BOLLETTINO
UNIONE MATEMATICA ITALIANA

MOURAD SFAXI, ALI SILI

Correctors for Parabolic Equations in a
Heterogeneous Fibered Medium

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 10-B
(2007), n.3, p. 1025-1053.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_1025_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per
motivi di ricerca e studio. Non é consentito 1’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=BUMI_2007_8_10B_3_1025_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2007.



Bollettino U. M. 1.
(8) 10-B (2007), 1025-1053

Correctors for Parabolic Equations
in a Heterogeneous Fibered Medium.

MOURAD SFAXI - ALI SILI

Sunto. — Studiamo un problema di correttori nell’ambito dell’omogeneizzazione di
equaziont lineari paraboliche in un mezzo eterogeneo Q formato da due materiali. Il
primo materiale ¢ localizzato in un insteme F, di fibre cilindviche parallele, perio-
dicamente distribuite con un periodo di taglia ¢ il secondo materiale é localizzato
nella “matrice” M, = Q — F,. Il rapporto tra 1 coefficienti di conduttivita dei due
materiali é dell’'ovdine di 1/

Dopo aver scritto il problema omogeneizzato, diamo un risultato di correttore e
proviamo che la soluzione u, del problema iniziale é della forma w, = 0, + u,, dove U,
€ un corvettore per u, e U, e uno strato limite nel tempo. Contrariamente ai risultati
noti per le equazioni paraboliche, tale strato limite non ¢ concentrato vicino all’ori-
gine t =0, ma perdura almeno per ogni t € (0,m) per un certo m > 0. La dimo-
strazione di tale risultato ¢ basata sul fatto che u, non converge, in generale, nella
topologia forte di L>(Q x (0, T)).

Summary. — We study the problem of correctors in the framework of the homogenization
of linear parabolic equations posed in a heterogeneous medium Q made of two ma-
terials.

The first one is located in a set F, of cylindrical parallel fibers periodically dis-
tributed with a period of size ¢ and the second one is located n the “matrix”
M, = Q — F.,. The ratio between the conductivity coefficients of the two materials is of
order 1/&.

After writing the homogenized problem, we give a corrector result and prove that
the solution u, of the starting problem is of the form w. = u. + ., where u. is a cor-
rector for u, and 1, is a time boundary layer. In contrast to the known results for
parabolic equations, this boundary layer is not concentrated about the time origin
t = 0, but it remains at least for all t € (0, m) with some m > 0. The proof of the latter
is based on the fact that 4, does not converge, in general, in L*(Q x (0,T)) for the
strong topology.

1. — The problem in the heterogeneous medium.

This paper is devoted to the study of homogenization and of problem of
correctors for the two following initial boundary value problems:
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ou,

P 8—1; —divC,(@)Vu, = f(x,t) in Qx(0,7),
1.1 . = 0 on I'x(0,7),
C.@)Vu,.m = 0 on (0Q-1I)x(0,T),
u(x,0) = wui(x) in Q,

where p, = 1orp, = yp + & 2y, and where 7 is the outer normal to the boundary
02 of the cube Q. We assume that Q is the reference configuration of a het-
erogeneous medium made up from two materials. The first one lying in a set F’, of
parallel cylindrical fibers, is assumed to have a conductivity coefficient of order 1,
while the second material occupies the region M, = Q — F, and its conductivity
coefficient is of order 2, see Figure 1.

In the case p, =1, we prove that the homogenized problem consists on a
parabolic system which couples the temperature v through the fibers and the
temperature « outside them. The diffusion, in this case, is instationary along the
fibers as well as outside them since the parabolic part of the limiting operator has
the form Ou /ot + dv/ot.

In the case p, = . + &y, the homogenized problem which involves once
again the two temperatures v and u loses the parabolic part ou/ot, because “the
limit” of 82;(% is equal to zero. Hence, in the case p, = yp + SZXMS, we obtain at
the limit a parabolic equation for the diffusion inside the fibers together with a
stationary equation outside the fibers in which the time ¢ plays the role of a
parameter.

The case p, = yp, + azng is very close to the elliptic setting addressed in [9].
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Fig. 1. — The domain €, the cell Y and the fiber F!
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In particular, one can emphasize as in [9] the nonlocal nature of the homogenized
problem through another formula which gives the temperature v and the average
z of the temperature outside the fibers, see Theorem 1.2 below.

The key feature of this work is the study of the effect of the initial data on the
asymptotic behaviour of the solution u, of problem (1.1) as ¢ goes to zero, or the
so-called problem of correctors, see [2], [3] and [4].

In the classical setting where the matrix C, is uniformly bounded (with re-
spect to ¢) from below and from above, such problem for the heat and the wave
equations was considered in [3], in the framework of the nonperiodic homo-
genization. The main tool used in the latter is the H-convergence method due to
Murat and Tartar, see [6] and [11].

As far as the parabolic equation is concerned, it was shown in [3] that the
solution u, of the starting problem may be decomposed as a sum u, = u, + .,
where 1, is a corrector for u,, in the sense that the two sequences E; and E, of
energies associated respectively to u, and u, converge to the same limit.

In the case of a sequence u{, of initial data converging weakly but not strongly
in L?(Q), it was proved in [3] that the term %, represents a time boundary layer
which is concentrated near the time origin ¢ = 0. This means in particular that 7,
converges weakly to zero in L?(0,T; H'(Q)), but such convergence becomes
strong in L2(6, T; H\(Q)) for all 6,0 < 6 < T.

In contrast to the previous result, we prove here that if one assume merely
the weak convergence in L*(Q2) of the sequence u, then the time boundary layer
U, associated to the solution u, of (1.1) remains at least until a time ¢ = m, with
some m satisfying 0 <m < T. This result holds in both cases p, =1 and
P: = Ar, + Exu,-

Let us point out that if one takes p, = x4 + &xo_4, Where A is a fixed sub-
domain of ©, then the boundary layer is concentrated at ¢ = 0, as shown in [7].
Hence the propagation of the perturbation we observe here with p, = x5 + &y,
clearly comes from the homogenization process.

Before stating our results, let us make more precise our notations and hy-

2
—%,% and let Q = C x —é,é) =CxI

be the corresponding cube of R?. The union of the upper and lower faces of Q is
denoted by I". Let F', be a set of pzarallel fibers periodically distributed in 2 with a
11
5% and let D = D(0,r) be the disc of radius 7,
0<r< %, contained in Y. Finally, we set M, = Q — F, for the matrix sur-
rounding the fibers F,, see Figure 1.
Troughout this paper, we denote a generic point x of R3 by « = (&', x3), with

potheses. Let C be the square C =

period &Y where Y =

«/ = (x1,2). Similarly, we denote a vector-field g in R® by ¢ = < g ), with
3
g1

r_
g_(gz
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We use the notation V; to express the gradient with respect to the variable
y = (Y1,y2). The characteristic function of a Borel set A will be denoted by y4.
We assume that C is a partition of squares C of size ¢, each of them containing

) . 1
the disc D! of center x! = &(21,%2) and of radius re, with 0 < r < >
The cell Y is defined by Y! = C! x I, in such a way that

1.2) Q=JY!, where I,={i=(iiz)e”? C,ccC}

i€l,

The fiber Fﬁ, the set F', of all fibers and the matrix M, surrounding them are
defined by

(1.3) Fi=DixI, F,=|JF, M, =Q-F,

i€l

We assume that the matrix C, arising in (1.1) is defined by

/

x
&

1.4) Cix)=A (m "%) 1r, (@) + B (m ) Av,, a.ex €Q,

where A(x, y) and B(x, y) are two positive definite symmetric matrices defined on
Q x Y, Y-periodic in y with coefficients in L>(Q x Y), i.e., there exist two po-
sitive constants 0 < ¢ < y, such that

15) o

3
=1

3
A, )& <y Zf?, VEe R ae. (,y) e 2x Y,

1=1

&<y

1

3
:1_]

3
-1
Furthermore, A and B are assumed to be admissible test functions in the sense of

/
the two-scale convergence (see [1]): this means that the coefficients A; (ac,£>
are measurable and satisfy ¢

/
Aii (90 y 96_)
) &
Q

We also need to introduce the following spaces

1.7 V={uecH®),u=0 on I},

1.6) lim
e—0

2
d = f f Ay, ) daedy.
QY

where H'(Q) is the usual Sobolev space,

1.8) Hi#(yfo)(y) = {u € Hi (R?), uis Y-periodic, supp wy C Y—-D },

1.9) H' (D) = {ueHl(D),fudyzo},
D
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(1.10) HY(ID) = {u € H\(I), u(— %) = u(%) =0 }
we L2(2x 0,1 Hyy (1) NC(10, THLH@ x V),
am w=g, 2 ,
8—6L (0, T; L@ x Y))
(1.12) = I2(@x (0,7 Hyy_ D)(Y)),

(113) V= { v e L*(C x 0, 7); HyD)) N C([0, T]; LZ(Q)) — e L*(0,T; LZ(Q))}

(1.14) W =L*(Q x0,1);H,,D)).
We also assume
(1.15) feH (0,T;L4Q), if p,=xp + .,
but only
(1.15) feLl?(0,T;L4Q), ifp,=1,
and

ui € H'(Q) Ve,

f|uf)\2 dx <,
Q

(1.16)
J{ivuiPar, + 21906, } de < c.
Q

there exists uy € L(Q x Y) such that uf —— uo(x,y),

where the symbol “——" stands for the two-scale convergence of the sequence uj
to uyp.

REMARK 1.1. — Hypotheses (1.15) and (1.16) are not optimal since other
weaker hypotheses are possible in order to get existence and uniqueness of the
solution u, of problem (1.18) below in a larger class.

However, we assume (1.15) and (1.16) in order to get solutions u, with
uniformly (with respect to &) bounded derivatives in time in the space
L%(0,T;L*(©2)) (see inequality (4.11) in the Appendix). Note also (see the

Appendix) that the hypothesis g_f el? (0,T; LZ(Q)) is useful only in the case

Py =xp, + -
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An example of a sequence satisfying (1.16) can be obtained for instance by
considering the solution « of the elliptic problem:

—divC,(x)Vu; = g in Q,
uy = 0 on 09,
where ¢ is a given function of L?(Q) and the matrix C, is defined in (1.4).

From the results obtained in [9], it is clear that the sequence uy satisfies (1.16).
Furthermore, it was shown in [9], that

wy —— o, y) + vo(a),
(xr, + & T, UG —— xp@) vo®),

where
up € LF(@Hyy_p(¥)) and v € L(C; HYD).

One can easily verify that the sequences uf and (yF + &y Mﬁ)uf, cannot strongly
converge in L(Q).

To describe respectively the average of the temperature in the fibers and the
effect of the anisotropy of the fibers, we introduce the following sequences:

Vo = —3 WilF,»

117
W, = e _ f Y g
¢ e |Dl|
161

Let T > 0 be a given positive number and consider the following variational
formulation of problems (1.1).

ou,
ot

u, € L*0,T;V)NC([0, T, LAQ)), p,

f Lo

L1’ {4 f f (( )Vug/p(ac)+828<x —)Vué)(M(x))Vqﬁ(x t) davdlt

€ LX(0, T; L*(Q)),

T
= [ [rwng ndeds, véeL20.1:V),
0 Q

u(x,0) = uj(x) in Q.

Under hypotheses (1.15) and (1.16), the proof of the existence and the uniqueness of
the solution u, of (1.18) is given at the end of the paper, in the Appendix, see also [5].
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The homogenized problems.

Our result concerning the homogenized problems may be stated as follows.

THEOREM 1.1. — Let u, be the sequence of solutions of (1.18). Then:
1) If p(x') = 1, there exists

(1.19)

such that:

(1.20)
(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(uav7w)€ul XVXW7

uy —— u(x,y,t) + v, i),

Up — 2 1= f w(@,y, ) dy +v(@,t) weakly in L*(0,T,L*Q)),

Y-D
v, — v weakly in L*(0,T; L*(C; Hy1)),

V;/w
Vgp, == W) ov |
8963

Vi, u
eVuyy, —— xv-n@¥) 0

ou,
ot

o ov

Furthermore, (u,v,w) is the unique solution of the homogenized problem:

(1.26)

(uvw)eulexW,

f j f ( @y, + ”(x,t)) (. t) + B, 1)) daodydt

Viw\ [V
* f [[wwawy| o ( n )dwdydt

0 QY o3 i3
‘*‘fff/((y ) #®B(x, y)< )(()vyu) dxdydt
0 QY

fT [ [ vyt +v,0) dedyat,
0

Qv
Y(u,v,w) € Uy X V X W,

1
e,y 0) = uo,y) = — [wota, )y,
D

1
0,0 = 5 [uotey)dy.
D
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w) If p, (@) = yp (@) + ezst(ac’ ), there exists
1.27) (uw,v,w) €Us x V x W,

such that convergences (1.20)-(1.24) remain true, while convergence (1.25) must
be replaced by

P
(1.28) P, % —— xp(y) (x £).

Furthermore, (u,v,w) is the unique solution of the problem:

(U, v,w) EUs X V x W,

T
2 f f %(w,t)@(x,t)dxdt
0 Q

T Vv, w v, w
+ f f f WA@Y | v || ov | dwdydt
0QY 8_903 8—903
T
V/ V/
(1.29) + f f f Xv-p) B, y)( ) ( )dacdydt
T

=[]/ f Fla, )@,y 1) + DG, 1) dadyd,
0 QY
, 0,

W) € Us x V X W,

1
0,0 = — [uoGe,pdy.
D

In the case p, = yzp, + &1y, the equation wearing on « in (1.29) may be se-
parated from the equation on » in such a way that the homogenized problem
takes the following form:

THEOREM 1.2. — The solution (u, v, w) of problem (1.29) satisfies the following
equality:

(130) u(x7y7t) :f(mv t)ﬂ(x;y7t)7
ov .
(1.31) w(e,y,t) = a—%(w,t)w(w,y,t%

where 4 and W are the solutions of the problems:
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@€ L™(Qx 0,T); Hyy_p(Y)),

>y t /
(1.32) i {B(m,y)(v?’u(g’y’ ))] yutpdy = [ at)dy,

Y°D Y-D
Vi e H;&(YfD)(Y), ae (@,1H)ecQx071D),

e L>*(Qx (0,T);HL (D)),

Vit O\
(133 [ e (YD) | jpuay o
D

Vwe HL (D), ae (x,t)eQx0,7).

Defining m(x,t) and Ay(x,t) as:

(1.34) m,f) = —
u,y,t) dy
Y-D
(1.35) Ao, t) = f { A(x,y)<v§/w(f’y’t)>} a.
D 3

the homogenized problem (1.29) may be written as:

m@, 1) (+,8) — v, ) =fl,t) in Q@ x0,7),

T T
ov ov ov
72 = D A = =
T Qf o (x,t) D, t) doedt + Of Qf o, t) P (x,t) - (x, 1) doedt

(1.36) r
= [ [ 1@ va tydudt, v e L2(0,7;L3(C; HYD)),
0 Q

where z is defined by (1.21).

The proof of (1.36) is very close to the one given in [9] in the elliptic setting. It
will not be reproduced here.

The corrector results.

We now state our corrector results. For this purpose, we introduce the fol-
lowing equations.
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We define %, and %, as the solutions of

ou

(1.37)

— div C(x) Vit

U

C.(x)Vu,.n
(e, 0)

o, .. .
P, v div Cg(ac)V@ALg
(1.38) U
Cy(x)Viu,.n

g, 0)

where a, is defined as follows:

/

0
0

fla,t)
0

0
a,(x)

on
on
in

uy (@) — a,(r)

a,(x) = uo(oc,%) if p,=1,

(1.39)

Then, we have the following proposition.

2 x(0,7),
I'x(0,7),
092 —1)x(0,7),

Q,

in
on
on
in

Qx0,7),
I x0,T),

0Q — I x (0,7),
Q,

1 .
(%) = g fuo(x,y) dy if p,=xp + eZXMﬁ.
D

PROPOSITION 1.1. - If a, satisfies the hypothesis (1.16), then we have:

(1.40)

Indeed, assuming the uniform estimate arising in (1.16) on a,, %, and i, be-
long to the same class (defined in (1.18)) as u,. Hence uniqueness of u, leads to

identity (1.40).

Remark that if one choose u{, to be the sequence given after Remark 1.1, then
one can verify that the sequence a, defined by (1.39) satisfies hypothesis (1.16) at
least when some regularity is assumed on %y and vy.

From now on, we assume that (1.16) is satisfied by a..

THEOREM 1.3. — Assume that the limit (u,v,w) and ug satisfy the following

regularity hypotheses:

Uy = Uy + Ug.

we L2(2 % (0,7); C(Y)), Viu, Viw e (LE(Q x (0,T) Cy(1)))%,

B Y [ RGNt
0 QY
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Then the following convergence holds true:

/

T Vyw z T -
(1.42) lim f f Vii, — ( o ) deedt + f f |eva6—( 6/u>|2dxdt -0
0 F, O 0 M,

8903

Convergence (1.42) means that the oscillations of the sequences Vi .y and
eV, are all contained in their respective two-scale limits which are the same
as those of Vau,yp and eVuy,, .

REMARK 1.2. — If one assume regularity hypotheses (1.41), then we have the
following convergences as a consequence of (1.42):

if p, =1, then

(e, t) — u (x,%,t) —v(x, t) =0.

lim
&0 L2(@x(0,7)

prs = XFX + SZXM,:’ then

i, t) — Var2 v, t)

lim ‘ —
e—0 L2(Qx(0,T))

Indeed, in the case p, = 1, multiplying equation (1.37) by %, and integrating
over (0,%) x Q, we obtain

% f i, P de = f f ity daeds — f f A(x,%)%s.vam daeds
Q 0 0 Q

Q

¢ /
U 1
—ffszB(ac,ﬁ)Vug.Vu&.)(Mdmds+ff|ag\2 dux.
0Q ¢ 6 2 Q

Once again, we integrate over (0,T) to get

% fT f i, devdlt = fT ft f [, dwdsdt — fT f f A(x,%/)ws.vmm dadsdt
0@ 00Q 000

T ¢ ,
R T
- f f f 2B, )Vit, Vil dedsdt +5 f P dee.
00¢Q ¢ 2
Note that, due to hypothesis (1.6) and strong convergence (1.42), the functions
/ /
A <ac, % Vit and B (90, %) eV, are admissible in the sense of the two-scale

convergence (see [1]). Then, passing to the limit with respect to ¢ and taking into
account the equality arising in (1.41), we get:
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T T ¢
%ff|%(ac,t)|zdxdt = ff ff(x,t)(u(ac,y,t)—i—v(x,t))docdydsdt
0 Q

0 0 oxY
T Vv, w Vv, w

- f f f v | A,y) | Ov | dedydsdt
0 0 oxy \ Oxg 0x3

_ OfT bf Qf <Vg“> .B(ac,y)(vgu> dxdydsdt

T 2
+§ f luo(ee, y)|” dedy.

QxY

Now, taking (u,v,w) = Zo.nw,v,w) as test function in (1.26) and integrating by
parts, we obtain

T T
12% !{[mg(oc, ol dmdt—bf lue, y,t) + v(e, t)|? dadydt.

QxY

which is the desired result.

In the case p, = yp, + & Zm,» @ similar proof can be performed by the use of
equation (1.29).

As far as i, is concerned, we establish the following theorem:

THEOREM 1.4. — Ifone replaces all the limits by zero, then convergences (1.20)-

(1.25) and (1.28) take place in the sense of the weak topology of L*(Q x (0, T)).
These convergences are strong in L?(Q x (0, T)) if and only if,

(1.43) VP, (ug —a,) — 0 strongly in L2(Q).

If convergence (1.43) fails, then

t
lim sup f f p, i, )2 deds > 0, Vte0,T),
£ 0o

(1.44) and there exists m, 0 <m < T such that

b
limsupffpg i, (2, 8)[* daeds > 0, Va,b:0<a<b<m.
& e

REMARK 1.3. — One can easily verify that, without extra assumption on the
regularity of the matrix C,, the sequence defined in Remark 1.1 does not satisfy
(1.43) in the both cases p, = 1 and p, = xp + &y,
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The first inequality in (1.44) means that there is a subsequence of ¢ such that
the L?-norm of /P: U tends to a strictly positive constant, while the second
inequality in (1.44) shows that the time boundary layer 7, remains at least until
the time ¢t = m.

In the next section, we shall prove Theorem 1.1. Section 3 is devoted to the
proof of Theorem 1.3. and of Theorem 1.4.

2. — PrROOF OF THEOREM 1.1.
Throughout the paper, we denote by c various constants which do not depend
on &.

As usual, we first establish apriori estimates.

LEMMA 2.1. — The sequence u, of solutions of (1.18) and the sequences v,, w;,
defined by (1.17) fulfil the following apriori estimates:

2.1 | %e [|r2@x0.m) < €,
(2.2) | VPs e |=0.1r:122) < €
2.3) 12 | z2exo.maman < ¢
2.4) | e 20 < €
2.5) || Vs, ||(L2<QX(0,T)))3 < g,
(2.6) | eV, H(LZ(QX(OA,T))):; <,
2.7 I vpe % lL2@x0.m) < ¢

Proor orF LEMMA 2.1. — The following inequality

f|Z(oc)|2dac < cf(m + 2| VZ@ P de VZ e H(Q), Z=0 on I'p,
Q Q

was proved in [9], inequality (3.16). The proof is based on the particular geometry
of Q together with the boundary condition satisfied by Z, and it does not depend
on the equation solved by Z.

Hence, taking Z = u,(.,1), t € (0,T), we get:

2.8) f o, D dae < ¢ f Gir. + )| Ve, D dav,
Q Q
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Taking ¢(x, s) = u,(x, 8))((07,5) in equation (1.18) and using the coerciveness of the
matrices A and B, we get

t
1
> f (@) e, D dc + 6 f f Gtr, + &) [V, )2 dacdls
(29) Q 0 Q

¢
< %fpg(x’) |%8(90)|2 dx +fff(9073)us(96,8)dacds.
Q 02

Applying Young’s inequality in the last integral, we get thanks to (1.15°) (which is
of course valid in the case p, = 1), (1.16) and (2.8)

¢
(2.10) ff(/F +82)(M€)|Vu£(x,s)|2 dxds < c.
0Q

Turning back to (2.8), we see that (2.10) implies (2.1) in both cases p,(x') = 1 and
P) = yp, (@) + ().
Estimate (2.2) is a consequence of (2.9), (2.1) and hypotheses (1.15)-(1.16).
Estimate (2.5) and (2.6) follow from (2.10).
To get (2.4), we use the following inequality

e

1€l

2
1
i dex’) e dv < cf82|VZ|2)(F£ dz, V7 e H\Q),

which was also proved in [9] (inequality (3.3)) with the help of Poincaré-
Wirtinguer’s inequality.
ov, 1 ou,
9s Y = 2 oy
the boundary condition %, =0 on I" x (0,T).
Finally, (2.7) is a consequence of the lower semi-continuity of the L?-norm and
estimate (4.11) below. O

Since (x,t) ){Fs(x’), estimate (2.3) follows from (2.10) and

Proor oF THEOREM 1.1. — Since from the point of view of two-scale con-
vergence, the time variable ¢ plays the role of a parameter, the proof of (1.19)-
(1.24) is very close to the corresponding proof given in [9] in the elliptic setting, so
that we only recall the main steps.

From (2.5) and (2.6), we deduce the following estimate:

2.11) e Vate|| 12 ax0my) < €

Using estimate (2.1) and (2.11), one can extract a subsequence (still denoted &)
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and find U(x,y,t) € L*(2 x (0, T);H#(Y)) such that:

(212) Ue —— U(.%',y, t)a
!
2.13) £V, —— (VyU(éc,y,t))

Note that the two-scale convergence & % —— 0 in (2.13) holds true because
3

there is no fast variable in the x3-direction.
On the other hand, we get from (2.3) and (2.4) the existence of
v e L(C x (0,T); Hy(I)) and { € L*(0,T; L*(2 x Y)) such that:

(2.14) v, —v weaklyin L*(C x (0,7); Hy(D)),
(2.15) w, —— ({(x,y,0).

Note that yp and y,,, two-scale converge respectively to y, and yy_p), so that
the use of (2.12) and (2.14) and the fact that

(2.16) Ue)pg, = We — Uelp, = U — o Ve,

give us

@IT) gy — f UG,y dy — m?o(e,t) weakly in  L2(Q x (0, T)).
Y

On the other hand,

2.18) wzy — f UG,y t) 1)) dy = f U, y,t)dy weakly in L2(Qx (0,T)).
Y Y-D

It results from (2.17) and (2.18) that

1

2.19) o) = f U, y,b) dy.
D

Using estimate (2.5) and test function ¢(x,?) w(y) with y € C;°(D) extended by
periodicity to the whole of R?, we show as in [9] that
(2.20) V,Ul,y,t)=0, aein QxDx(0,T),
so that (2.19) leads to
2.21) U,y,t) =v(x,t), ae.in QxDx(0,7).

Since U(x,.,t) € H'(Y) for almost all (x,t) € Q x (0,7), it is easily seen that
equality (2.21) remains true in Q x D x (0, 7).
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Putting
(2.22) w,y,t) = Ue,y,t) —v(e,t) in QxY x(0,7),
we get
2.23) we L2(2x 0,1 Hyy_p V),

and that u obviously satisfies (1.20), (1.21) and (1.24).
Choosing test functions of the form ¢(x,t)w(y) with ¢ € L2(Q x (0, T)) and
w € C*(D), and using estimates (2.4) and (2.5), one obtains as in [9] that

(2.24) V'ugyp, —— Vywx,y,1),

with some w € L?(Q x (0,T); H,(D)), while (2.14) yields

ou, ov . 2
(2.25) zF, D 2 e weakly in  L*(Q x (0, 7)),
so that
ou, ov
2.2 — = — :
(2.26) ZE. G 70Y) . (x,0)

Hence, (2.24) and (2.26) imply (1.23).

In the case p,(&') =1, (1.25) follows immediately from the two-scale con-
vergence (1.20) and estimate (2.7).

In the case p (@) = yF (@) + ezst(ac’), estimate (2.7) and the following two-
scale convergence

(227) Py e —— XD(y) U(mv Y, t) = XD(y) /U(QC, t)a
lead to

ou, ov
(2.28) Pe W XD(?/) E(% t),

which is nothing but (1.28).
To identify the limit problem, we need the following lemma, proved in [9]
(emma 3.2), in the more general setting of nonlinear monotone operators.

LeMMA 2.2. - The following equality holds true

Ve, y, )\
2.29) Df {A(mw( ygf Efc?z) ))} dy=0 ae (@t ecQx0T),

where v and w are those defined in (2.14) and (2.24).

We are now in a position to identify the homogenized problems.
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We choose test functions of the form

/

(2.30) Do, t) = u(m%t) + 0 t) + ew(xx?/t)
where
(@, 8,) € D(@ % (0,1 CEy_py (1)) xD@ x (0,1)) x D(@: CX(D)).

(i being extended by periodicity to the whole of R?) and then we can pass to the
limit in (1.18) with the help of equality (2.29) and hypothesis (1.6). Finally, a
density argument leads to the desired equations valid for all (u, v, ) €
Uy x V x W, (respectively (u, v, w) € Uy x V x W).
We now proceed to find the initial conditions arising in (1.26) and (1.29).
We first remark, see [5], that

2.31) u+v e C([0,T]LAQ x Y)),

because of u +v € H'(0,T; L*(Q2 x Y)) by construction. We have also
(2.32) v e C([0,T]; L*(Q).

Hence, from (2.31) and (2.32), we get

2.33) u € C(10,T]; LAQ x Y)).

Taking ¢(t) y(x,y) € C([0,T]) ® D(2; C;E(Y)), with ¢(T) = 0, as a test function
and integrating by parts, we obtain

T /
f f %@c,t) w(t)w(xﬁ) dadt
(2.34) 0 ‘

~00 [ (=) de
T e ,

- [ [ueoo©u (L) dsat
0 Q

Passing to the limit ¢ — 0 in (2.34), we get by the use of convergences (1.16) and
(1.20)

T
) Ou !
lim f f a—i(ac,tw)w(x,”;) daxdt = — g(0) f o, ) wiac, ) dacdy

(235) 0 Q r QxY

- f f (ute, y, 1) + v, 1)) ¢’ @) wa, y) dedydt.
0 QxY
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Integrating once again the last integral, we get

T
. ou, ' B
1% Of ;[ W(m, t) (p(t)y/(ac, a) dxdt = — ¢(0) f uo(x, y) wx, y) dedy

QxY

T
(2.36) + f f <(Z(ac,y,t)+g?;(x,t)>w(t)w(x,y)dacdydt
0 QxY

+ 9(0) f (uz, y, 0) + v(a, 0)) w(w, y) daedy.
QxY

Using convergence (1.25) in the left hand side of (2.36), we deduce
2.37) w(e,y,0) + v, 0) = up(x,y), ae @,y cQxY.

On the other hand, from (1.17), we have

1 &
(2.38) v(x,0) = ) uo(X)xF, s
so that
2.39) e, 0) — = f wo(w, y)dy, weakly in  LA(Q)
. & b) 7[,'/'2 D b) ) *

Let o) w(x) be a function in C([0, TT) ® D(2), with o(T) = 0. We have

T
v,
f f a”t @, £) () y(z) davelt

— p(0) [ 0@, 0)do
(2.40) 0@ Q

T
[ [ty Oy dudt,
0 Q

so that letting ¢ — 0 in (2.40), we get with the help of (2.39) and (1.22)

e—0

T
1
tim [ [ %(x, D (O y(@) dadt = — p(0) [ <? [ ot dy) w(w) dee
@.41) 0 Q 2 V" p

T
- f f o, ) ¢ (8) y(x) daedt,
0 Q

which can be rewritten as
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T
tim [ [ %(x,t) o)) dadt = — 9(0) [ <% [t dy) (@) da
0 Q Q D

(2.42) + 0(0) f (e, 0) () dae
Q

T
0
+ Of ! 6—1’@,0 o) (@) dadt.

On the other hand, since

ov, 1 Ou, 1
(2.43) o ) ( (@, y,1) + (x t))xD(?/)
we get
ov, v . 9
(2.44) T weakly in  L2(Q2 x (0,7)).

Using (2.44) in the left hand side of (2.42), we get

1
(2.45) v(x,0) = ) Df uo(x, y) dy.
Equalities (2.37) and (2.45) give us

(2.46) w, y,0) = upe,y) — L fuo(oc ydy ae (x,y)exY.
D

The uniqueness of the solution of (1.26) as well as of that (1.29) does not lead to
any special difficulty. O

3. — Proof of the corrector results.

Proor or THEOREM 1.3. — Note first, that all results proved at this stage
remain valid for the sequence .

Thanks to the coercivity hypothesis (1.5), one can write
2

T V,w T v\ P
of [V~ ov || xpdwdt+os | [ gva;,.—< : ) 2o, daedt
0Q Oxs 0Q
T , Vi, w Vv, w
GO <[] A(x,%) Vie— | ov ||| Vi—| av ||xr dodt
0 Q 6_903 3_903
T
¥’ _ Vi u - Vi
— — Y — Y =
I 5(e ) s (5) o~ (5 ot .

Q
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Mutiplying (1.37) by u. and integrating over Q x (0, T), we obtain

T
- i 1 ¢ .1 )
J, = Of Qf FG )i, ) dudt — 5 Qf puli e, T d + 5 f Pl @) d

T V;w V' w V' w

! x Y . Y
R e O P (o | W R | P8

00 O3 O3 O3
X Viu 2\ [ Vu Viu
—eBla,~ |V, 7 —Blx,~— ) eva,— | Y dadt
oo )i (e 2) () (o (0o

Before passing to the limit, note that (remark that % and v are continuous with
respect to t)

3.3) we(x, T) —— ule,y, T) + v(x, T).

A classical result of two-scale convergence, see [1], implies

3.4) lim in f o, )2 de > f f e, y, T) + v, T daedy.
0 Qv

Then, using two-scale convergences arising in Theorem 1.1, taking into account
regularity hypotheses (1.41) and assumptions (1.5)-(1.6) on the coefficients of A
and B, one can pass to the limit in (3.2) to obtain:

In the case p,(«')=1, taking into account the equality wuo(x,y)=
u(x,y,0) + v(x, 0),

limsup J, < f ff(ac,t)(u(ac,y,t)—i—v(ac,t)) daxdydt
=0 0 oxY
1 1
—3 f [ulee, y, T)—H)(oc,T)|2 dacdy—ké f |u(x,y70)+v(x,0)|2dacdy
QxY QxY
3.5) Viw\ [Viw
—f fXD(?/)A(x V| o || ov | dedydt
0 QxY 6903 8963
F nyu V;Ju
—f f}((Y—D)(?/)B(%,y) o '\ o dadydt.
0 QxY

1
In the case p, (@) = yp (') + &y (@), recalling that v(x,0) = 3 Juo(x, y) dy,
D
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T
limsup J, < f ff(x, t) (ule,y, ) + v(x, b)) daedydt

=0 0 OxY

—§ f (e, T dee +§ f (e, 0)2 dae
Q Q

(3.6) T V,w V,w
- f f WA@Yy [ ov || ov |dedydt
0 OxY 8_963 (:)—903
T
V! \V4
—f fX(an)(Z/)B(%?/) (0 yu) : (0 yu) dxdydt.
0 @xY

Taking (%, 9, w) = (u, v, w) in (1.26) (respectively (1.29)), we deduce that the right
hand side of (3.5) (respectively (3.6)) is equal to zero, which proves the corrector
result on %,. (|

Proor oF THEOREM 1.4. — First, one can easily prove that the limits arising in
(1.20)-(1.25) and (1.28) are equal to zero when we replace u, by . Let us prove

that these convergences are strong if and only if (1.43) holds true.
To do this, we just need to prove the following equivalence:

t
(3.7) lim ff{|va£|2m + 6Vt Py,  dards = 0 <= lim fpgmgm, 0)[2 dae = 0.
0 Q Q

Multiplying (1.38) by 4. and integrating by parts the parabolic term, we get,
for all £ € (0, 7):

% f i, O deds
Q

t / /
(3.8) —|—ff{A(x,%)Vﬁg.V7ls)(Fg + azB(ac,%) V@le.vmm} dxds
0 Q

1 R
=5 fp£|ug(ac, 0)|2 dex.
7]

Suppose that lin% [ p.lt:(e, O)|2 dx = 0. Then, the coerciveness of A and B implies
& Q

that each term in the left hand side of (3.8) tends to zero.
Conversely, suppose that

3.9) lim fT f {|vm|2m +|5V’ZLK|ZXM€}dxdt:O‘
0 Q
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Then, one can assume, up to substracting a new subsequence, that
nmf{wagﬁxﬂ + Vi, fde =0, ae. te,D),
e

in such a way that (2.8) (applied to ) gives us:

3.10) lim f (e, O dee = 0, ace. te(0,T).
Q

As a consequence of (3.10), we obviously obtain

3.11) lim f polin, D de =0, ae. te,T).
)

Remark now that the second integral in the left hand side of (3.8) is bounded
from above by the left hand side of (3.9) due to the L*-boundedness of the
coefficients of A and B. Hence it tends to zero.

As a consequence, we get the right hand side of (3.7).

We now assume that (1.43) is failed.

We begin by proving the first inequality of (1.44). We argue by contradiction.

Suppose that

. ~ 2 _
3.12) lim Of ! p (e, £) davdlt =

But

3.13) OfT Oft Qf pgaa—%(x,s)ﬂn(x,s)dxdsdt:% OfT Qf ),

Since \/_;; —"is bounded in L?(2 x (0, 7)), we deduce from (3.12) that the left
hand side of (3 13) tends to zero. And then hrn f P, |u£(90 0)] dx = 0, which is a
contradiction.

We now prove the second inequality of (1.44).
Define the function Z by:

,0)|2 da.

N T .
(e, de — 5[&-
Q

3.14) Z(t) = lim sup f o, O de, Wt e 0,T).
&0

If there exists ¢, € (0,T) such that
3.15) Z(ty) =0,
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then the number m defined as

m = inf {t €10,T] : Z(t) =0},
satisfies
(3.15) m > 0.

Indeed, if (3.15°) is not true, i.e., if m =0, then for all a > 0, there exists
t, € 10, T] such that

(3.16) Zt,)=0 and a>t,.

Since the positive function Z decreases over (0,7) as it can be seen from the
following equality

1 .
5 fps lit (e, )P
Q

¢ / /
[[ {A (ac %) Vit Vi, 15, + &B (m ”%) Vil Vi, }dwds
0 Q

1 .
=5 fpg |4t (e, 0)|2dx,
7]

we deduce from (3.16) that
3.17) Z() =0 Vae 10,T].

Moreover, due to estimate (2.2), the sequence f P |7l€(ac,t)|2dac is bounded in

Q
L>(0,T), so that, one can apply Lebesgue’s Theorem and get
T
3.18) lim f f p, (e, t)[2 daedlt = 0,

00

which is in contradiction with the first inequality of (1.44).
Let @ be areal such 0 < a < m.
We have Z(a) > 0 by definition of .
Assume that, for a real b such that o < b < m, we have

b
3.19) lim sup f f p,li(e, )2 dedt = 0.
& o)

On the other hand, for all ¢ € (a, b), we have

t
o, . 1 . 2 1 N 2
af!psﬁ(%s)us(x,s)dxds =3 bfpg it (, 1) dx—éflpS!ug(ac, )| d.
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And then

fb ft j pgaa—iz“(ac,s)ag(x,s)dacdsdt:% fb f ),
aa Q Q

a

W, a)lzdx.

ity e, ) Pdavdt — b;—“ f ),
Q

Taking into account estimate (2.7) and using convergence (3.19) (Which im-

b
plies lin% [ [ p, lits(e, t)Pdacdt = 0), we deduce that, for all the sequence ¢,
E— a Q
. N 2
lim ![ Py |, )| "dac = 0,

which is a contradiction with Z(a) > 0.
Hence,

b
lim supffpg e, O dedt > 0 YV 0<a<b<m.
é a Q

If
Z(t) >0 Vvitel0,T],
then,

b
lim Supffpg e, O dedt > 0, VYV O0<a<b<T,
& a Q

i.e., one can take an arbitrary a in 10, 7] and argue as above. |

4. — Appendix

In this section, we prove the existence and the uniqueness of solutions to
problem (1.1) for each ¢ > 0 fixed, assuming that the initial data belong to the
class given by (1.16) and that the matrices A and B satisfy the hypotheses (1.5).
We use the classical Galerkin method (see [5]).

Let (w,),en be a basis in V| and let

m

.1) Uen®) =Y gl
=1

be the solution to the Cauchy problem
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[ %(t) v+ [ €V Voydo = [ fO wyde 1<) <m,
Q Q

4.2)
0,0

m
p— — j . & ]
U (0) = U, Uy, = E a, 0 —u; in V as m— oo.
=1

By standard methods in differential equations, we can prove the existence of a
solution of (4.2) on some interval (0, ). Then, this solution can be extended to
the whole interval (0, T') thanks to the estimate (4.6) below.

4.1 — A Priori estimates

First estimate. Multiplying equation (4.2) by gi,,(t), summing over j and in-
tegrating over (0,1), t € (0, t,), we obtain

¢
% f Pe |um(t)|2 dx + f f CoV U (8). VU (s) dxds
4.3) @ 0@

—fffugmdacds+%fpg [l |7 da.
00 Q

From assumptions (1.5), (1.15"), (1.16) and (4.2), together with Young’s in-
equality, we get

4

f p, o2 d + & f f {| Vet ()2, + 2] Vit () 201, } dads

t
< c+;7ff [ (8) [ dacds.
00

Applying estimate (2.8) which remains valid for u,,,, in the right hand side of (4.4)
and choosing 7 sufficiently small, we get

t

4.5) ff{| Vugm(s)|2)m + & Vum(s)FXMﬁ }dacds < c,
00

so that (2.8) leads to

t
4.5 ff|um|2 dads < c.
0Q
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Then (4.4) gives us
t
4.6) f P, e ) dez + f f {| Ve () 2. + &) Vit () Poar, }dxds < Ly,
Q 0 Q

where L, is a positive constant independent of m € N, and of ¢ > 0.

g

Second estimate. Multiplying (4.2) by 7

tegrating over (0,%),t € (0,T), we get

g

4.7 0e

(), summing over j and in-

auéﬂl a
—(s) dacds + f f C.V gy (S). aVugm(s) dxds

t
- f f £(s) a?g;m (s) dads.
00

In the case p, = 1, using (1.15'), one can apply Young’s inequality on the right
hand side of (4.7) to get

It

The strong convergence in (4.2), assumption (1.16) and the boundedness of the
coefficients of C, imply
¢
[
0Q

where L is independent of ¢ and of m. Hence estimate (2.7) is proved.
In the case p, = 5 + SZXMS, we use hypothesis (1.15) which allows us to in-
tegrate the right hand side of (4.7) with respect to t. We obtain

ff

48 - f FO e (t) dac f FO ', do

2
Dt

1 1
dadt + 5 [ €& VO de < o+ [ €V, Vb, da
Q Q

6ugm

(s)

dacds < Lo,

8u£m

()‘ dadt + - f CV 1ty ().t () it

- f f —(8) U (8) dxds + = f C.Vul Vul, du.
Q

Hence, applying Young’s and Cauchy-Schwarz’s inequalities in the right hand
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side of (4.8), together with assumption (1.5) we get
t O

[[».

00

ot (s)

2
0 2 2
dudt + ! {1V P75, + &Vt O 13y }

1 9 ,
= @! FOF do + 7 Qf [t (1) it
4.9) +(flf(0)|2 dx) <f 0 P dac)
Q )
¢ af 2 % t
* II'E(S) dads ff |u1:m(3)|2 dxds
0Q 00

4
+§ f{'vugm|2;{ﬁ',; + 82|V“gm,|2)(M,} di.
)

1

2

Applying once again (2.8) to u.n,, we get

(4.10) f ()2 dee < ¢ f {\wgm(t)ﬁm +32|Vu8m(t)|2;(Mﬁ}dx.
Q Q

Then, choosing # > 0 sufficiently small, hypotheses (1.15), (1.16) and strong
convergence arising in (4.2), with estimates (4.6) and (4.10) we deduce

4.11) ffpg
0 Q

where Lg is a positive constant independent of m € N and of ¢ > 0. This proves
estimate (2.7) in the case p, = x5 + &1y

Qs
ot

(s)

2
dadt + [ {[Viton P rp, + &Vt ® 1, } dv < L,
Q

4.2 — Passage to the limit

Note first that the sequence (uy,),, is bounded in L?(0,T; V). Indeed, for a
fixed ¢, estimate (4.11) immediately implies

(412) HVumHLx(O,T;(LZ(Q))s) S Ce.

Then, there exist (see [10]) a subsequence (u,), of (g), and a function
ue : 2 x (0,T) — R such that

(4.18) wy — u, weaklyin L>(0,7;V) and strongly in C([0, T];L2(Q)).
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Let us now fix j and u > j. Then, from (4.2) we have

ou,,

4.14) [». g;‘ (D yda -+ [ CVu O Veoydo = [ £t o
Q Q Q

But convergence (4.13) implies that

[ C.Vu ).V de — [ €V .Vode  weakly in L2, ),
Q Q

f Uy (B).05 dc — f u(8).0; da strongly in L0, T).
Q Q

We also have, thanks to estimate (4.11),

m 9
Qf; o ®) wjde — jpf 5 £(t) wjdx. weakly in L0, 7).

Thus, from (4.14) and for a fixed j, we deduce
(4.16) . %(t) v o+ [ CVu 0.V do = [ {0y dv
Q Q Q

So that the density of the basis (w,),cxn leads to the desired equation on u,:

4.17 fﬂg %(t)vdw +fC;;Vu,;(t).Vv dx :ff(t)vdx VoeV.
?) ?) 2]

Let us now seek for the initial condition associated to u.. This is an immediate
consequence of the second convergence arising in (4.13), since we have

Uen(0) —> u,(,0)  strongly in LA(Q),
in such a way that the convergence in (4.2) leads to

u:(x,0) = u;.

4.3 — Uniqueness

Let u! and u? be two solutions of (1.1) and put w, = u! — u2. Taking into
account the fact that the matrix C, is symmetric, we deduce

d
4.18) = { Qf p. [ d + ![ C.V 0, (). Vo t) dac} -0
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Integrating (4.18) over (0,%) and using assumption (1.5), we conclude that

f p, |0 dee = f Vo [Pde = f eV by, [Pde = 0.
Q Q Q

And thus, u! = u2. a
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