X,7) —
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H?(X x X,7) is given by & +— 0s, & 0y, and

ViVi T PgriPyriy ViVgri T Ogri®is VgriVi O Pilgriy Vorilgri T — @i
If z is given by the coordinate matrix A as in (1), then P(z) is given by

—A A
PUA) — 22 2\
Ap —An

g
For instance P(4) = (01 + 02) + Y- (00,5 — 9y1i0)-
1

Then we introduce coordinates in the Hodge group by means of the Kiinneth
decomposition HM(X x X) =~ H"(X) @ H*(X) ® H*(X) ® H*'(X) @ HY(X) ®
H'\(X) @ H' (X) @ HY(X).

If wy,..., 0, is a basis in H°(X), then in H"(X x X) there is the basis

01, 02, pi(w) Aps(@;), pi@)Apsyw), i,je{l,...,q},

for which we also use the symbols w;®; and @;w;.
The relation of coordinates in the De Rahm and the Hodge groups is as fol-
lows. The inclusion H'*(X) ¢ H'(X, C) is described by

Wi = Z 9ij9;-
j

Then @; = }_q;p;, where overline means complex conjugate. The complex
matrix j

I = (qu)

of type (g,2¢) is a period matrix for X. The Riemann relations say that the basis
o1, . ..,0, may be chosen so that I7 = (Q, 1) where @ is symmetric and im(Q) is
positive definite.

Let z belong to H;;(X xX). The dual will be of the form P(z)=
(01 + O2) + 3 bjjwioj + > b,’ijcbiwj. This is symmetric if and only if bgj =—bj
(the involution (x, %) — (y, ) implies w;®; — — @;w; in cohomology). Therefore

P() =n(0y + 02) + > bjlw; — djey)

and B :=(b;) is a coordinate matrix for P(z). Then write w;0; — wjw; =
> @QanQjx — Qinqix) 5,01 An easy computation shows that
Tk

P) =0y +02) + > (Bue — Bia) 0u s
where f;, := > qinbijjr. is coefficient (i, k) in the product 77BII. Therefore
iy

P(A) = asym(TIB IT).
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LEMMA 5.1. - The condition for an antisymmetric matriz A to be Poincaré
dual of some asym(IIBIT) is
QA2 + A21Q + QA1Q + Az =0,
which i compact form is written as
(5) ‘mA I = 0.

ProoF. — We have a proof by crude calculation, at present. Given A anti-
symmetric, let us search for B such that {/TBIT = A + S for some S symmetric.
Writing in block matrices:

An+8Sn Awp+Swe)\ QBQ QB
Az +S21 Asz + So2 BQ B .

First we look at the equation Ags + See = B with S symmetric, so we try to
solve in Sgo. Next consider the equations:

As + S12 = QB = Q(Agz + S22), Ag; + S21 = BQ = (A + S22)@,

with the condition So; = Sys. )
This requires that (Asz + S22)Q — Az = (— Az + S22)@ + Az, hence
S22(Q — Q)— Axn(Q + Q) + 245 = 0. Write

Q=R+il

in terms of the real and imaginary parts. The equation becomes
1892l — AgoR + Az = 0, and this says that

Sop = —i(AgR — Ap)I !
is purely imaginary. Moreover the condition Sgo symmetric requires
(a) I(Ag2R — Az1) = (— RAg + A1)l

Finally the last equation Ay + Sy :7QBQ = Q(Az + S22)Q with Sy; sym-
metric requires Q(As +S22)Q —An = Q(— Az +S2)Q + A1, equivalent to
S11 = =811, i.e. that Sy; is purely imaginary.

Write Sgo = 1S}, With S, = —(AR — As)] -1 as found before. Then

An + S = (R4 1iD)(iSh, + As)(R — iI)
= (B + iD{(AnR + Shy]) + i(SyR — AnD)}
= R(A»R + SIQQI) — I(SIQQR —Agl) +1(...)

implies that R(A»R + S)l) — I(ShR — Axl) = Ajq, hence
(b) RAs — RA»R + AR + [Ax»] = Ayy.
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Summing up equations (a) and (b) we end with
QAs1 +A12Q — QA2Q = Ay

Finally replace A with P(A) in this formula.

6. — The variety of special homology classes.

We recollect the preceding computations. Write the antisymmetric A as a

block matrix
u w
A:
—'w v

with U and V antisymmetric. Then the equation ADA = nA is written as

- WU - U'W =nlU —WW + UV =nW
VW —tWV = nV

(we omit block (2,1) by antisymmetry), in which we have the condition

) tr W= —ng

with ¢’ > 2 and n(¢’ — 1) < (g — 1), and the equation ‘JTA IT = 0 is written as
&) QW —'WQ + QUQ +V = 0.

PRrROPOSITION 6.1. — The set V,, viewed in the space of triplets U, V,W, 1is
defined by the equations above.

Some first properties are seen from the equations. In V,, two isolated points
are —nD (the only point in the region A invertible), and 0 (the tangent space to
ADA = nA at the origin reduces to A = 0). So the algebraic set is not irreducible.
It may be studied using the natural stratification accoréding to rk(A4). One finds

for instance that the maximum dimension of strata is {%} (the integral part). So
the algebraic set is not small in dimension.

A naive hope in the beginning was that V,, might be something of general
type, accounting in this way for the finite number of morphisms. It seems instead
that every stratum is a unirational variety.

QUESTION: find a good parametrization for counting the integral points.

The following observation is useful for working with the equations above.
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REMARK 6.2. — There is an action of nondegenerate matrices P on the datum
of U,V,W and @ given by
W' =P'WP, U'=P'UP!, V'="PVP and @ = PQP,

for which are invariant all the equations above, the trace function, and the
Riemann relations for the period matrix.

The action has the following interpretation. Define

. tp0
P := .
0 p!

This belongs to the symplectic group Sp,,((), and is viewed as a change of
symplectic basis in H;(X, Q).

The action of P on Q is congruence (under P), and is a special case of the
action of Sp,,(R) on the Siegel space, usually written as (aQ + /(Y@ + 5)!. The
action of P on the datum U,V ,W is congruence:

A ='PAP

and the induced action on W is conjugation: this allows to simplify the form of W,
at least to some extent.

7. — Some computation for g = 3.

We make some experimental computation for genus 3. Write

0 U U 0 V1 V2 w11 Wiz Wi
U= —UuU1 0 us |, V= —1 0 3 |, W = Wo1 W22 W23 |.
—uz —ug O vz —v3 0 w31 Ws2 Ws3
In equations (3") we observe the action of W on antisymmetric matrices given
by U~ WU + U'W. For an antisymmetric matrix U as above define the co-
w1
ordinate vector U’ = | ug |.Then express the action in terms of the coordinate
us
vector (WU + U'W)'. It is given by

W11U1 — Wiz + Wl + Waglha w11 + Wa2 Wa3 —W13 U1
W11U2 + Wi2U3 + WU + WUz | = W32 w11 + W33 W12 Uz |-

Wo1U2 + Waally — W31U1 + W3sU3 —Ws1 Wa1 Wo2 + W33 U
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Define
- W33z —We3 w13
t.= tI'(W) and W .= —W32 W22 —Wi2 |.
w31 —W21 Wi
Then

WU + U'W) =t - W) U'.

Let us confine to the search of solutions with ¢ = —2x, among which are the
morphisms onto curves of genus ¢’ = 2. Equations (3”) become:

(6) W +nDU =0, (W+nDV' =0, WW +nl) = UV,

and may be read in terms of eigenvectors.

Now observe that W and W and their transposed matrices have the same
characteristic polynomial (if W is the matrix of an endomorphism relative to
e1, ez, e3, then W is the matrix of the same endomorphism relative to e3, —es, e1).

It follows that —n is an eigenvalue of W, and the other eigenvalues are p and
—n — p for some complex number p of degree at most 2 over the rationals. Let us
confine to the case p rational.

Because of the remark at the end of the preceding section, we may assume
that W is in Jordan form over the rationals. The possibilities are:

-n 1 —-n —-n ) —n
( 0 —n ), ( —-n )7 2 1 ’ P
0 —n
0 0 3 —n—=p
p 7& 07 —n
We call these matrices Wy, Wa, W3, Wy(p).

It is not difficult now to compute the solutions of (6):

(a) Wi, U' = (0,u,0), V' =(0,0,v), with uv = n;
(b) Wy, U'=0 or V' =0; n2
(c) WS, U/ = (0707 /M/)7 Vl = (070,/1}), With uv = Z;

(d) Wylp), U =(0,0,u), V' =(0,0,v), with —uv = p(p + n).

Next consider equation (5): QW —WQ + QUQ + V = 0. Let g;; denote the
complementary subdeterminant of the element ¢;; (without the algebraic sign).
Here are some formulas useful for computations:

q12(we2 — wr1) qu 0
QW —'WQ) = (ng(wss - wn)) + w2 ( 0 ) + wos ((Im) +eey

qo3(wss — wos) —q13 Q22
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g31 432 433
QUQY =ugs | gor | +uz| qo2 | +uz| 23
qu Q12 q13

It is now easy to check that (5') becomes, in the various cases:
(@) qu+ugse=0,nq3+ug2 =0, ngs — ¢z +ugiz +v = 0, with uv = »;
(b) we have U = 0 or V = 0, and (0, ng13,7q23) + (QUQ) + V' = 0;
n n _ _ . n?
() Q125 +Ug3 =0, Qi3+ qrz + ugr = 0, @22 +uq11 +v =0, with uv = e
(d) qr2(p+n)+ugs =0, qz(—p)+uge1 =0, go3(—n—2p)+uqy +v =0,

with —uv = p(p + n).

We get the following easy:

COROLLARY 7.1. - In V,(Q) there is at most 1 solution of Jordan type Wi, at

most 1 solution of type Wz, and there are at most 2 solutions of type Ws.

(1]
(2]
(3]
(4]
(5]
[6]

So it is case (d) that seems to require some more detailed analysis.
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