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A Note on R-Maps.

ZBIGNIEW DUSZYNSKI

Sunto. — Viene studiata la ricchezza della classe delle R-mappe [3]. Vengono anche in-
dicate numerose conseguenze per la teoria degli spazi quasi-H-chiust (vedi Lemma 5).

Summary. - Richness of the class of R-maps [3] is investigated. Several consequences for
the theory of quasi-H-closed spaces are indicated.

1. — Introduction.

In 1973, Carnahan [3] has introduced the notion of R-maps. Mappings of
stronger forms of continuity among R-maps were studied by Noiri, see for
instance [25]. In this paper, some well-known weak types of continuity with
additional conditions, concerning respective forms of generalized openness or
extremal disconnectednes imposed on the range space, are localized within the
class of R-maps. In the application section we show, among others, that
members of the above mentioned subclasses of R-maps preserve well-known
conditions of near compactness, S-closedness, and quasi-H-closedness, simu-
laneously.

2. — Preliminaries.

No separation axioms for topological spaces (denoted with (X, 1), (Y,0),
etc.) are assumed. For a subset S of (X, 7), the closure and the interior of S
have standard denotation: el(S) (or cl;(S)) and int(S) (or int.(S)), respec-
tively. The S is said to be a-open [17] (resp. semi-open [14]; semi-closed [4];
preopen [15]; preclosed [1]; regular open; regular closed) in (X,7), if
S Cint(el(int(S))) (resp. S Cel@int(S)); int(cl(S)) cS; S Cint(cl(S));
cl(int(S)) C S; S =int(cl(S)); S = el (int(S))). The collection of all semi-open
(resp. preopen, preclosed, regular open, regular closed) subsets of (X, 1) is
denoted by SO (X,7) (resp. POX,7), PC(X,7), ROX,7), RC(X,7)). The



698 ZBIGNIEW DUSZYNSKI

collection of all a-open subsets of (X,7) forms a topology on X [17], dif-
ferent than the original one in general. The intersection of all semi-closed
subsets of (X, 1) containing S C X is called the semi-closure [4] of S and is
denoted with secl(S).

A mapping f: (X, 1) — (Y, 0) is said to be a-continuous [22, 16] (resp. semi-
continuous [14] (briefly s.c.; almost continuous in the sense of Husain
(equiv. precontinuous) [10, 15] (briefly a.c.H.); almost continuous in the sense
of S&S [34] (a.c.S.); irresolute [5]; an R-map [3]), if f~1(V) is a-open in (X, 1)
(resp. f1(V)eSO0X,1); fI(V)ePOX,1); f1V)er; fUV)eSO0X,1);
FUV) e ROX,1) for every Veao (resp. Vea;, Vea VeROY,0) [34,
Theorem 2.2(b), see Definition 2.1]; V € SO (Y,0); V € RO (Y, 0)). Clearly, f is
an R-map if f~1(V) € RC(X, 1) for any V € RC(Y,0).

It is known that f is a-continuous if and only if f is s.c. and a.c.H. [24,
Theorem 3.2]. Also, irresolutness = s.c. and R-mapness = a.c.S., but the
converses are false in general, see [31, Example 1] and [25, p. 249] respectively. In
[7] the author shows that both R-mapness&continuity and R-mapness&a-con-
tinuity are couples of independent notions.

A mapping f: (X, 1) — (Y, 0) is said to be almost open in the sense of S&S [34]
(briefly a.0.8.), if f(U) € o for every U € RO (X, 7). A space (X, ) is called ex-
tremally disconnected (e.d.) if el (S) € t for every S € 7.

3. — R-mappings.
In 1972 Noiri has given the following result.

THEOREM 1. [18, Lemma 1]. - If a mapping f: (X, 1) — (Y,0) is a.0.S. and
a.c.S., then it is an R-map.

Anf: (X, 1) — (Y, 0) is said to be weakly a-continuous [26] (resp. weakly con-
tinuous [13]) (briefly w.a.c. and w.c. respectively), if el (f~1(V)) C f~1(cl,(V))
[26, Lemma 2.2(d)] (resp. f~1(V) C int (f~*(c1(V)))) for every V € o.

The following implications are known:

continuity = a.c.S. = w.c. = w.a.c.

None of these allows the reverse (see respectively [34, Examples 2.1&2.3],
[26, Example 5.4].

THEOREM 2. — Ifa mapping f: (X, 1) — (Y,0) is a.0.S., w.a.c., and a.c.H., then
it is an R-map.



A NOTE ON R-MAPS 699

ProoF. — Let V € RO(Y,5). We shall show only that int (cl (f(V))) C
f~1V). By [1, Theorem 1.5(c)] we have
f(int (el (f71(V)))) = int (f (int (I (f'()))))
C int (f(clfa (f*I(V)))) Cint(cl(V)) =V.
Thus, f is an R-map. O
We have a-continuity = w.c. (see [16, Diagram p. 214] or [26, Lemma 5.2])
and a-continuity = a.c.H. (see [16, Diagram p. 214] or [24, Theorem 3.2]). By [24,

Example 3.10] one may easily see that there exists a w.a.c. and a.c.H. mapping
which is not a.c.S.

THEOREM 3. — Let (X,1) be arbitrary and (Y,o) be e.d. If a mapping
f: X, 1) — (Y,0)is w.a.c. and a.c.H. then it is an R-map.

ProOF. — Let V € RO (Y, 0). We show that int (cl (f~1(V))) C f~1(V). With
[26, Lemma 2.2(¢)], [1, Theorem 1.5(d)], and [33, Theorem 6(3)] we obtain
f(int (el (f71(V)))) C f(el (intw (f el (V)))) Cf(cl (int (f(l(V))))
C el (f(int (f el (V)))) Cel(V)=V.
Thus, f is an R-map. O

The example below and [26, Example 5.6] show that w.a.c. and a.c.H. are
independent of each other, even if the range space is e.d.

ExAMPLE 1. — Let X = {a,b}, = {0, X, {b}}, 0 = {0, X, {a}}. The identity
mapping f: (X, 1) — (X, ) is w.c. and not a.c.H.

COROLLARY 1. — Let a mapping f: (X, 1) — (Y, 0) be w.c. and a.c.H. If

e fisa.o.S. or
e (Y,0)ised,

then f is an R-map.

Recall that w.c. and a.c.H. are independent notions too (see [26,
Remark 5.8(2)] or consider Example 1 and [26, Example 5.6] for the e.d. range
spaces).

In [7] the author has defined p-a.c.H. mappings: an f: (X, 1) — (Y, 0) is p-
a.c.H. iff(clT(U)) C cl,(f(U)) for every set U € PO (X, 7). By [33, Theorem 6(3)]
we have p-a.c.H. = a.c.H., but the converse may fail [7]. In 1983, Mashhour et al.
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showed that a-continuity = p-a.c.H. [16, Corollary 1.1(i)]. The equivalence a-
continuity < s.c. and p-a.c.H. is due to the author [7]. We do not know if there is
an example of p-a.c.H. mapping which is not a-continuous.

THEOREM 4. — If a mapping f: (X, 1) — (Y, 0) is p-a.c.H. and the range space
(Y,o0) is e.d., then f is an R-map.

ProOF. - Let V € RO (Y, 0). Obviously, we have f~1(V) C int (cl (f~1(V))).
On the other hand, by the assumption
f(int (el (f’l(V)))) cf(d (f’l(V))) Cel(V)=V.
Hence f is an R-map. O

COROLLARY 2. — If a mapping f: (X, 1) — (Y, 0) is a-continuous and (Y, o) is
e.d., then f is an R-map.

Anf:(X,7) — (Y, 0) is said to be weakly open [32]if f(U) C int, (f(cl(1)))
for every U € 7. We have: a.0.S. = weak openness [21, Lemma 1.4], but the
converse is not true in general [21, Example 1.5]. If (X, 1) is e.d., then these
notions become equivalent.

THEOREM 5. — If a mapping f: (X, 1) — (Y, o) is weakly open p-a.c.H., then it
s an R-map.

PROOF. — Take a V € RO (Y, 0). Weak openness of f implies
f(int (el (f71(1))) < int (£ (el (int (el (£7'(V)))))
C int (f(cl (f1(V)))) Cint (@ (V) = V.
Thus, f is an R-map. m

COROLLARY 3. — If a mapping f:(X,7) — (Y,0) is weakly open and a-
continuous then it is an R-map.

REMARK 1. — (a). For an a.0.S. and a-continuous mapping, Theorem 5 is a
consequence of Theorem 2.

(b). To throw more light on Theorem 1 it is worth to recall that a-continuity
and a.c.S. are independent of each other [24, Examples 3.9&3.10].

LemMmA 1. [5, Theorem 1.5]. — A mapping f: (X,1) — (Y,0) is irresolute if
and only if f(scl(A)) C sel (f(A)) for any A C X.
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THEOREM 6. — If a mapping f: (X, 1) — (Y, ) is irresolute and a.c.H., then it
s an R-map.

Proor. - Let Ve RO(Y,s). With [12, Proposition 2.7(a)] we get
f(int (cl (f71(M))) € f(sel (f71(V))), because f~1(V)ePOX,7). From
Lemma 1 we infer that

f (int (cl ( f ’I(V)))) csel(V) =int(cl(V)) =V.
Thus, f is an R-map. O
In [7] we justify independence of irresolutness and a.c.H.
An f:(X,7) — (Y,0) is said to be weakly quasi continuous [28] (briefly
w.q.c.) if f7(V) C el (int (f~*(c1(V)))) for every V € ¢ [26, Lemma 5.3].

One has irresolutness = w.q.c. but by [26, Example 5.5] the reverse does not
hold.

THEOREM 7. — If a mapping f:(X,1) — (Y,0) is weakly open, w.q.c, and
a.c.H., then it is an R-map.

Proor. — Let V € RO (Y, o). By hypothesis we can calculate as follows

F(int (el (F72(V)))) cint (£ (el (int (el (F2(V)))))) € int (f (el (int (2l (V)))))
Cint (el (f(f ' (el(V)))) Cint( (V) = V.

It means f is an R-map. O
[26, Examples 5.5&5.6] show the independence of w.q.c. and a.c.H.

REMARK 2. — What concerns Theorem 2, it is worth to recall that w.a.c. =
w.q.c. and that the converse is not true [26, p. 489].

A mapping f:(X,7) — (Y,0) is said to be almost open in the sense of
Wilansky [38] (oriefly a.o.W.), if f 1 (el (V) C el (f~1(V)) for every V € ¢. It is
known that f is a.0.W. if and only if f(U) € PO(Y,0) for every U € t [33,
Theorem 11] (and hence, a.0.W. coincides with preopenness [15]). Recall that
both a.0.W.&weak openness and a.0.W.&a.o.S. are pairs of independent notions
[21, p. 315].

THEOREM 8. — If a mapping f: (X, 1) — (Y, 0)is a.0.W. and p-a.c.H., then it is
an R-map.
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ProoF. — Let V € RO (Y, g). With [33, Theorem 11] we get
f(int (cl (f‘l(cl (V)))) Cint (cl (f(cl (f‘l(cl (V))))) C int (el (f(cl (f‘l(V))))).

But f is p-a.c.H., whence f(int (cl (f~1(V)))) C int(cl(V)) = V. Thus, f is an
‘R-map. O

REMARK 3. — The reader is advised to compare Theorem 8 with Theorem 5.

COROLLARY 4. - If a mapping f: (X, 1) — (Y,0) is a.0.W. and a-continuous
then it must be an R-map (see Corollary 3).
The next lemma is obvious, hence the proof is omitted.

LEmvMa 2. -f:X,0)—>Y,0) s an R-map if and only if
int (el (f~1(int (c1(4))))) = (int (cl (A))) for every A C Y.

LemMA 3. [19, Theorem 1(2)]. — A mapping f: (X,7) — (Y, 0) is s.c. if and
only if int (cl (f1(B))) C f~(cl(B)) for every subset B C Y.

A mapping f:(X,7) — (Y,0) is said to be contra-precontinuous [11] if
(V) e PC(X, ) for every V € o.

THEOREM 9. — Let (Y,0) be e.d. If a mapping f:(X,7) — (Y,0) is s.c. and
contra-precontinuous then it is an R-map.

PrROOF. — Let V € RO(Y,0). By hypothesis we have f1(cl(V)) =
int (el (f~1(c1(V)))). Put V = int (cl (A)) for an A C Y and apply Lemma 2. O

REMARK 4. — Since in an e.d. space (Y, o),
RO(Y,0) =RC(Y,0),
Theorem 9 can be obtained by the following observation:

a mapping f:(X,7) — (Y, 0) is s.c. and contra-precontinuous if and only if
f1(V)e RCX,1) for every V co (ie., iff f is RC-continuous [6]) [11,
Theorem 3.9].

We complete our investigation with considering the notion of #-continuity. An
f: (X, 1) — (Y,0)is said to be 0-continuous [8] if for every « € X and V € ¢ with
f(x) € VthereexistsaU € tsuchthatx € U andf(clT(U)) C cl,(V). In [34, 9] it
was shown that a.c.S. = 0-continuity = w.c., but none of these implications is
reversible. Notice that also: a-continuity = 6-continuity [16].

Straight from the respective definitions one obtains the following.
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REMARK 5. — Let amapping f: (X, 7) — (Y, o) be weakly open or a.0.W. If it is
0-continuous, then it is a.c.S.

Thus for the a.0.S. case, Theorem 1 can be reformulated as follows: a.0.S.
together with O-continuity 1mply R-mapness. It is worth to notice that in the
a.0.S. case, Remark 5 can be proved using [23, Theorem 2.1].

4. — Applications.

In this section some corollaries following from what obtained above are
presented.

THEOREM 10. — Let an f: (X, 1) — (Y, 0) be surjective and g: (Y, o) — (Z,y) be
arbitrary. If the composition g o f is a.0.S., the function f and the space (Y, o)
fulfil one of the assumptions of Theorems 2-9 or Corollaries 1-4, then g is a.o.S.

PRrOOF. — The proofs are similar to that of [18, Theorem 2(a)] and thus
omitted. U

A space (X, 1) is called quast-H-closed [29] (resp. nearly compact [35]; S-
closed [36]), briefly: QHC (resp. NC; SC), if for every cover F = {V,: a € V} C 7
(resp. F C t; F C SO(X,1)) there exists a finite subset Vo C V such that
X= U (V) @esp. X = | int(cl(V,); X = |J el (V). The first name for

aeVy aeVy aeVy

QHC spaces was almost-compact spaces [30]. It is known that AC = QHC and
SC = OQHC, but the converses fail, see [35, Section 1, p. 702] and [20,
Remark 1.5] respectively. For e.d. spaces we have NC < SC < QHC (compare
[2, Corollary 1]).

LEMMA 4. — A space (X, ) is NC [35, Theorem 2.1(c)] (resp. SC [2, Theorem 2])
if and only if every regular open (resp. reqular closed) cover of X allows a finite
subcover.

By Lemma 4 and [27, Lemma 3.9] we obtain what follows.

LEMMA 5. — Let a surjective f: (X, 1) — (Y,0) be an R-map and the space
(X, 1) be NC (resp. SC; QHC). Then (Y, o) is NC (resp. SC; QHC).

THEOREM 11. — Assume f: (X, 1) — (Y, 0) is a surjection. Let it be

e ([35, Theorem 3.1] for the NC case) a.0.S. and a.c.S. (see Remark 5), or
e a.0.8, w.a.c., and a.c.H. or
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weakly open and p-a.c.H., or
wrresolute and a.c.H., or

weakly open, w.q.c., and a.c.H., or
a.0.W. and p-a.c.H.

If (X, 1) is NC (vesp. SC; QHC) then (Y, o) is NC (resp. SC; QHC).

ProOF. - These follow at once from Lemma 5 and Theorems 1, 2, 5, 6, 7, 8
respectively. 0

REMARK 6. — Since continuity implies a-continuity and these notions do not
coincide [22], the 6th case of Theorem 11 is an extension to [20, Theorem 2.2].

Recall that an irresolute (resp. 0-continuous) surjection preserves the SC [37,
Theorem 3.5] (resp. QHC [27, Lemma 3.9]) property. Obviously, by [27,
Lemma 3.9] an a.c.S. surjection preserves the QHC property [37, Theorem 3.3].

THEOREM 12. — Let a space (Y, o) be e.d. and let a surjection f:(X,7) — (Y, 0)
Julfil the following:

e fisw.a.c, and a.c.H. or
e fisp-a.cH., or
e fis s.c. and contra-precontinuous.

If (X, 7) is NC or SC or QHC, then (Y,0) is QHC (= NC = SC).
PrOOF. — Lemma 5 and Theorems 3, 4, 9 respectively.

It must be reminded that Thompson [37, Theorem 3.2] proved, in fact, that
for every s.c. surjection, if the domain space is SC then the range space is QHC.
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