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Finite Simple Groups Admitting Minimally Irreducible
Characters of Prime Power Degree.

MARCO ANTONIO PELLEGRINI

Sunto. — In questo lavoro si classificano i gruppi semplici finiti che ammettono un
carattere complesso rriducibile avente grado la potenza di un primo e la cui re-
strizione ad ogni sottogruppo proprio é riducibile.

Summary. — In this paper we classify the finite simple groups that admit an irreducible
complex character of prime power degree which is reducible over any proper sub-
group.

1. — Introduction.

A complex character y of a group G is said to be minimally irreducible, if it is
irreducible and if the restriction of y to any proper subgroup of G is reducible.
The study of the minimally irreducible characters is related to computational
problems and, more importantly, to irreducible cross-characteristic embeddings
of finite groups of Lie type over a field of characteristic p > 0.

In this paper we classify all finite simple groups possessing a minimally ir-
reducible character y of prime power degree (1) = s?. The case where y(1) = sis
a prime was analyzed in [5]. Moreover, in [6] the authors classified the finite non-
simple groups with non-soluble socle having minimally irreducible characters of
degree y(1) = pq, where p,q are two distinct primes. Our main result can be
summarized as follows:

THEOREM 1. — Let G be a finite simple group. Let y be an irreducible complex
character of G, such that y(1) = s%, where s is a prime and d > 1. Then y is
manimally wrreducible, if and only if one of the following holds:

1. Gisafinite simple group of Lie type of characteristic s and y = Stis the
Steinberg character of G;
g+1

2. G = PSL2,q) and y(1) = o where q is odd;
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3. G=2 PSL2,q) and y1) =q +1;
4. G~ PSL(2,2% + 1) and y(1) = 2%

no_
5. G = PSL(n,q), q > 2, nisanoddprime,(n,q —1) = land y(1) = qq - 11;
6. G = PSU(n,q), nis an odd prime, (n,q +1) =1 and y(1) = T +11;

7. G = PSU@,3) and z(1) = 25, ¢+

The proof of Theorem 1 will be established in the subsequent sections of this
paper using the classification of quasi-simple groups possessing irreducible
characters of prime power degree. Alternating groups admitting an irreducible
character of prime power degree were investigate in [1]. The complete classifi-
cation follows from the work of G. Malle and A.E. Zalesskii ([13]). From these
results we conclude the following:

THEOREM 2 (cf. [1, 13]). — Let G be a finite simple group, and let y be an ir-
reducible complex character of G of prime power degree s%, d > 1. Then one of
Sfollowing holds:

1. G is a finite simple group of Lie type of characteristic s and y is the
Steinberg character of G;

2. G=PSL2,q) and y(1) € {gq+1}, orqisodd and y € {(g£1)/2};

3. G=PSL(n,q), ¢g>2 mn is an odd prime, (n,q—1)=1, (1) =
(" — 1)/(q — 1)

4. G = PSUn,q), nisanoddprime, (n,q+1) =1, y1) = (@" +1)/(q + 1)

5. G = PSp@n,q), n > 1, ¢ = v* where r is an odd prime, kn is a 2-power
and (1) = (¢" + 1)/2;

6. G =PSp@2n,3), n > 11is a prime, y(1) = 3" —1)/2;

7. G = Ay, x ) = 5%

8. Sd =16, G e {M11,M12,PSL(3,3)},‘

9. s =21, G € {Ay, PSp(6,2), 2F4(2)'};
10. s¢ =32 G = PSUG,3);
11. s =64, G = G2(3).

In case that the maximal subgroups of the simple group G together with their
associated permutation characters are known, the following lemma turns out to
be useful (cf. [14, Lemma 4.1]):

LEMMA 1. - Let K be a finite group, yx € Irr(K) and H < K, such that
1§ =1 + > a;$;, where 1x # ¢, € Irr(K). Then Ly s an irreducible character

of H, if (mdlonly o (- ¢ =0, for all i.
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2. — Proof of Theorem 1.
2.1 — The Steinberg character.

The first character we analyze is the Steinberg character St. We briefly recall
the definition of this character. For more details, see [2] and [4].

Let G be a finite group with a (B, N)-pair of rank [ and let W be the Weyl
group of G. Then W = (wy, ..., w;), where w; is a fundamental reflection, with
jel={1,...,1}. Let W; be the standard parabolic subgroup of W generated by
the set {w; :j € J} and let P; be the standard parabolic subgroup of G corre-
sponding to W;. The Steinberg character of G is the (virtual) character

St=>"(-1"1§.

JCI

It turns out (e.g., see [4, 67.10]) that this virtual character is actually an irreducible
character of G. Moreover, if G is a finite group with a split (B, N)-pair of rank [ and
characteristic s, then St(1) = |G|, the order of a Sylow s-subgroup of G.

This character has the following property:

PROPOSITION 1. — Let G be a finite simple group of Lie type of rank | and
characteristic s and let St be the Steinberg character of G. Then St is minimally
wrreducible.

ProOF. — The statement was proved in [14] within the framework of the
theory of unipotent characters of groups of Lie type. For the convenience of the
reader we give a short self-contained proof.

Let s? = |G|, and suppose that St is not minimally irreducible. Then there
exists a maximal subgroup H of G such that Si, is irreducible. Hence
St(1) = s? | |H| and H contains a Sylow s-subgroup U of G of order s?. Then, by a
result of J. Tits (e.g. see [15, 1.6]), H is G-conjugate to a standard parabolic
subgroup P of G. In particular, P = U x L, where L denotes the Levi comple-
ment of P and U = 0,(P) # 1. As (S¢, lg)g =1 (e.g., see [4, 67.10]),

1=(St, 12)6 = (St),, 1), by Frobenius reciprocity.
Hence
(St\v’ 1U)U > 0.
Since U « P, Clifford’s theorem implies that U C Ker(St), a contradiction, and
the claim follows.
Observe that the restriction of the Steinberg character of 2F,(2) to the group

G = 2F4(2) splits into the sum of two distinct irreducible characters of degree 2!1.
Using [3], one can prove that both these characters are minimally irreducible.
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2.2 — The groups PSL(2,q).

Let G = PSL(2, q), where ¢ = p*, p a prime. The subgroups of G were clas-
sified about one hundred years ago by L. E. Dickson (e.g., cf. [10] for a modern
account). The character table of G is also well-known (e.g., see [7]). In particular,
the non-trivial irreducible characters of G have the following degrees:

1) ¢q+1,(g+1)/2if g=1 (mod4);
2) ¢,q+1,(q—1)/2if ¢=—1 (mod4);

From this information one concludes the following:

PROPOSITION 2. — Let G = PSL(2,q) and let y be an irreducible complex
character of G of degree s, wheve s is a prime and d > 1. Then y is minimally
wrreducible if and only if:

o s'=g;

a_q+1
ST
sl=qg—1land q=2%+1;

and p is odd;

s'=q+1and q+#3.

PRrOOF. — Set ¢ = p®. According to Dickson’s theorem (cf. [10]), a subgroup H
of G must satisfy one of the following properties:

(@) H is abelian;

(b) H is dihedral;

(¢c) H isisomorphic to Ay or Sy;

(d) H is isomorphic to A5 and either p = 5 or p?* = 1 (mod 5);

(e) H is isomorphic either to PSL(2,p¥), where k | a, or to PGL(2,p"),
where 2k | a;

(f) H isthe semidirect product of an elementary abelian p-group P of order

ko
p* with a eyclic group of order ¢, where ¢ ‘ (p 1 , 4 — 1> and d = (p® — 1,2).
Subgroups satisfying (a) or (b) have irreducible characters of degree < 2 and
hence they are obviously ruled out. Similarly, we may rule out the subgroups in

(c). As for case (d), the group As only has non-trivial irreducible characters of
degree 3, 4 and 5.

1. Lets? = g. Then y is the Steinberg character of G. As ¢ > 4, G is simple.
Hence this character is minimally irreducible, by Proposition 1.
d

= (12;1 Denote by 7 the

irreducible character of SL(2, q) to which y lifts, and let T be the subgroup of

2. Let y be an irreducible character of degree s
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SL(2, q) consisting of the lower triangular matrices. A direct computation shows
that ()N{‘T’)?‘T)T = 1, and hence /; is irreducible. It follows that y is not minimally
irreducible.

1
3. Let y be anirreducible character of degree s* = % Suppose that y is

not minimally irreducible. Then there exists a proper subgroup H of G such that
the restriction Zm 18 irreducible, and y(1) = % divides |H|. Scrutiny of the list

of subgroups of G shows that this cannot occur. Indeed, H cannot be as in (d), since
4— g+1
2

implies ¢ =7, contradicting the restrictions on p. In case (e),

21 > |H|, which contradicts the character degrees formula. Finally, case (f) is

@ +1
ruled out by observing that s and p are coprime and P 2+ Jp® — 1. Thus we have

excluded every candidate for H provided by Dickson’s list.

4. Let y be anirreducible character of degree s? = ¢ — 1.If p = 2,asin 2, it
is enough to consider y| , where T' is the subgroup of G consisting of the lower
triangular matrices. Direct computation shows that y is irreducible. Next,
suppose that p is odd. Then s = 2. Suppose that y is not minimally irreducible.
Then there exists a proper subgroup H of G, such that the restriction y is ir-
reducible, and hence y(1) = 27 divides |H|. Allitems in Dickson’s list from (a) to (e)
are easily ruled out (in particular, in case (d) one obtains y(1) = 2% and hence
H = G = PSL(2,5), a contradiction; whereas in case (e) one obtains |H| < x(1)2).
In case (f), |H| = p* - t. BykIto’s theorems, y(1) divides |H : P| = t. This implies

~1
that 7(1) = p — 1 divides 2

, Which is impossible.

5. Let y be an irreducible character of degree s¢ = ¢ + 1. First of all, ob-
serve that G has an irreducible character of this degree only for ¢ > 4. Next, if s is
odd, then p =2 and hence y(1) = 32 and q = 8. Using [3] we obtain that y is
minimally irreducible. Thus, we may assume s = 2. It follows that q is a Mersenne
prime, and hence ¢ = p and d is a prime. Suppose that y is not minimally irre-
ducible. Let H be a proper subgroup of G such that z, 1s irreducible. Then
q + 1| |H| and inspection of Dickson’s list shows that all possibilities from (a) to
(f) can be ruled out. In particular: if H belongs to (f), then |H| = p -, where
t|p—1.As 27 = p +1 and p are coprime, 2¢ should divide ¢, and hence p — 1,
which is impossible.

2.3 - The groups PSL(n,q), n > 3.

In this and the subsequent section we investigate properties of the
Zsigmondy primes. Recall (cf. [17]) that, if @ and b are integers such that a > 2,
b > 3 and (a,b) # (2, 6), then there exists a prime {;(a) which divides a® — 1, but
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does not divide a® — 1 for all c = 1,...,b — 1. Such a prime is called a primitive
prime divisor or a Zsigmondy prime for the pair (a, b). For these prime divisors
one has the following (e.g., cf. [11, Prop. 5.2.15]):

LEMMA 2. — Assume a > 2, b > 3 and (a, b) # (2,6). Let {,(a) be a Zsigmondy
prime for the pair (a, b).

@) If{ya) | a® — 1, then b | c;
(b) {p(@) =1 (modb).

PROPOSITION 3. — Let G = PSL(n, q), where n is an odd prime, q > 2 and
g -1

—1°
Suppose that y(1) = s, where s is a prime and d > 2. Then y is minimally
wrreducible.

(n,q—1)=1. Let y be an irreducible character of G of degree y(1) =

ProoOF. - First, we observe that s is the unique Zsigmondy prime for the
pair (g,n). It follows that s is odd and s =1 (modn). Furthermore, as n is a
prime, s > n + 1 and s > 7. Suppose that y is not minimally irreducible. Then
there exists a maximal subgroup H of G such that the restriction yy is ir-
reducible. The maximal subgroups of G fall into 8 ‘natural’ classes C;
(1 <1 <8), the so-called Aschbacher classes, plus a class S of ‘small’ sub-
groups, which are almost simple and act projectively and absolutely irre-
ducible on the natural G-module V(n,q). For an accurate description of the
order and structure of subgroups belonging to the Aschbacher classes, the
reader is referred to [11, Chapter 4].

Since s? divides |H|, H must contain a Sylow s-subgroup of G, which is cyclic
of order s? (a ‘Coxeter’ torus of G). By [12, Theorem 1.1] we know the maximal
subgroups H of G containing such a subgroup: either they belong to the class C3
or (H,G) € {(PSL(3,2), PSL(3,4)), (A7, PSL(4,2))}.

Under our assumptions on the degree of y, the only possibility are the groups
H ~7..4.7,, belonging to the class Cs (the class of ‘field extension stabilizers’).
Hence, by Ito’s theorem, s? divides n. But this contradicts the assumption that n
is a prime.

2.4 — The groups PSU(n,q), n > 3.

PROPOSITION 4. — Let G = PSU(n,q), where n 1is an odd prime and
" +1

g+1°
Suppose that y(1) = s, where s is a prime and d > 2. Then y is minimally
wrreducible.

(n,q+1)=1. Let y be an irreducible character of G of degree y(1) =
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PRrOOF. — The proof is similar to that provided in 2.3. First of all, as in 2.3, we
observe that s is the unique Zsigmondy prime for both the pairs (g, 2n) and (¢, n).
It follows that s is odd, s =1(mod2n) and s Jq' —1 for all 1 <i<2n —1.
Furthermore, s > 7.

Suppose that y is not minimally irreducible. Then there exists a maximal
subgroup H of G such that the restriction y is irreducible. We have to
consider two cases: either H belongs to one of 7 Aschbacher classes C;
(1 <14 <7),or H belongs to the class S. Since s? divides |H |, H must contain a
Sylow s-subgroup of G, which is cyclic of order s?. By [12, Theorem 1.1] we
know the maximal subgroups H of G containing such a subgroup: either they
belong to the class C3 or G € {PSUG,3), PSU@3,5), PSU4,3), PSU(5,2),
PSU6,2)}. Once again, under our assumptions, the only possibility are the
groups H = 7.7y, belonging to the class C3 (the class of ‘field extension
stabilizers’). Hence, by Ito’s theorem, s¢ divides . But this contradicts the
assumption that » is a prime.

2.5 - The groups PSp(2n, q).

It is well-known that the group G = Sp(@n, ¢), ¢ odd, has exactly two irre-
ducible complex characters #, #* of degree (¢" —1)/2 and exactly two irre-
ducible complex characters &, & of degree (¢" + 1)/2. These are the so-called
Weil characters of G (e.g., see [8, 9, 16]). In [5] it was shown (regardless of
whether the degree is a prime power or not) that these characters are never
minimally irreducible.

2.6 — The alternating groups.
The irreducible characters of prime power degree of A, were described in [1].

PROPOSITION 5. — Let p be a prime, with d > 1 and suppose p® > 4. Then
the irreducible character of Ay, having degree p? is mot minimally
rreducible.

PrOOF. — The proof follows the same lines as that given in [5] for the case
where d = 1. Nevertheless we offer it here, for the sake of completeness.

It is well-known (e.g., cf. [1]) that if » > 5 then G = A,.,; has a unique
irreducible character y of degree p?. Let Q be the canonical G-set of order
p? + 1. Then, 1, 1s irreducible for a subgroup H of G, if and only if Q is a 2-
transitive H-set. Since PSL(2,p%) < G acts 2-fold transitively on @, this yields
the claim.
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2.7 — Other groups and characters appearing in Theorem 2.

In this section we prove that the characters listed in [13] as items 8, 9 and 11
are not minimally irreducible, whereas the two characters of degree 32 of
PSU@3,3), listed as item 10, are indeed minimally irreducible.

G = My, s* =16. G has two irreducible characters of degree 16. Using
Lemma 1 and [3], one sees that the restrictions of these characters to a maximal
subgroup H = My are irreducible.

G = My, s* =16. G has two irreducible characters of degree 16. Using
Lemma 1 and [3], one sees that the restrictions of these characters to a maximal
subgroup H = My, are irreducible.

G = PSL(3,3), s* = 16. G has four irreducible characters of degree 16. Using
Lemma 1 and [3] one sees that the restriction of these characters to a maximal
subgroup H isomorphic to 32 : 25, is irreducible.

G = Ay, s = 27. G has a unique irreducible character of degree 27. Using
Lemma 1 and [3], one sees that the restriction of this character to a maximal
subgroup H isomorphic to PSL(2,8) : 3 is irreducible.

G = PSp(6,2), s’ =27. G has a unique irreducible character of degree 27.
Using Lemma 1 and [3], one sees that the restriction of this character to a
maximal subgroup H isomorphic to PSU(3,3) : 2 is irreducible.

G =2F4(2), s? = 27. G has two irreducible characters of degree 27. Using
Lemma 1 and [3], one sees that the restrictions of these characters to a maximal
subgroup H isomorphic to PSL(3,3) : 2 are irreducible.

G = G(3), s’ = 64. G has two irreducible characters of degree 64. Using
Lemma 1 and [3], one sees that the restrictions of these characters to a maximal
subgroup H isomorphic to PSU(3,3) : 2 are irreducible.

G = PSU,3), s* = 32. G has two irreducible characters of degree 32. The
maximal subgroups of PSU(3,3) have orders 96, 168 or 216 (see [3]). Since
1024 = 322 > 216, these characters are minimally irreducible.
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