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Scattering Matrix for the Reflection-Transmission
Problem in a Viscoelastic Medium.

ALESSIA BERTI

Sunto. - In questo articolo si studia un problema di riflessione e trasmissione per onde di
tipo armonico nel tempo, che si propagano in un solido viscoelastico, anisotropo,
stratificato. Si assume che il mezzo occupi l'intero spazio e che le onde siano inviate
dall’alto o dal basso con incidenza obliqua. La matrice di scattering e definita gene-
ralizzando la costruzione sequita nel caso scalare, cioe quando il solido ¢ isotropo e
Uincidenza delle onde é normale. Si discutono Uesistenza, l'unicita e alcune proprietd
della matrice di scattering.

Summary. -- The reflection-transmission problem of time-harmonic waves in a viscoe-
lastic, anisotropic and stratified solid is examined. The medium is supposed to oc-
cupy the whole space. The waves are sent either from upwards or downwards with
oblique incidence. The scattering matrix is defined by generalizing the procedure
Sollowed in the scalar case, namely, when the solid is isotropic and the wave incidence
1s normal. Existence, uniqueness and properties of the scattering matrix are dis-
cussed.

1. — Introduction.

The aim of this paper is to analyze the reflection-transmission problem of
time-harmonic waves in a solid occupying the whole space R?. The solid is sup-
posed to be linear, viscoelastic, anisotropic and stratified along the direction of a
suitably chosen z-axis. Furthermore, we assume that the medium behaves
asymptotically like a homogeneous solid, namely the material parameters tend to
constant values as z — + oo. The material parameters are allowed to present
jump discontinuities at planes orthogonal to the z-axis. In this case the continuity
of the displacement and of the traction vectors at planes of discontinuity is re-
quired.

Owing to the stratification, time harmonic waves coming from infinity pro-
duce reflected and transmitted waves. The oblique direction of the signal and the
anisotropy of the medium make the reflection-transmission problem six di-
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mensional. Indeed, the wave propagation is governed by a system of six complex
valued first order differential equations for the traction-displacement vector. A
system with this form has been introduced by Stroh [13] to study wave propa-
gation in elastic media. It has been adopted by many authors (see e.g. [6], [10]) to
investigate surface waves. Here, following [3], the Stroh formalism is used in
order to obtain a theorem of existence and uniqueness for reflected and trans-
mitted waves.

The system governing the wave propagation decouples into three systems
of two first order differential equations, provided that the material is iso-
tropic and the incidence is normal. The scattering problem for the decoupled
systems has been investigated by several authors (see e.g. [1], [5], [9], [11],
[14], [15]). In particular, by means of a suitable transformation of the de-
pendent and independent variables, the problem can be reduced to a linear
Schrodinger equation ([1]). It has been proved that this equation admits two
independent solutions, called Jost solutions, in term of which the reflection
and transmission coefficients and hence the scattering matrix, are defined
(191, [11D).

The main purpose of this paper is to generalize this procedure to the six di-
mensional case. The first step is to introduce six independent solutions related to
the Jost solutions of the Schriodinger equation. The scattering matrix is then
defined and existence and uniqueness are discussed.

In order to introduce the reflection and transmission matrices, we need a
definition of incoming and outgoing waves. This is achieved in Section 3 looking
at the sign of the energy flux F. Specifically we extend the method followed in
[2], where the reflection-transmission problem between two viscoelastic aniso-
tropic half-spaces is investigated. The energy flux F is represented as a
Hermitian quadratic form associated to a matrix @ (or @) defined by means of
the solutions with a particular behaviour as z — + 0o (# — —o0). Such solutions
are related to the Jost solutions.

Under the assumptions that the diagonal blocks of @ and @~ are definite
positive and negative, in Section 4 we prove existence and uniqueness of the
scattering matrix S.

Finally, in the last section, we study the properties of the scattering
matrix. It is well known ([9]) that the scattering matrix S of the Schriodinger
equation is unitary and that the transmission coefficients, recovered for up-
going and down-going waves, are equal. We show that in the six dimensional
case these properties do not hold in general and a relation between the
transmission coefficients is found. More precisely, if suitable conditions on
material parameters hold, we prove the equality between the determinants of
the transmission matrices. This property is satisfied, for instance, by an
isotropic viscoelastic solid.
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2. — Statement of the problem.

Let us consider a viscoelastic or elastic system, occupying the whole space RR3.
By neglecting the body force, the evolution of the solid is governed by the
equation

U
Poe ~
where p is the mass density, U is the displacement vector and 7 is the Cauchy
stress tensor. In particular, 7 satisfies the linear constitutive equation

(2.1) VT,

+o00
(2.2) T, t) = Gox)VU(x,t) + f G(x,s)VU(x,t — s)ds,
0

where G and G’ are fourth order tensors with the following properties ([7])

~/

—~ — o~ o/ o o~
Gogiren = Gojikn = Grogjnk » \(jijkh = ‘(jjikh = (]ijhk'
Notice that G is not required to be symmetric, namely it is not required that
/! o
‘@ijkh, = \(Hkhji )

while the second law of thermodynamics guarantees the symmetry of Gq ([8]).
We denote by e, e,, e, the unit vectors of the axes x,y, z and assume that the
medium is stratified along the z-direction, namely we suppose that the material
parameters p, Go and G’ depend only on the variable z.
In order to examine the behaviour of a wave propagating through the solid,
obliquely with respect to z-direction, we look for a solution of (2.1) in the form

U(x, t) _ u(z)ei(kH x—ot) ,

where k| = ke, + ke, is a real valued vector and w € R is the frequency.
Substitution into (2.2) shows that

7 =GVU,
where the complex valued fourth order tensor G is defined by

+00
Glx,w) = Gox) + f G (x, s)eds .
0

In the case of elastic solids, G’ vanishes, so that G is real.
Let us introduce the traction at the planes z = const, defined as 7e, and the
vector ¢ satisfying

Tez — t(z)ei(kH X—wt) )



524 ALESSIA BERTI
Moreover, we denote by w the displacement-traction vector, i.e.
w = (u, t)T .

We find that the equation (2.1) is equivalent to the linear system of first-order
differential equations in the Stroh form ([13])

(2.3) w =Nw.
Denoting by I the identity matrix and by aGb the matrix whose elements are
laGbly, = Gijma;by

we represent N by the block structure

No (O
Ng Ny

where

(2.4) N; =NT = —i(e.CGe,) (e, Ck),

2.5) N, =(e.Ce;) ",

(2.6) Nz = — pcuzl[ + (k) Gky) — (kHGez)(ezGez)*l(eszH)

and we suppose that e,Ge, is non-singular ([2]).
Notice that if k| = 0 and the solid is isotropic, N assumes the form

" 0 (e,Ce,) ™
o N= (L0, ),

where

11 1
e,Ce,) ! = dia — = .
( : g(ﬂ u 2u+/t>

Then the system (2.3) splits into three systems of first order differential equa-
tions. For instance, the first component of the displacement and of the traction

vectors satisfy
1
tl, = —patu,

Each system leads to a scalar problem which can be analyzed by means of the
techniques developed e.g. in [14] and [15].
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The definition of the scattering matrix depends on the asymptotic beha-
viour of solutions of the system (2.3) and hence on the asymptotic behaviour
of the matrix IN. We assume the existence of the limits of N as z — + oo,
denoted by

lim N =N, lim N =N,

2——00 2—+00
The matrices N™ and N~ are supposed to be simple matrices. Notice that
they are not required to be equal.

Furthermore, we suppose that the medium behaves asymptotically like a
homogeneous solid, namely we suppose that there exist a,b € R satisfying the
conditions

+00 b
f IN = N*|ldz < oo, f||N—N‘Hdz < 400,
a —00
where we denote by || - || any norm in the space of sixth order square matrices.

Let (ia}},p;), (io}, ,p;), k =1, ...,6 be the eigenvalues and the corresponding
independent eigenvectors of N* and N~ respectively. Denote by P* and P~ the
matrices whose columns are pf,...,p{ and p7,....pg, ie.

ID+ - [pIL>aP8L]> P = [I’f;J’g]
We choose P and P~ such that
detP™ =detP™ =1.

No additional condition is required to determine P* and P~ univocally.
Under these assumptions ([4]), there exist two sets of six solutions
{o7,...,0d}, {o7...., 05} of the system (2.3) with asymptotic behaviours

;~t
2.8 lim ¢fe % =p;
( ) Z—>+00q)k pk ’
lim ¢, e % =p;
Z——00 wk pk ’

..........

.....

(2.3), i.e. any solution w of (2.3) can be written in the form
6 6
w=) cio =) ¢,
a=1 a=1

with suitable coefficients ¢, ¢ € C,a =1, ...,6.

a’ra

..........

definition of the reflection and transmission matrices.
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3. — Energy flux.

In order to represent the reflected and transmitted waves, we need a rule to
distinguish the waves propagating in the increasing and decreasing z-direction.
To this aim, we associate to every solution w of the system (2.3) the corre-
sponding energy flux across a plane z =const, defined as

Fw)z)=—1 %(u* t—u-t") = (u*,t*)J(u,t)T — wiw ,

where J is the matrix defined by

,J_iw()l
R ()

and the symbols * and T denote the conjugate and the conjugate transpose re-
spectively.

It has been proved in [3] that the energy flux F is non-increasing if the solid is
viscoelastic and that it is constant if the solid is elastic. This property is crucial to
prove existence and uniqueness of the scattering matrix.

We say that a wave w is asymptotically up-going [down-going] when z — + oo
if there exists Z,) > 0 such that

Fw)z) >0, [Fw)(z) < 0] \C A

Of course, up-going [down-going] waves propagate in the direction of increasing
[decreasing] z. Moreover, these definitions are generalized straightforwardly to
the case when z — —oo. 6
Notice that, by letting w = Z ckey, we have
k=1

6
Faw) =) cien(o) gy .
hk=1

We denote by ¢" the 6 x 6 matrix whose columns are the functions ol 08,
ie.

¢ = (0], 08)
and we define

ot = (¢Hlgr.

Since ¢ is non-singular, the matrices @* and J are congruent and hence they
have the same number of positive, negative and zero eigenvalues ([12]). In par-
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ticular, since the eigenvalues of J are

) »
123 = 1 laj56 = R

&* has three positive and three negative eigenvalues.

This property is not sufficient to guarantee that a linear combination of up-
going [down-going] waves is an up-going [down-going] wave. Therefore, further
conditions on the matrix &* are required.

For convenience, we represent @ in the form

AR
ot o)

We assume that there exists Z* > 0 such that @, and @, are positive and ne-
gative definite, respectively, for all z > Z™.
Under these assumptions, if

3 6

_ + _ +

w=as. o w->ap
k=1 k=4

we obtain

3 6
Fw)2) = Z c,’;ch@;kh(z) >0, or Fw)z)= Z cren®, 1, (2) <0,
hh=1 hJ—4

for all z> Z* and for every triplet (ci,ce,c3) € 3 \ {(0,0,0)}. In particular,
91,03, 95 are up-going waves while ¢, 91, i are down-going waves. In addi-
tion, if qﬁ;(z) and qﬁj (2) are positive and negative definite for all z > Z*, then
Zj = Z* for every wave w, up-going or down-going when z — + oc.

By the same procedure, we define the matrix @~ as

o D
o =@Hlig = ( - )
A
and we assume that @, and @, are definitively positive and negative definite.
Hence, o7, 05,05 and ¢y, 95, ¢; represent waves propagating respectively up-
ward and downward.

4. — Scattering matrix.
This section is devoted to the definition of the scattering matrix. Firstly, we

introduce the reflection and transmission matrices, as a consequence of the
following result.
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n’

negative definite definitively. Then {9} , 0. 3} k=123 1S @ basts for the solutions of
the system (2.3).

THEOREM 4.1. — Suppose that (D; , @, and &, @, are positive definite and

PRrOOF. — To prove the independence of ¢, ..., p5, we consider the sum
19y + c2py + C303 + capy + C505 + copg =0

and we define

3 6
v= ch,‘f = —ch(p,;.
k=1 =4

The assumptions on the matrices @ and @~ provide the inequalities
F)(z) >0, Ve>7",
F)(z) <0, Va< —Z.
Since F is non-increasing, we deduce that
0<FZH<F(-Z)<0
which implies
=0, Vk=1,..,6

and hence the independence of ¢, 05,05, 0, , 05, 0. O

The independence of {¢p;, ¢, 3};_125 guarantees that there exist unique
coefficients R, and T, satisfying the relations

3 3
(4.1) S oi T =0n + > 0rsRi h=1,23.
k=1 k=1

The assumptions on the energy flux ensure that the left hand side of (4.1) re-
presents a wave propagating in the positive z-direction when z — + oo, whereas
the two terms of the right hand side can be identified respectively with up-going
and down-going waves when z — — oo. Therefore, if we identify ¢, ,h =1,2,3,
with the generators of the up-going incident waves, then we can interpret T},
and R, respectively, as the corresponding transmission and the reflection
coefficients.

By a similar procedure, we show existence and uniqueness of the coefficients
s Ry, verifying the relations

3 3
(42) > s T = Ois + D0 R, h=1,23.
=1 =1
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The matrices T and R* are called transmission and reflection matrices.

We observe that the basis of the Theorem 4.1 is related to the Jost solutions of
the scalar Schrodinger equation.

Next we introduce the vectors wy, ..., wg defined by

3 3
_ +rt _ — e B
wh*Z% Ly » wh+3*2¢k+3 Kh» h=1,23.
k=1 k=1

In view of (4.1) and (4.2), they can be written in the form

T™ RT B B 1 0
(4.3) (w1,~~7we)=(¢f,.-~,¢6+)< 0 I >=(¢1,~~,¢6)<R T)’

Moreover, we define the scattering matrix S defined by

T R™
S= .
RY T~

The reflection-transmission problem consists in finding w;,...,wg or the
scattering matrix S from (2.3) and (4.3).
In view of the previous results, we have proved the following theorem.

THEOREM 4.2 (Existence and uniqueness). — If @; and @, are definitively
positive definite and ;) and D, are definitively negative definite, there exists a
unique scattering matrix for the reflection-transmaission problem.

It is worth noting that the uniqueness of the scattering matrix depends on the
choice of the bases ¢1,...,¢5 and o7, ..., ;.

5. — Properties of the scattering matrix.

In this section, we examine some properties of the scattering matrix. It is well
known from the analysis of the scalar Schrodinger equation, that the transmis-
sion coefficients 7" and 7~ are non-zero ([5]). This condition is generalized by
the following result.

THEOREM 5.1. — The matrices T and T~ are non-singular.

PROOF. — If detT" = 0, then there exists a non-trivial triplet (a1, as, ag) € C3
such that

3
T g —

§ : o, Lipan =0,

hk=1
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which, in view of the equations (4.1), leads to the equality

3 3
Z 0, ay, + Z 0r3Ryan =0.
h=1 h =1

(Lhzo h=1,2,3,

which is a contradiction.
By repeating the same arguments, one can prove that T~ is non-singular. [

The scattering matrix S for the scalar Schrodinger equation is unitary and the
relations 7" (w) = T~ (), (TH)" (@) = T™(— w), (R*)"(w) = R*(— w) hold, ([9]).
In the general case these properties cannot be extended to the scattering problem
for viscoelastic solids and we are only able to prove the following weaker result.

THEOREM 5.2. — Let (w1, ..., wg) be the solution of the system w' = Nw defined
by (4.3). If the condition

d
(54) @det(wl,...,wg) =0

1s satisfied, then
(5.5) det T" =detT™.

Moreover, the equalities

6 6
> o =0, > o =0
k=1 I=1

provide a necessary condition for (5.4). Conversely, if the trace of the matrix Ny
defined by (2.4) vanishes, then (5.4) holds.

PROOF. - The system (4.3) yields the relations
(5.6) det (wy, ..., we) = det (g7, ..., ¢ )det T* = det (7, ..., p5 )det T~ .

By differentiating (5.6) with respect to z, in view of the condition (5.4) and of the
Theorem 5.1, we find that

d. . d. .,

Thus det$” and deté ™ are constant.
On the other hand, from the Binet formula, we obtain

e . iy ofz
det¢" = det (e 1%, ..., pfe %) e 2 ,
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so that, by letting 2 — 4+ oo and keeping the asymptotic conditions (2.8) into
account, we deduce

6
> ai =0, det¢” =det P =1.
k=1

The same argument leads to
6
> op =0, det¢™ =detP™ =1.
k=1

By substituting in (5.6), we prove (5.5).

.....

Civita’s symbol, we have

6

det (wl, ceny w6) = Z njlv"',jﬁwjll...sz(g .
JtsnsJe=1
By differentiating with respect to z, we obtain
d 6
@det (w1, ..., we] = L '7.71,~-~,.7'6(w]/'117/0j22"'w%6 +. Tt w711"'w755w]{66) :

J1yeeJ6=1

Since wy, ..., wg are solutions of (2.3), in view of the symmetry properties (2.4)-
(2.6), we obtain the relation

d oy <
ﬁdet (wl, ceey wg) = 2(1:12\\1) ' i]jlw.rjﬁwj'll...w]'ﬁg s

JiyenJ6=1

where trlN; denote the trace of Nj. Therefore the Wronskian of wy, ..., wg is
independent of z. O

The following example shows that in general [ # T~ and that S is not
unitary. Consider two viscoelastic, homogeneous and isotropic half-spaces in
welded contact at the plane z = 0. Restrict attention to waves that hit normally
the plane z = 0, i.e. k\l = 0. In this case, the matrix )N assumes the form (2.7),
where the density p and the Lame coefficients /2, u are given by

pt z2>0 . T 2>0
p)=1q" _ M) =19 _
p 2 <0 A 2 <0
+ z2>0
e ={ "
u z2<0

Denote by io; and io7 the eigenvalues of P*. By straightforward calculations
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one finds the representations

T = Cidiag<p 2oL ki 2o )
“of +pto; p oy +ptop poq +ptog)’

R* = diag(’ﬁ“f —proj, prog —piop prog — piai)
p-ay +ptoy’ pmap +ptop’ pmop +ptogp)’

where {~ and ' are given by

_af ety

_ _ ay (o) ()
ap (o)

o (@ ()

- -
Therefore, T+ # T~ and SST £ 1.

Notice that (5.5) holds since the trace of \N; vanishes.

The same condition is also satisfied when we consider waves such that k; # 0
(oblique incidence) in an isotropic solid. Indeed, in this case it is easily verified
that the diagonal elements of the matrix Ny vanish.
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