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Bollettino U. M. 1.
(8) 10-B (2007), 661-679

On the Dirichlet Problem with Orlicz
Boundary Data.

GABRIELLA ZECCA

Sunto. — Sia @ : RT — RT una funzione di Young che soddisfa, con la sua funzione
complementare ¥, la condizione 4y e siano L lo spazio di Ovlicz generato dalla
Sfunzione @ e B la palla unitaria di R™.

Si presenta una condizione nmecessaria e sufficiente affinché il problema di
Dirichlet per un operatore del secondo ordine ellittico in forma di divergenza:

{Lu =0 B
u|aB :f’

sia L?-risolubile. La risolubilita per f € L? & intesa nel senso di [5], [8], dove viene
trattato il caso d(t) = tP.

Summary. - Let us consider a Young’s function @ : Rt — R satisfying the A; condition
together with its complementary function ¥, and let us consider the Divichlet problem,
for a second order elliptic operator in divergence form:

{Lu =0 B
u|05 :f’

Bthe unit ball of R". In this paper we give a necessary and sufficient condition for the
L®-solvability of the problem, where L® is the Orlicz Space generated by the function
@. This means solvability for f € L? in the sense of [5], [8], wheve the case d(t) = t? is
treated.

1. — Introduction.

Let us consider the classical Dirichlet problem in the unit ball B ¢ R™:

Lu=0 in B

(1.1) 0
u,, =f € C°(OB)

where

(12) L = div(AV)
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is an elliptic operator whose coefficient matrix A(X) € L*(R"), AX) =! AX)
satisfies the condition

Iél

(1.3) < (AX)E &) < K¢

with K > 1, for a.e. « € B and for ¢ € R".

For 1 < p < oo, the Dirichlet problem is said to be L”—solvable if for any
f € C°0B) there exists a unique solution u € Wllo’f(B) N C%B) to (1.1) which sa-
tisfies the uniform estimate

(1.4) ||N“||Lp<aB)§ CHf”LP(aB)
where Nu denotes the non-tangential maximal function ([8])
(1.5) Nu(@Q) = sup [u(X)|

Xely(@

and, for @ € 0B, I'3(Q) is the non-tangential approach region (f > 0)
(1.6) I's@ ={XeB:|X-Q| <1+ pdist(X,0B)}

To explain the known results on the LP -solvability, we recall the definition of
the harmonic measure wy, of operator (1.2) on B.
If f € C°%0B), X € B, let us consider the linear functional

(1.7) f—uX)

on C°(8B) where u € Wi-%(B) is the generalized solution of the classical Dirichlet

loc
problem (1.1). By the maximum principle, (1.7) is a bounded, positive continuous

linear functional and w =1 if f = 1. Therefore, by the Riesz representation
theorem, there exists a family of regular Borel probability measures

{wL}

such that u represents as
(18) uX) = [ f@dof @
OB

For fixed Xy € B let oy, = X° and we refer to wy, as the harmonic measure
of L on B.

A key result is contained in [8]:

THEOREM 1.1. — Let 1 < py < o0, qp = %. The following are equivalent:
0 —

i) The Dirichlet problem (1.1) is LP°-solvable;
ii) The L-harmonic measure w is absolutely continuous with respect to o,
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and k = d_w € LY(do) with
do

1 0 1
(1.9) (@ Afkq> gc(@ Afk)

for any surface ball A C OB.

The first results on the LP—solvability go back to B. E. J. Dahlberg [5], [6]. In
this paper we are interested in the extension of these results to the context of the
Orlicz Spaces (see Theorem (4.4)). Note that, thanks to the higher integrability
properties of weights k satisfying ‘reverse Holder’ inequalities (1.9), a better
solvability automatically holds; namely, if the problem (1.1) is L -solvable, then
it is also LP~° -solvable for suitable & > 0.

Let @:R" — R" be a Young’s function that satisfies the Ay-condition
together with its complementary function ¥. The Dirichlet problem (1.1) is said
to be L%-solvable if for any f € C°%0B) there exists a unique solution
u € W-4(B) N C°%(B) to (1.1) which satisfies the uniform estimate

loc

(1.10) f d(Nuydo < C f &( f))do
OB OB

Let us observe that for L? = LP the integral inequality (1.10) corresponds to
the norm inequalities (1.4). We will show that condition (iz) of Theorem 1.1 is a
necessary and sufficient condition also for the L®-solvability of the problem (1.1),
where @ is a given Young’s function such that the upper index of L? is p, ! (see
Definition 3.1).

2. — Notations and preliminary results.

Now we need to recall some definitions and results on the theory of A,
weights.

DEFINITION 2.1. — A function w : 0B — R will be called a weight if it is po-
sitive and if w € LY(OB, do), o being the surface measure on OB.

Let u be any non negative, Borel measure on 9B satisfying the doubling
condition

(2.1) 1(42,(Q)) < Cr(4,(Q))
where @ is a point on 0B, 4,(Q)= B,(Q) N 8B, B,(Q) the ball of R" with center @

and radius r (for example y = w, the harmonic measure associated to any elliptic
operator L, or 1 = o).
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DEFINITION 2.2. — Let v be another non-negative measure on 0B. Then,

v € A (du) if, given ¢ > 0, there exists 6 = d(e) > 0 such that if E C 4,.(Q), 4,(Q)
any surface ball, then

W(E) o(E)
2@ <’ @) <

The main properties of this class of measures are summarized in what follows.

THEOREM 2.1. — The following properties hold:

@) If v € A (dp), then v is absolutely continuous with respect to u and
viceversd.

(i) Ax(du) = Ug=18S4(dp), where v € Sy(dp) if v is absolutely continuous

with vespect to pand k = Z—Z € Li(dp), and verifies
1 f ’ 1
vt 58 ek [
(ﬂ(dr(Q)) L@ w4 (Q)) e

for all surface ball 4,.(Q).

(ili) v e Sy(dw) tff the weighted Hardy-Littlewood maximal operator M,
defined by

1
M@ = s Af |fldv
verifies

1 1
(2.2) I Mo fll 2o < ClNF Nl o aJr?—? =1
iv) Ifv e Sy(dw), q > 1, then there exists ¢ > 0 such that v € Sy .(dw).

DEFINITION 2.3. — For 1 < q < oo, let v € Sy(dp), and let k be as above. We
define S4- constant of the measure v with vespect to u, the quantities

1 "]
— | kdu
(“(A) Af ) 11

1 q
w(A) ! i

(2.3) Sq.u(0) = 51A1p

where the supremum is taken over all the surface ball 4 C OB.
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Combining Lemma 2.2 of [11] and Theorem 2.5 of [2] with slight modification,
we have:

PROPOSITION 2.2. — Let 1 < g < oo, and let v € Sy(dw). Then:

1 q 1 1
(2~4) ”Mv f”LP(dﬂ)S C(n,p)” I:SQvﬂ(D)]p||f||LP(dﬂ)7 6"‘; = 17
and so, for all A > 0,
, ()"
(25) ({01, £ > 23) < Ot p L) o a2

Following the proof of Theorem 1 in [4], one can see that it holds:

ProposiTION 2.3. — Let w be a weight on OB such that the measure du = wdo
is doubling. Let dv = zdu, z > 0 on OB and z € L*(dw). If there exist 0 <y <1
and C > 0 such that

WE) (U(E)>y
2.6 P <cc(=22), V4, VEc 4
(26) w ) = \o4)
then there exist 6 > 0, K > 0, such that
1
2.7) 1 f 2dy Tk L f ey, VA
wa J T S

Moreover the constants K and d in (2.7) are dependent only upon the constants C
and y in (2.6) and wpon the constant in the doubling condition of .

For more details we refer the reader to the papers B. Muckenhoupt [12], R.
R. Coifman and C. Fefferman [3], A. P. Calderén [4] where the theory of A,
weights is extensively studied.

If w is the L-harmonic measure of 9B, the connection between these concepts
and the Problem (1.1) is also given in the following Lemma (see [8]):

LEMMA 2.4. — Let f € LY(dw), and, for X € B,
wX) = f fdarX.
OB
Then, for each P € OB
Nu(P) < CsM,,(f)(P)

where f s the aperture of the approach region I'p. Moreover, if f >0,
Mo(f)P) < Cj Nu(P).
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Finally, we want just recall the following version of the Marcinkiewicz the-
orem (cfr. [13]). Here and below, if v is a weight on 0B and A is a g-measurable
set, we will write v(4) = [vdo.

A

THEOREM 2.5. — Let T be a sublinear operator, and let v be a weight on OB.
Suppose that T is simultaneously of restricted weak-types (p1,p1) and (pz, p2),
1 < p1 < p2 < oo, with respect to the measure dv = vda, i.e.

2.8) f dv < %U(E), i=1,2

{Tug>2}

E measurable subset of OB, C independent on E and on the positive constant A.
Then T 1is also of ‘strong type’ (r,r), for all p1 < r < pg, that is

(2.9) 1T N iy < Kl

K independent on f.
If T = M, then the restricted weak type can be characterized as follows:

PROPOSITION 2.6. — Let w, v be weights on 0B, and let the measure dv be
doubling. The weighted Hardy-Littlewood maximal operator M, is of restricted
weak-type (p, p) with respect to dv, i.e.

C
(2.10) f dv < FU(E), 1<p<
{ ]\’[m}( E >/“}

with C independent on E and on the positive constant 4, iff there exists K > 0
such that for all A, and for all measurable E C 4,

w(E) v(E) ’
o) = K(m)

(2.11)
Proor. - (2.10) = (2.11)
Observing that, by the definition of the operator M, if & C 4

74P) w(k)

MorsP) 2 7y [ @@ = 551,
results from (2.10)
w\?
v(d) < f dv < Cu(E) (M)
{Mure>533

that is (2.11).
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(2.11) = (2.10)
We have

1
M, y+(P) = sup —
wP) =S s

) B v(E N A)
Af 15@QuQo(@ = sup =

and analogously for M,,. Then, by (2.11)
(Muyg)'< KPMyyg,

Vie
so that {Myyg > 2} C {MQ,XE > %
that the operator M, is of weak-type (1,1) with respect to dv; in particular,

. Now, the measure dv doubling implies

Q) < %v(E)
{Myyp>2}

and then (2.10) follows with C = C; KP?. O

3. — Orlicz setting.

Let @ : [0, +00) — [0, +00) be a Young’s function, i.e. a function of the type
D(t) = ft p(s)ds, t > 0, where ¢ : [0,00[—R is nondecreasing, right-continuous
and sugh that

p(s) >0 Vs>0, ¢0)=0, shl?o p(s) = +oo.

The Young’s function ¥(f), complementary to &), is defined by
t
Y(t) = [ p~1(s)ds, where p~1(s) = sup{u : p(u) < s}. So p~1(s) verifies the same

0
properties of ¢(s).

If v is a weight on 0B, the Orlicz Space L?(dv) = L*(0B, vdo) consists of all
measurable functions on 0B for which there exists K > 0 such that

a£(I§<|Ki|)0lv <1

and the norm || f{| 4.4, of f in L®(dv) is the infimum over all such K.
We will require that &(%) satisfies the A condition, which is equivalent to the
more general property:

(3.1) VA >0, 3B>0 : &AL < BP(), Vi>0.
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Note that it implies also that

(3.2) VB >0, dA >0 : &AL < Bo(t), vt>0.

If also the complementary ¥(t) obey the A; condition, the Banach spaces L® and
LY are mutually dual, and so the Holder’s inequality holds. We shall require that
¥ satisfies 42 too. In this case we have that @(f) and ¥ (¢) are essentially equal to

tp(t) and tp~1(t) respectively, for all ¢ > 0, and then ¢ and ¢! also satisfy the 4,
condition. Moreover, for the inverse functions of @ and ¥, we have:

(3.3) t<o 'l <2t, Vt>0.
Let us observe that, under the above hypotheses, for @(f) and ¥ (f) we have

o) tpl)
>0 < sup 0 p < 00,

tp~1(t) tp1(t)
v =S T

(3.4) 1<0=inf

(3.5) 1< 0=inf =p < oo

DEFINITION 3.1. — Let

oLt
3.6 h(s) = .
3.6) e T

The upper and lower indices p and 0 of L® are

B logh(s)

(37) P :ogslg logs

and

(3.8) 0= inf 109"
l<s<co  logs

respectively.

. -1 N
Itis easy to see that 0 < p < p,and that L? = L? implies p = 0 = p~!. Moreover,

we want just recall some properties of these indices we will make use of below:

PROPOSITION 3.1. — Let @ and ¥ be as before. The following properties hold:

)0<O0<p<l;
ii) given a fived 0 < r < p~l, there exists an sy, with 0 < sy < 1, such that

(3.9) B(st) < (5> B(t),
So

forallt >0 0<s<1;
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iii) For any s such that 0 < s <1 we have h(s) > s77; so, for any fixed
0 <s<1thereisat > 0 such that

o7t s

(3.10) o (sh) >3

iv) For any s such that 0 < s < 1 and for any t > 0,

¢_1(St) < 8/3—1.

(3.11) o =

Furthermore let us observe that, under the above hypotheses, the following
holds true:

PROPOSITION 3.2. - Let @ and ¥ be as before and let @5, 6 > 0 such that

0510 = (p0)" "

then, the upper index p' of L% is greater than the upper index p of L®.

Let us observe that, from the proof of Lemma 2 in [9], it is possible to compute
1+p—0p

exactly the upper index of L%, that is p' = T +op

index of LY.
For a complete analysis of these properties we refer to [1], [10] and to the
results obtained in [9].

, where Oy is the lower

4. — The main result.

In this section our aim is to extend the solvability of the Problem (1.1) to the
context of Orlicz Spaces.
It holds the following:

THEOREM 4.1. — Let w, v be weights on OB, such that the measures dv = vdo
t

and dw = wda are doubling, and let O(t) = f p(s)ds be a Young’s function which,

0
together with its complementary function ¥ (t), satisfies the Ay condition. Then,
the following are equivalent:

i) There exists a constant C > 0, independent on f, such that:

[ ea.fyds < c [ o fpvdo,

0B 0B
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ii) w e Se(dv), that is:
1 -1
4.1) (M! ) ( i f(p (= )wda) <K

Sfor all surface balls A and for all e > 0;

1 1 .
iil) w € Sy, (dv), where p_ + q_ =1, py! upper index of L®.
o 4o

PROOF. — 1) = 1)

Let us consider:

42 Iallsgan=inf {’“ >0 @()edo < 1} ) m

and

(4.3) T, = H“’/ {4

. WY 4
— : AL <
e 1nf{k >0 ajBW(kw)gvda < 1}

We can immediately observe that T, > 0, unless o(4) = 0, which we exclude.
Indeed, T, = 0 implies that the function —== wx

a(4) = 0. On the other hand, the converse of the Holder’s inequality implies the
existence of a nonnegative function f, supported by 4, with norm || f|;.¢(,3,)= 1

and such that f fwdo = f f Whdpigy — T. and then M,,f(P) > —— ol A) VP € 4; this

4 is zero dv-a.e., but w,v > 0 implies

implies, by 1), T < o0.

Now we claim that there exists a constant K; such that for all 4 and for all
e>0

(4.4) 12 all L0 iy Te < By A).

Indeed, with the same f as before, we have

(45) “14Q < M,f(@ VQ e IB.

(A)

Being &(f) an increasing function, yielding 7) and integrating we have:

(4.6) f q><wf;)> evdo < f ®( M, f)evds < C f &(|f|)evde < C
A OB OB
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T, 4 C
w(A) <@ (ev(A))

~ o)
— WCH = -
O = ic

that is

Let us choose

Taking t = ——, (4.4) follows.
g ( % (4.4)

Now, since from (3.5) tp~1(t) < p¥(t) Vt > 0, we have:
Wha —1( WXy z Wy 4 z
—= < <
f T, ¢ (veT,,) do < p f lIl(veT,;) evdo < p
oB dB
and then, from (4.4) we have

|7A||L4’(1dv) afw ||7AHL4’(zdv) z
4.7 — wdo <
@7 Kyuw(4) f (ev Kyw(4) ) 7=p

Now, let us consider the funetion of &:

. [174ll L )
0 = "R o)

Let us remark that, from (3.3), it follows that 0(¢) is essentially equal to the

function
v g1
0 =gt (ev(A))

and hence, lim 6(¢) = 400, and lir+n 0(¢) = 0. Moreover 6(¢) is continuous, andlso
e—ot &£——400 _
there exists ¢ > 0 such that 6(e) = 1, essentially equal to |:1)(A)¥’ <K;}Z()A )ﬂ

Now, applying these results to (4.7) we obtain

L (w . Kyw(4) p L (Kaw()
(4.8) Af 9 (;)wdaﬁKyv(A)?’( E >§K2§K1w(A)(p ( o )

Then,

(4.9) w(ﬁ f w‘l(%)wda) < p(At)
A
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by assuming A = K2§ Kiandt=g¢! (K;Z'(;i )>. Now, from the generalized Ao
0
condition for @, let B > 0 such that ®#(At) < Bd(t), t > 0. Then we have
pé B w(4)
At<—d>At< (Dt< t t) === —
p(At) (At) () p(t) = 05 KK o)

from which the assertion ) follows for ¢ = 1 with K = p 0
0 p KiKs'

applies to ¢v; for the constant K depends only on C, and so the assertion is proved
in the general case.
Now to prove that i7) implies 777) we need some preliminary results:

The same proof

LEMMA 4.2. — Let @, po, w, and v be as in Theorem 4.1. Then, w € Sp(dv)
implies that the weighted Hardy-Littlewood maximal operator M, is bounded
Sfrom L"(dw) to itself, for all r > po.

ProOOF. — By the interpolation criterion (Theorem 2.5) it is enough to prove
that M,, is of restricted weak-type (po, po) that is (2.11) with p = po. We have, by
duality between L? and L?:

w(l) w,(E
w(A) w(A) f ( ) ¢ w(A) ellzocan L¥(edv)
We claim that
(4.10) H L¥(edv) ™ < Cru(e” ( v(A))
Indeed, let us observe that (4.1) is equivalent to
_ _1 (Kw(4)
1 1
(4.11) fga ( )wda < w(de ( o) >

Observing that tp~1(t) > ¥(t), we have:

Lp(m)< mf{k > 0] f‘P( )wda < 1}
ooz

‘ WXE
&v

and from (4.11)
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_1 [ Kw(4)
oS 1nf{k > 0|— w(d)p (lmu)) < 1}

cunlin0 K <ol 1))

a1 K 1
a0 () < oot (1)

(where C; = MK™1)), i.e. the (4.10). So we obtain

H’WXE

! (—1
w(k) ev(A)
. < .
(4.12) o) = Cy - 1
()
- . v(l)
Then the statement follows from Proposition 3.1, (i), taking s = o) <1
1
al’ld E = M. I:l

LEMMA 4.3. — Let &, po, w and v be as in Theorem 4.1, and let @5, 6 > 0 be
such that

o' = (7)™
Then, w € Se(dv) implies w € Sg,(dv), for small 6.

ProoF. - Suppose w € Sg(dv). We want to prove that w € Sg,(dv) for some
0>0,ie.

(4.13) (ﬁ fevdo)%( i f(o (= )wda) <K

for all surface balls 4 and for all ¢ > 0. For this purpose, it is sufficient to prove, for

w
“=0 (ev)
l\

1 1+0 E
(4.14) (w(m Af ! dw) < ( 5 ) sdw  Ve> 0, VA.

Indeed, if (4.14) holds true, by ¢;() = (p(tﬁ), we have

L

(ata [ o) ety [or (Do
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and than,

(i [ (o) <oty [ (o)
<ot [ () <285

i.e. (4.13). So let us prove (4.14). To begin, we prove (4.14) for ¢ = 1. Denote
(W
2=z21=0¢ (E) and set

N 1 _ g1
0= (“’ (t)‘(p(t—l))'

Now, for ¢ = 1 the inequality
1 1 (W

becomes, also by the Ay-condition for ¢!

-1
1 ;1 1 1
(4.16) o 2‘[ zwdo < K'p (w( % Af e wda)

that is

(4.17) (ﬁ fzwda) (w(A) f(p‘1< )wdo) <K', vA.

Now, we claim that (4.17) implies that for all 4 there exists 1 = 1, such that

1
L"’()zdw) Cua)@” (i(zw)(zl))

(where Jzdw stays for the measure Jzwda). To prove (4.18) let us observe that ¢
and ¢! satisfy both the A»-condition, and then @ and ¥ obey 4, too. Then, from
4.17)

, w(d) 1 wd)
(4.19) (wu) Af < >wda) < (K( )(A)> <9 <(2w)u)>,

(4.18)

/Iz
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for all 4. Now, let A = 1, such that

1 = w(d)
(4.20) 7= @A ((zw)(A))'
We have

1 1 w4

7~ wp ((zw)(A))
that is

~_1< 1 ) S

4 Jw(A) (zw)(4)
and then

/1 1

da(;ku)) A o
So,

1 -1 1

(4.21) i~ ? ()(zw)(zt))'

We have, from (4.19),

)

(zw)(A) ~_1(1 ,

Af e ~_1< o >¢ (E)/lwdagC
(zw)(4) (zw)(4)

then, if p = p(P),

(37() et <
2 2

| =

I

hence,

<l D

m"
Q=

_al
W(E) lzwdo < 1.

Then, by (3.2), there exists C' > 0 such that

f 4 (g) Jzwdo <1
y

and so, by (4.21), (4.18) follows.

675
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Now, VE C 4, by the equality

1
(422) HXE' ‘ |L‘2’(Azdw): ﬁ ’

(Azw)(E)
and by (4.18), we have

()

w(k) Mzw)(4)

<C

w(A) @1( 1 )
Azw)(E)

. _ (z2w)(E) .
and then, by (3.11) with s = @) we obtain
wB) _ . (w)E)\
(4.23) wih < C((ZW)M)) , V4, VEC 4.

Now, observing that w € Sg(dv) implies that z, € L'(dw) for all ¢ > 0, from
Proposition 4.23 with du = wdo and dv = zwdag, we have that there exist J > 0
and K > 0 such that

1 1+0 v 1
(4.24) (M f o1 dw) SK(M Af zdw)

4

for all 4, that is (4.14) with ¢ = 1. Now, let us observe that the constant K’
in (4.17) is independent on ¢; then, also the constants in (4.23) are in-
dependent on ¢ too. So, by the last assertion in Theorem 2.3, the constants ¢
and K in (4.24) are independent on ¢, and then the proof holds true also in
the general case. O

Now, we can conclude that 17) = 717). Indeed, we have that w € S¢(dv)
implies w € Sg,(dv) (Lemma 4.3); then the maximal function M,, is bounded

from L"(dv) to itself, for all » > l,, p' upper index of L% (Lemma 4.2). In
p
particular, (Proposition 3.2), M,, is bounded from LP°(dv) to itself, that is
w € Sy, (dv).
Finally, i) = 1):

1 1 . .

Let w € Sy, (dv), p_ + q_ = 1. Hence, by Theorem 2.1, (iv), there exists an
0 4o

¢ > 0 such that w € S, ,.(dv). Assume m = qo + ¢; from Proposition 2.2, we have,

f measurable,
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f B(M,, fvde — f ( Ifwf gﬂ(s)ds) dv
oB

9B \ 0
<if ( f qb(s)ds)d
oB
+00
. D(s)
0 {PeOB:M,, f(P)>s}
+00 m
Szm'c(n’m)ﬁs f (%) f |f|mld’l) st(i)ds7
0 =y

where S = S,,,(w)". Then, by Fubini’s theorem

1
oo i 222

0B \ 0

m' + o

where C' is the doubling constant of @(t). Let now my, = . So my, < po,

and then, as already mentioned, there is an s;, 0 <sy<1 such that

7)@0
B(st) < (83) ®(t),t>0,0 < s < 1. Then,
0

fqﬁ(wa)vda < MI@(VD (f mly—(m! “)ds) vdo
9B S

0
_ OIS [ o flyudo
(mg — m)s 0 OB

This completes the proof of Theorem 4.1. O

As a corollary of the above theorem we have the following extension of
Theorem 1.1. Namely:

THEOREM 4.4. — Let B be the unit ball of R" and let ®(t) = ft p(t)dt be a
Young'’s function that satisfies the 4z -condition together with its cofr)nplementary
function ¥(s) = f ¢ 1(1)dx, and let pyt be the upper index of the Orlicz Space
L®(0B, do). Then the following are equivalent:
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i) The Dirichlet problem (1.1) is L®-solvable.
ii) The L-harmonic measure w is absolutely continuous with respect to o,

and k = d—w € Se(do), that is:
do

1 1 (K

Sfor all surface balls 4 and for all ¢ > 0. 11
ili) The L-harmonic measure o belongs to Sy (do), —+—=1, i.e. w is
0

absolutely continuous with respect to o, and k = ili—(;) € LY (dg), with

1

ﬁf’“qo <C ﬁfk )

4 4

ProoOF. — The implications (i7) = (ii7) = (2) follow directly from Theorem 4.1.
For (i) = (i) we only need to prove that L?-solvability of the Problem (1.1) im-
plies that the harmonic measure w is absolutely continuous with respect to the
surface measure g, and it follows from standard arguments. O

Note that from the ’openness’ of the condition w € S,(do) (Theorem 2.1, iv)), it
follows that the L®-solvability implies also the L% -solvability of the Problem
(1.1), with suitable ¢ > 0, and the upper index of L% is bigger than the one of L.

Moreover, we observe that, in the case @(t) = tlg“(e +t), 0 < a < 1, Theorem
1.1 does not hold (see [14]).
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