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A Constructive Boolean Central Limit Theorem.

ANIS BEN GHORBAL - VITONOFRIO CRISMALE - YUN GANG LU

Sunto. — Si fornisce una costruzione dei processi di creazione, distruzione e numero
sullo spazio di Fock Booleano a mezzo di un teorema di limite centrale quantistico
partendo da processi di creazione, distruzione e numero con tempo discreto.

Summary. — We give a construction of the creation, annihilation and number processes
on the Boolean Fock space by means of a quantum central limit theorem starting
from creation, annihilation and number processes with discrete time.

1. — Introduction.

In quantum probability the notion of independence is not unique. During
the past years emerged various inequivalent types of non-commutative
independence, studied in a unified abstract picture in many papers (see [15], [5],
[13]). Furthermore one knows that generally any notion of non-commutative
independence generates a central limit theorem. Also for this case a unified
abstract approach has been made by Accardi, Hashimoto and Obata in [4] and by
Speicher and von Waldenfels in [16], where non-commutative general central
limits are proved. More recently the interacting Fock space structure has sug-
gested an idea to obtain constructive central limit theorems and this led to prove
in [3] that any mean zero measure on the real line with finite moments of any
order is the central limit in the sense of moments of a sequence of processes,
satisfying rather weak conditions, on 1-mode type interacting Fock space.

Furthermore Accardi and Bach showed in [1] that creation, annihilation and
number operators in Boson Fock space without test function, can be obtained as
central limit of operators in toy Fock spaces. This is possible also for fermionie,
free and monotone Fock space (see [8], [10], [11]).

One wish naturally to find a similar central limit theorem also for the boolean
independence and Boolean Fock space and to this aim is devoted the present
paper, where, after pointing out that Boolean Fock space can be seen as a 1-mode
type interacting Fock space, we use some useful techniques of such a space in
order to reach this goal.



594 ANIS BEN GHORBAL - VITONOFRIO CRISMALE - YUN GANG LU

The notion of Boolean independence was introduced in [18] by W. von
Waldenfels (namely “interval partition”) and by Bozejko in [7] in the theory of
the free groups and successively Speicher and Woroudi in [17] defined the
Boolean convolution. This kind of non-commutative independence has been used
also by Lenczewski in [9] and by Skeide in [14] for the theory of quantum sto-
chastic calculus in the framework of Hilbert modules. More recently a quantum
stochastic calculus on Boolean Fock space has been developed by Ben Ghorbal
and Schiirmann in [6].

The paper is organized as follows: in Section 2 we define the Boolean
Fock space, the simplest quantum probability model - quantum Bernoulli
process - and proper constructive quantum stochastic processes (namely
creation - annihilation - number processes) on the Boolean Fock space and
with discrete time. In Section 3 we give results on the moments of such
operator processes with respect to the “vacuum” state. In Section 4 we
present our main result: a quantum central limit argument is used to get the
creation - annihilation - number processes on the Boolean Fock space
starting from discrete-time processes. It is worth to mention that the family
of processes used in our central limit theorem satisfies the singleton con-
dition with respect to the vacuum state and the boundedness of the mixed
moments (see [4] for more details). Then, as a consequence of [4], Lemma
2.4, only the pair partitions survive in the limit. Our constructive approach
shows that discrete-time processes give exactly a particular pair partition,
i.e. the wnterval partition.

Finally we want to point out the differences between [16] and our paper:

e we give a concrete construction rather than an abstract and general ap-
proach of existence;

e in [16] the *-algebra and the state are the same either for the convergent
sequence of the quantum random variables or for their resulting limit. Our se-
quence is made of operators on (R2)®N7 but in the limit one finds operators on
the Boolean Fock space;

e in [16] the GNS representation for the limit state has a Fock like structure
on which the elements act as creation and annihilation operators, instead in our
case the constructive approach allows to find also the number operator either in
the convergent sequence or in the limit.

2. — Notations and definitions.

We firstly introduce some definitions and notations on Boolean Fock space.
To this goal we consider an Hilbert space $. The Hilbert space

o) =Cce



A CONSTRUCTIVE BOOLEAN CENTRAL LIMIT THEOREM 595

is called the Boolean Fock space over . We denote by & the vector
D:=140

which is called the vacuum vectorin I'(9) and define the vacuum expectation (-)
as the state

()= (2,-D)
In the following definitions the three basic operators of creation, annihilation and

preservation on I'() are presented in the usual way.

DEFINITION 2.1. — For any f €  and for any o € C, g €  the creation op-
erator

At (f)laeg) =0 af
is defined as a linear operator AT(f): (D) — I'(D) and has an adjoint
A(f): T'(D) — (D) called the annihilation operator.
REMARK 2.1. — Forany f €  and foranya € C,g € H
A(f)laeg) = (f,9)©0
REMARK 2.2. — For any f,g € ©

(A(NHAT(9) = (f.9)

DEFINITION 2.2. — For any B € B(9) and for any a € C, g € § we define the
preservation (number) operator A(B) : I'(D) — I'(D) such that

AB)(a®g) :=0a B(g)
For any ¢ € {-1,0,1}, for any B € B(9) and f €  we will denote

AT(f) ife=1
A(f,B):={ AB) ife=0
A(f) ife=-1

In order to state our main result we need some further definitions and no-
tations starting from the quantum Bernoulli process as in [8, 12]. Let us denote

e := (é), 69 = ((1)) Clearly {e;,e2} gives the usual base of R%. For any
N>1,0<n<Nandl<ky<ke<...<k, <N,we define

. 5é)N) = eV ifn=0
W e Vel 1 Ve . we o™ if 1<n<N

where hereinafter, when n = 0, (k1,...,k,) is understood as (). We notice that
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the family

{00 4y @0 4y 0Snm <N, 1<k <... <k, <N,

hl a~~--,hm

1§h1<...<hm§N}

is a base of the space My, where M, := R* ® R? is the space of 2 x 2-matrices.

The definition (2.1) can be generalized by inserting suitable “test functions”.

Hence we consider the space of all complex Riemann integrable functions

£([0,1]) and for 1<n <N, 1<k <...<k, <N, fi,....f, € L*([0,1],dx),
define

n—1
™) o (Fu kn ™)
5(161,...,k77)(f1) o 7fn) '_ﬁl (ﬁ) }g ﬁL (kthl) . 5(/{31 7777 kn,)

For any k=1,...,N, for any f € £([0,1]), for any 0<% <N and
1<k <...<ky, <N define a linear operator T%( f, k) from (R2)®N into itself
as follows

™) } ::{5%)(]0) if n=0
0 if n>1

and denote by Ty ( f, k) the adjoint of T3 ( f, k). The following result allows us to
compute the value of T ( f, k).

LEMMA 2.1. — Forany k=1,...,N, forany f € L([0,1]), for any 0 <n < N
and 1 <k <...<k, <N,

W) ifn=1k=hk

0 otherwise

(2.2) Tn(f.k) [521??‘...,@)} = {

where 5[%]\7) (f) =1 (&) -5éN).

ProOF. - We firstly observe that for any n,m e N, 1 <k; <... <k, <N,
1<h<...<hy, <N

where 0, is the Kronecker symbol. Hence we have

(O IN (LR O 0 ]) = (TR [0 |00 i)
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7(k (N) <(N) ]
— {f(]_\f> <(S(k) aé(kl,..4.kn)> ifm=0
_/k ‘
:{f<]_\7> iftm=0mn=1 k=k

From another hand

N N) (7 .
{ <5Eh1>«n--~,hm)7 5((0 >(f)> if n= 17 k= kl

0 otherwise

_ f(z%) (00 o) =1,k =k
0 otherwise

_ {f(%) ifm=0n=1 k=k
0 otherwise

Forany B € B (L2 ([0,1], dx)) , we define a linear operator Ay (B) : (R2)®N

(R2)®N such that for any 0<mn <N, for any fi,...f, € £([0,1]) and
1<k<...<k,<N
SV (Bf) ifn=1
ANB) [0 (fioe )] =4
0 otherwise
One notices that if I is the identity operator on L?([0, 1], dx), then Ay([) is the
identity on (R?)“Y

REMARK 2.3. — The operators T3 ( f,k), Tn( f,k) and Ay(B) above defined
can be seen as creation, annihilation and preservation operators respectively, on
(R

PROPOSITION 2.1. — For any B € B(L*([0,1],dz)), for any h,k = 1,...,N, for
any f,g € L([0,1]),forany 0 <n< Nand 1<k <...<k, <N,

(2.3) T £ 1)T5(9.1) [8] = (To) (%) 5" )ol

(2.4) Av(B)TS( f, )[5““ " } Ty /(Bf k) [5 i m}

.....
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PRrROOF. — The result follows from simple computations. O

The previous results imply that any product of annihilation - creation - pre-
servation operators can be reduced to a product of only annihilation - creation
operators. For any &€ {-1,0,1}, for any B € B&z([o, 1], dm)), for any
1<k <N,andf € £(]0,1]) we will denote

Ti(f.k) ife=1
T (f.k,B) :=={ Ay(B)  ifte=0
Tn(f.k) ife=—1

3. — Moments of operators in discrete and Boolean case.

In our main result we need to know the value of the following joint ex-
pectations

<55)N>7 T%(fny kn,Bn) T T?\ll(fb k17Bl)6é)N)>
(A (fu, Bu) -+~ A% (fr. B)

To this goal we present the following results for the discrete case. We observe
that they hold in the Boolean case too. Their validity can be obtained just by
replying all the cases $ to £([0,1]), A* to T and @ to (5{(”N).

LEMMA 3.1. —- For any n € N and ¢ belongs to the set
{-1,0,1}":= {e = (¢(n),...,&(1)) : &(i) € {-1,0,1}, Vi=1,...,n}

0 if among {T3(fukn,Bn),..., Ty (fi,k1,B1)} there are more annihi-
lators than creators, then

T3 (fuskus Bu) -~ Ti(fi o, B3 =0
1) if the cardinality of the set {i : (i) = £ 1} is odd, then
(0. T (fskeu. B) -~ T (fi ke, BogY ) =0
112) if either e(n) € {0,1} or &(1) € {—1,0}, the scalar product
(08 T35 (e Ba) -+ T fi Ky, B, )

18 equal to zero.
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w) if among {T3(fu,kn,Bu), ..., T (fi,k1,B1)} on has the same number
of annihilators and creators, then there exists a constant ¢ such that

(3.1) T5(fuskon Bu) - T (fi, 1, B1)3SY) = o))

PrOOF. — The results above follow directly from (2.2), (2.3), (2.4).

As in [3] we introduce the depth function of a given sequence ¢ € {—1,0,1}".

DEFINITION 8.1. — Forn € N and ¢ = (¢(n),---,&(1)) € {~1,0,1}" we define
the depth function (of the string ¢) d, : {1,....,n} — {0,£1,...,£n} by

j
di(j) =Y e(k)
k=1

— [{elk) : e(k) = 15 k < j}| — [{e(k) : e(k) = —L; k <}

Hence d.(j) gives the relative number of creators (annihilators if negative) in
the product T%(fy,kn,By)---Ty(f1,k1,B1) which are on the right side of

T3, (£ k;, Bj).
DEFINITION 3.2. — {—1,0,1} is defined as the totality of all {-1,0,1}" sa-
tisfying the following conditions:
n
) 3 e(k) = dy(n) = 0;
le=1
1) ¢(1) =1landen) =—1;
i) foralli=1,...,m,d. (1) > 0;

We denote by {—1,0,1}"  the set {—1,0,1}" such that the following con-
dition holds: for any j=1,...,n, if ¢(j) =1 (respectively &(j) = —1) then
&(j+1) #1 (respectively e(j + 1) # —1).

LEMMA 3.2. — For any n € N, and ¢ € {—1,0,1}", the scalar product
(32) (0. T (fskens Bu) -+ Ty (i, Fr. B)og )
can be nonzero only if e € {~1,0,1}] p.

Proor. — The conditions fulfilling Definition 3.2 can be obtained by using the
same arguments developed in the proof of Lemma 3.2 in [3]. In order to prove that

(3.2) does not vanish only if & € {—1,0,1} 5, we firstly observe that if ¢(2) = 1,
then by definition of the creation operator on (R2)®N
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(08 T35 s, Ba) - T (fo k)T, (i, )0, )
(33)

= (0. T (fuskeu Bu) - T (for k)O3 () = 0

Now we suppose that for all h <j —1,if ¢(h) = 1, then ¢(k + 1) # 1 and prove it
for h =j. If &(j + 1) = 1, we have to compute

(08 T (fus ko B) -+ TR (Fra Ky ) T (. K) -+ T (fos k) T (i )oY

After the reduction given by (2.4), on the right side of T'y (f;, k;) one finds only a
sequence of creators and annihilators. Furthermore, from our hypothesis, the
number of creators and annihilators, must be equal. So, from (3.1) it follows that
there exists a constant ¢ such that the quantity above becomes equal to

(o TG ok Bu) -+ T (e ) T (£ )

thus giving zero as in (3.3). 0

As a consequence of Lemma 3.1, the scalar product (3.2) is non zero only if the
number of creation and annihilation operators is the same. Hence hereinafter, if
m is the cardinality of the operators in (3.2), then m = 2n + 7, where n is the
cardinality of creators (equivalently annihilators) and j the cardinality of pre-
servation operators. Furthermore we denote V :={i =1,...,m :&(?) = 0} (so
|V| =j, where as usual |-| is the cardinality of the set), put V =: {i1,...4;} and
{h1,.. o} = {1,... . m}N\{ir,...%}.

The following result states that any scalar product of the form

<5((1)N)7 Ti?(fmakm;Bm) e Tj\ll(fla klaBl)éé}N)>

can be reduced to a product of factors, each of them formed by a scalar product
containing exactly one annihilator and its following creator, in other words the
Boolean condition of independence is here satisfied.

LeEmMA 3.3. — For any m € N, for any ¢ € {—1,0, I}T’B,for any fi,. .. fm €
£([0,1]), 1 < ki < ... <ky <N and By,...,B, € B(L*([0,1],dx))

5 (o) 1% (fFos Bu) -+ T4 (il B3
34

= ﬁ <5(5)N), Ty (fhpﬂ ) kth)TX} (BVhpfhp, khp)éé)N)>

pE2N+1
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where forany p=1,...,2n,p € 2N +1,
Vi = {lrs -y ig €V iy <ir < ... <ig <hy}

(M’LdBVh :ZB@,-HBZ',’[:V,...,?:(I EVh.
P q P

PRrOOF. — In the notations introduced above, let &, := 1, let k; and i; be the
indices relative respectively to the first annihilator and to the first preservation
operator from the right in the left hand side of (3.4). From Lemma 3.2 we have
that the left hand side of (3.4) is equal to

(O TN s o)+ TN (Fis Ko B ) T (s ) A (B, ) -
Ay (By) T (f. k)0 )
Proposition 2.1 implies that the quantity above can be reduced to
(O3 T funsTen) - T (Fus K B T (fis o) - Ty (Bifi )3y )
and, by using repeatedly Lemma 3.2, and Proposition 2.1, we obtain
(08 TN o)+ TN (Frs K BT (s ) A (Bi,)

-y (BT (Bufinhn) o))

- <5((DN)a TN (fon kom) - T;\/;H (fhm’khmvma)
Tn (ﬁ%mkhl)TXZ (Bu e 'BizBil 17k1)5é§N>>

Thus, necessarily [ = 2 and consequently B;, - - - B;,B;, = By, . The scalar product
above can be rewritten as

<55)N)7 T (fs o) - - T§(ﬁ37kh3)5éN>><5éN>, T (fuys bon,) Ty (Bwlﬁ,k1)5((am>

Iterating the same procedure for any p = 3,...,2n, p € 2N + 1, the thesis fol-
lows. O

4. — Boolean Central Limit Theorem.

In this section we present the main result of the paper. From now on
$ := L*([0,1],dx). In order to prove our central limit theorem, as in [3] and [2],
we consider for any ¢ € {—1,0,1}, for any B € B(9), for any 1 <k < N, and
f € £([0,1]) the “normalized family”
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TH(f. k) ife=1

i’}’v(ﬂk,B) —dedy(B) ife=0
Tn(f, k) ife=—1

where {c;} is a bounded sequence in R satisfying

N—oo \/_

For any ¢ € {—1,0,1}, we introduce the centered sum

(4.1) lim — ch =1
-1

Ss(f,B) Z T4 (f,k,B)
and state the following central limit theorem.

THEOREM 4.1. - For any m e N, for any ¢c€{-1,0,1}", for any
fi, - fm € L([0,1]), and By, ...,By € B(D), the limit, for N — oo, of

12) (o095 (funB) - S (i B

is equal to zerowhenevere € {—1,0,1}"\{-1,0,1}" yandife € {-1,0,1} pitis
equal to

(A% (fns Bu) - -- A% (1, B1))

ProoF. — In fact (4.2) can be rewritten as

1

N
N? Z <5E’N)’T§$ (fns Ko, Bn) - - T?\ll(flakl,Bl)éé)N)>

Kodom=1

hence obtaining the first part of the thesis. If ¢ € {-1,0,1}’ 5, then, from Lemma
3.3, this quantity is equal to

()]

1 2n N

o LT S0 (00 (S ) T (B i, ) )

=1

p=1 "k
peang1 P

where m = 2n + j and, as defined above, 2n and j are respectively the cardinality
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of annihilator-creators and preservation operators. By definition of discrete an-
nihilations, creation and preservation operators, we obtain

1 j N 2n khl, kh,,,
ZVqu kiqzlck’” | NH th( ) V'f’ﬁﬁl'](N)
1 42 N kh kh
I3 e ()

(&) |- s

1 N T khgn,l kh/Zn—l
N Z f}Lgﬂ T BV}'Z'n—l fh«Zn—l N

kth—l =1

Taking the limit for N — oo, the first factor converges to 1, thanks to (4.1), while,
for the remaining others, we recognize in each of them, a Riemann-Lebesgue
sum. Hence we have

2n

( 11| [ 7. @By, f, <x>dw> [T (B, i),

p=1
PpeE2N+1

p=1
pe2N+1

By definition of annihilation, creation and preservation operators, the quantity
above is equal to

ﬁ <A(fhp+1)A(BVhp)A+(fhp)> _ 12‘1 <A(fhpﬂ)A* (thpﬁz,,)>

By applying the Boolean counterpart of Lemma 3.3, we finally obtain

<A8'" (fm>Bm) AT (thl)) O
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