BOLLETTINO UNIONE MATEMATICA ITALIANA

PIOTR SŁANINA, WITOLD TOMASZEWSKI

Groups Generated by (near) Mutually Engel Periodic Pairs

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 10-B (2007), n.2, p. 485–497.

Unione Matematica Italiana

 $<\!\!\mathtt{http://www.bdim.eu/item?id=BUMI_2007_8_10B_2_485_0}\!\!>$

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Groups Generated by (near) Mutually Engel Periodic Pairs.

PIOTR SLANINA - WITOLD TOMASZEWSKI

Sunto. – Scriviamo $[x, y] = [x_{1}, y]$ e $[x_{k+1}, y] = [[x_{k}, y], y]$. Nel presente mostriamo certe proprietà ed esempi dei gruppi con i generatori x, y tali che $x = [x_{n}, y], y = [y_{n}, x]$ o $[x, y] = [x_{n}, y], [y, x] = [y_{n}, x]$.

Summary. – We use notations: $[x,_1y] = [x,y]$ and $[x,_{k+1}y] = [[x,_ky], y]$ for $k \ge 1$. We consider groups generated by x, y satisfying relations $x = [x,_ny], y = [y,_nx]$ or $[x,y] = [x,_ny], [y,x] = [y,_nx]$. We call groups of the first type mep-groups and of the second type nmep-groups. We show many properties and examples of mep- and nmep-groups. We prove that if p is a prime then the group $\operatorname{Sl}_2(p)$ is a nmep-group. We give the necessary and sufficient conditions for metacyclic group to be a nmep-group and we show that nmep-groups with presentation $\langle x, y | [x, y] = [x,_2y], [y, x] = [y,_2x], x^n, y^m \rangle$ are finite.

1. - Introduction.

We use standard notations: $[x,y] = [x,_1y] = x^{-1}y^{-1}xy$ and for k > 1, $[x,_ky] = [[x,_{k-1}y],y]$. Two elements x,y will be called a mutually Engel periodic pair (in short a mep-pair) if there exist positive integers m,n, such that $x = [x,_my], y = [y,_nx]$ and x,y will be called a near mep-pair (a nmep-pair) if there are m,n > 1 such that $[x,y] = [x,_my], [y,x] = [y,_nx]$. We say that a group G is a mep-group (a nmep-group resp.) if it is generated by a mep-pair (a nmep-pair resp.).

If a = [a, b] then [a, b] = [a, b], so every mep-group is also nmep-group. The converse statement is not true because every non-trivial two-generator abelian group is a nmep-group but is not a mep-group.

Groups generated by mep-pairs were considered by H. Heineken in [2]. He showed that if a group G is generated by a mep-pair x, y then G is perfect (that is G = [G, G]) and elements x, y^{-1}, xy^{-1} are conjugated in G. He also find mep-pairs in groups $\mathrm{Sl}_2(q)$ in some cases: for every prime q of the form 8t+5, for some prime q of the form 8t+1, for every prime q such that q^3-q is divisible by 7 and for $q=p^3$, where p is a prime such that 7 does not divide p^3-p .

In this paper we show some properties and examples of mep- and nmep-groups. We prove that for every prime p, $\operatorname{Sl}_2(p)$ is the nmep-group. We prove also that if x,y is a nmep-pair and $x^2=y^2=1$ then the group generated by x,y is a dihedral group of order $2^{m+1}\pm 4$ and we prove that groups with presentation $\langle x,y|[x,y]=[x,y],[y,x]=[y,x],x^n,x^m\rangle$ are finite metabelian (or abelian in the case when m,n are coprime). We give necessary and sufficient conditions for finite metacyclic group to be a nmep-group. Finally we construct some matrix nmep-groups.

As usual if G is a group then $\gamma_n(G)$ is a member of the lower central series of G, that is $\gamma_1(G) = G$ and for n > 1 we have $\gamma_n(G) = [\gamma_{n-1}(G), G]$.

Let us start with some examples.

2. - Examples and properties of mep and nmep-groups.

EXAMPLE 1. – Let $G=\langle x,y|yx=xy^2\rangle$. We show that G is a nmep-group with a trivial centre. If a=xy,b=x then $[a,_2b]=[a,b]$ and $[b,_2a]=[b,a]$, so a,b is a nmep-pair, generating G. We show that the centre Z(G) of G is trivial. The relation $yx=xy^2$ implies $y^mx^n=x^ny^{m2^n}$ and $x^{-n}y^m=y^{m2^n}x^{-n}$ for every integer m and every positive integer n. Hence every element $g\in G$ can be written in the form $g=x^ky^lx^{-n}$, where l is an integer and k,n are non-negative. If $1\neq g=x^ky^lx^{-n}\in Z(G)$ then g cannot be a power of x, so $l\neq 0$. A relation gx=xg implies $x^{-1}gx=g$, and we get $x^ky^{2l}x^{-n}=x^ky^lx^{-n}$, so $y^l=1$, but it is possible in G only if l=0, which contradicts $l\neq 0$.

EXAMPLE 2. – If C is an arbitrary cyclic group then $A_5 \times C$ is a nmep-group with non-trivial centre (see Corollary 2).

EXAMPLE 3. – The alternating group A_5 is a mep-group since every pair x, y of the form $x = (a_1, a_2, a_3, a_4, a_5), y = (a_1, a_3, a_2, a_5, a_4)$ generates A_5 and satisfies x = [x, 5, y] and y = [y, 5, x].

EXAMPLE 4. – The alternating group A_6 is not a mep-group because every mep-pair in A_6 generates a subgroup isomorphic to A_5 .

PROOF. — We can deduce from [2] that if x, y is a mep-pair then x, y^{-1} and xy^{-1} are conjugated. So if x, y is a mep-pair generating S_6 then x, y, xy^{-1} have the same cycle structure and they have the same order. Now we see that x, y cannot be of order 2, 3, 4, since in the first case the group would be dihedral, in the second case 3-cycles never generate A_6 and also two permutations which have the structure (i,j,k)(l,m,n) do not generate A_6 (since A_6 has an outer automorphism mapping (1,2,3) onto (1,2,3)(4,5,6)), in case of order 4 if x=(1,2,3,4)(5,6) then there is no

y such that y^{-1} and xy^{-1} are both of order 4. In case of order 5, it is enough to assume that x=(1,2,3,4,5) and that y is a 5-cycle fixing the object 1. Such y can be chosen on 24 ways, but only in 9 cases xy^{-1} have order 5. If y belongs to the set $\{(2,3,5,4,6),(2,3,6,5,4),(2,4,5,6,3),(2,6,4,5,3)\}$ then x,y satisfy the relation $[x,y]=[x_{,11}y]$ and since $x\neq [x_{,k}y]$ for k<11,x,y is not a mep-pair. If y belongs to the set $\{(2,3,5,6,4),(2,4,5,6,3)\}$ then x,y satisfy the relation $[x,y]=[x_{,13}y]$ and since $x\neq [x_{,k}y]$ for k<13,x,y is not a mep-pair. If y belongs to the set $\{(2,5,3,4,6),(2,5,6,3,4)\}$ then x,y satisfy the relation: $[y,_3x]=[y,_{13}x]$ and $y\neq [y,_kx]$ for k<13, so x,y also is not a mep-pair (it can be interesting that in this case x and y satisfy the relation $x=[x,_{10}y]$ but they do not satisfy $y=[y,_{10}x]$). Finally if x=(1,2,3,4,5) and y=(2,6,5,3,4) then x,y is a mep-pair satisfying relations: $x=[x,_5y],\ y=[y,_5x],\ xyx=yxy,\ x^3=yx^2y$ and they generate the group isomporphic to A_5 (see the Theorem 4 and remarks below that theorem).

EXAMPLE 5. – There are three forms of mep-pairs that generate A_7 :

```
(1) x = (a_1, a_7, a_2, a_4, a_5, a_3, a_6), y = (a_1, a_4, a_3, a_7, a_6, a_2, a_5)
```

(2)
$$x = (a_1, a_2)(a_3, a_4, a_5, a_6), y = (a_2, a_3)(a_4, a_7, a_5, a_6)$$

(3)
$$x = (a_1, a_2, a_3)(a_4, a_5)(a_6, a_7), y = (a_1, a_6, a_5)(a_2, a_7)(a_3, a_4)$$

Moreover, the pair $x = (a_1, a_2)(a_3, a_4, a_5, a_6)$, $y = (a_5, a_6)(a_2, a_3, a_7, a_4)$ is also a mep-pair in A_7 and it generates a simple group of order 168 (all calculations were done by M. Żabka).

EXAMPLE 6. – For $n \in \{3, 4, 5, 6, 7\}$, S_n is a nmep-group.

PROOF. - (1) If n = 3 then for $x = (1 \ 2)$ and $y = (1 \ 3)$ we have [x, y] = [x, 3y] and [y, x] = [y, 3x].

- (2) If n = 4 then the pair $x = (1\ 2\ 3\ 4), y = (1\ 3\ 2\ 4)$ satisfies $[x, y] = [y, 5\ x], [y, x] = [y, 5\ x]$ and since $x^2y = (1\ 2), S_4$ is a nmep-group.
- (3) If n = 5 then the pair $x = (1\ 2)(3\ 4\ 5)$ and $y = (1\ 3)(2\ 5\ 4)$ generates S_5 , because $x^3 = (1\ 2)$ and $xy^3 = (1\ 2\ 3\ 4\ 5)$. We can check that $[x,y] = [x,_{13}\ y]$ and $[y,x] = [y,_{13}\ x]$, so S_5 is a nmep-group.
- (4) If n = 6 then for the pair: $x = (1\ 4)(3\ 2\ 6)$ and $y = (1\ 5)(2\ 3\ 4)$, we get $[x,y] = [x,_{73}\ y]$ and $[y,x] = [y,_{73}\ x]$. We can observe that x,y generate S_6 because $x^3y^3x^3 = (4\ 5)$ and $x^{-1}yxy^2 = (1\ 6\ 4\ 5\ 3\ 2)$. It follows that S_6 is a nmepgroup.
- (5) If n = 7 then the pair $x = (1\ 2)(3\ 4\ 5\ 6\ 7),\ y = (1\ 3)(2\ 4\ 7\ 6\ 5)$ satisfies $[x,y] = [x,_{31}\ y],\ [y,x] = [y,_{31}\ x].$ Because $x^5 = (1\ 2)$ and $xy^5 = (1\ 2\ 3\ 4\ 5\ 6\ 7),\ S_7$ is also a nmep-group.

Proposition 1. – Every quotient group of a mep-group (nmep-group) is also a mep-group (nmep-group).

PROPOSITION 2. – If G is a mep-group, then G = G'. If G is a nmep-group, then $G' = \gamma_3(G) = \gamma_i(G) \ \forall i > 1$.

PROOF. – For the first statement it is enough to show that $G \subseteq G'$ and for the second that $G' \subseteq \gamma_3(G)$. If G is a mep-group then G is generated by elements which are contained in G' so $G \subseteq G'$. If G is generated by a nmep-pair x, y that satisfies $[x,y] = [x,_n y], [y,x] = [y,_n x]$ then $[x,y] \subseteq \gamma_{n+1}(G) \subseteq \gamma_3(G)$. Since $\gamma_3(G)$ is normal in G and G' is normally generated by [x,y], then $G' \subseteq \gamma_3(G)$.

Proposition 3. – If G is a solvable (nilpotent) mep-group, then G is trivial.

Proof. – By the above Proposition a non-trivial mep-group cannot be solvable. \Box

Proposition 4. – If G is a nilpotent nmep-group, then G is abelian.

PROPOSITION 5. – If G is generated by x and y which satisfy relations [x,y] = x and [y,x] = y, then G is trivial.

PROOF. – We have $x = [x, y] = [y, x]^{-1} = y^{-1}$ and $y^{-1} = x = [x, y] = [y^{-1}, y] = 1$, so G = gp(x, y) is trivial.

PROPOSITION 6. – Relations x = [x, y], y = [y, x] and [x, y] = [x, y], [y, x] = [y, x] are equivalent to x = [x, y], y = [y, x], where $d = \gcd(n, m - 1)$. Moreover if $\gcd(n, m - 1) = 1$ then the group generated by x and y is trivial.

PROOF. – Let $d = \gcd(n, m-1)$ and let elements x, y satisfy relations x = [x, y], y = [y, x] and [x, y] = [x, y], [y, x] = [y, x]. Then there exist positive integers s, t such that d = sn - t(m-1). We use assumed relations and we get

(1)
$$[x,y] = [x,y,_{m-1}y] = [x,y,_{2(m-1)}y] = \dots = [x,y,_{t(m-1)}y],$$

(2)
$$x = [x, y] = [x, y] = \dots = [x, y].$$

By (1) and (2) we get

$$x = [x, s_n y] = [x, d_{+t(m-1)}y] = [x, y, d_{-1}y] = [x, y, d_{-1}y] = [x, d_{-1}y]$$

and similarly [y, dx] = y. If d = 1, then by Proposition 5 the group generated by x and y is trivial.

PROPOSITION 7. – Let x, y be nontrivial elements of a group G. If k, l are the minimal numbers such that x = [x, k, y] and [x, y] = [x, l, y] then l = k + 1.

PROOF. – By Proposition 6 if $x = [x, {}_{k}y]$ and $[x, y] = [x, {}_{l}y]$ then $x = [x, {}_{d}y]$ for $d = \gcd(k, l-1)$. Hence $d \le k, d \le l-1$ and by the minimality of k and l d = k = l-1, so l = k+1.

THEOREM 1. – Let x, y be elements of a group G. If N is a subgroup of G, such that $N \subseteq Z(G)$ and $xN, yN \in G/N$ is a mep pair then x, y is a nmep-pair.

PROOF. – Since xN,yN is a mep pair there exists k such that $xN=[xN,_kyN]=[x,_ky]N$. So, $[x,_ky]x^{-1}\in N\subseteq Z(G)$ and then

 $[x_{\,k+1}y] = [x,{}_k\,y]^{-1}y^{-1}[x,{}_k\,y]y = x^{-1}(x[x,{}_k\,y]^{-1})y^{-1}([x,{}_k\,y]x^{-1})xy = x^{-1}y^{-1}xy = [x,y]$

and similarly [y, k+1] = [y, x]. So x, y is a nmep pair.

COROLLARY 1. – Let $x, y \in G$ be a mep-pair and let a, b belong to the centre of G. Then H = gp(x, y, a, b) is a nmep-group generated by a nmep-pair xa, yb.

PROOF. – By assumptions $N = \operatorname{gp}(a,b)$ is contained in Z(H), and xaN, ybN is a mep-pair. So by the previous Theorem xa, xb is a nmep-pair. Now we show that the subgroup $H = \operatorname{gp}(x,y,a,b)$ is generated by xa,yb. Clearly, $\operatorname{gp}(xa,yb) \subseteq \operatorname{gp}(x,y,a,b)$, so it is enough to prove that $x,y \in \operatorname{gp}(xa,yb)$. From x = [x, y] and y = [y, x] we get $x = [x, y] = [xa, yb] \in \operatorname{gp}(xa,yb)$ and $y = [yb, xa] \in \operatorname{gp}(xa,yb)$.

COROLLARY 2. – If G is a mep-group and A is either cyclic or two-generated abelian group, then $G \times A$ is a namep-group.

PROOF. – Since G is generated by a mep-pair $x, y, A \subseteq Z(G \times A)$ and A is generated by a, b, we have by Corollary 1 that G is generated by a nmep-pair xa, yb.

THEOREM 2. – Pairs u, v of a group G_1 and a, b of a group G_2 are mep-pairs if and only if the pair ua, vb is the mep-pair in $G_1 \times G_2$. Moreover, if G_1 is generated by u, v and G_2 is generated by a, b and G_1, G_2 do not posses the normal subgroups M_1, M_2 such that $G_1/M_1 \cong G_2/M_2 \neq 1$ then ua, vb generates $G_1 \times G_2$ (so $G_1 \times G_2$ is a mep-group).

PROOF. – First part of Theorem is clear. We can consider G_1 and G_2 as quotient groups of the two-generated free group F, so $G_1 \cong F/N_1$ and $G_2 \cong F/N_2$. If G_1 and G_2 satisfy assumptions of the theorem then $N_1N_2 = F$ (because $F/N_1N_2 \cong (F/N_1)/(N_1N_2/N_1) \cong (F/N_2)/(N_1N_2/N_2)$). So there exists a word w(x,y), such that u=w(u,v) and w(a,b)=1. If we consider the subgroup

 $\operatorname{gp}(ua, vb)$ of the group $G_1 \times G_2$ then w(ua, vb) = w(u, v)w(a, b) = w(u, v) = u, so $u \in \operatorname{gp}(ua, vb)$, and similarly $v \in \operatorname{gp}(ua, vb)$ and hence $\operatorname{gp}(ua, vb) = G_1 \times G_2$. \square

LEMMA 1. – If
$$x, y \in G$$
 have order 2, then $[x, {}_{m}y] = (yx)^{(-2)^{m}}$.

PROOF. – If x, y have order 2 then $xy = (yx)^{-1}$. To prove the equality we use an induction on m. For m = 1 we get $[x, y] = x^{-1}y^{-1}xy = (xy)^2 = (yx)^{-2}$. Let us assume that the formula is true for all integers less or equal m then

$$[x,_{m+1}y] = [x,_m y]^{-1}y^{-1}[x,_m y]y = (yx)^{-(-2)^m}y^{-1}(yx)^{(-2)^m}y = (yx)^{-(-2)^m}(xy)^{(-2)^m} = (yx)^{(-2)^{m+1}}.$$

Let us remind that the dihedral group D_n has the presentation $\langle x, y | x^2, y^2, (xy)^n \rangle$ (see [1] 1.5).

THEOREM 3. – Let $G = \langle x, y | [x, y] = [x, {}_m y], [y, x] = [y, {}_m x], x^2, y^2 \rangle$. Then for even m, G is isomorphic to a dihedral group D_{2^m+2} and for odd m, G is isomorphic to a dihedral group D_{2^m-2} .

PROOF. – By Lemma 1, from the relation [x, y] = [x, m y], we get $(yx)^{-2} = (yx)^{(-2)^m}$. For even m we get $(yx)^{2^m+2} = 1$, so G is isomorphic to D_{2^m+2} . For odd m we get $(yx)^{2^m-2} = 1$, so G is isomorphic to D_{2^m-2} .

3. – Mep-pairs and nmep-pairs x, y satisfying the relation xyx = yxy.

The group A_5 is generated by a mep-pair $a=(1\ 2\ 3\ 4\ 5), b=(1\ 3\ 2\ 5\ 4)$ and it is easy to check that a and b satisfy relations $aba=bab,\ a^5=1$ and $a=[a,_5b], b=[b,_5a]$. The relation xyx=yxy simplifies commutators $[x,_ny]$, so one can ask if there exist many mep-groups in which map-pair x,y satisfies relation xyx=yxy? The answer is: there are only two such non-trivial groups: A_5 and $Sl_2(5)$.

First we observe that the relation xyx = yxy implies

(3)
$$xyx^{-1} = y^{-1}xy$$

LEMMA 2. – If elements x, y satisfy the relation xyx = yxy, then for every positive integer n, $[x, y] = y^{-(2n-3)}x^{-1}y^{2n-2}$.

PROOF. – We use an induction on n. It follows from xyx = yxy that $[x, y] = yx^{-1}$, so the statement is true for n = 1. Let us assume that it is true for n,

then using the relation xyx = yxy we get:

$$\begin{split} [x,_{n+1}y] &= [x,_ny]^{-1}y^{-1}[x,_ny]y = y^{2-2n}xy^{-1}x^{-1}y^{2n-1} = \\ y^{2-2n}xy^{-1}x^{-1}y^{-1}y^{2n} &= y^{2-2n}xx^{-1}y^{-1}x^{-1}y^{2n} = \\ y^{-(2n-1)}x^{-1}y^{2n} &= y^{-(2(n+1)-3)}x^{-1}y^{2(n+1)-2} \end{split}$$

LEMMA 3. – If elements x and y satisfy xyx = yxy, then relations x = [x, y], y = [y, x] are equivalent to $x^3 = yx^2y$ and $x^{2n-5} = y^{2n-5}$.

PROOF. – If xyx = yxy, then by Lemma 2, $x = [x, _n y] = y^{-(2n-3)}x^{-1}y^{2n-2}$ and by symmetry, $y = x^{-(2n-3)}y^{-1}x^{2n-2}$. Hence, we get relations $y^{2n-2} = xy^{2n-3}x$ and $x^{2n-2} = yx^{2n-3}y$. From the relation $y^{2n-2} = xy^{2n-3}x$ follows $xy^{2n-2}x^{-1} = x^2y^{2n-3}$ and $(xyx^{-1})^{2n-2} = x^2y^{2n-3}$. Now, by using the relation (3), we get $y^{-1}x^{2n-2}y = x^2y^{2n-3}$ and $x^{2n-2} = yx^2y^{2n-4}$. We can combine this last relation with $x^{2n-2} = yx^{2n-3}y$ obtaining $yx^2y^{2n-4} = yx^{2n-3}y$, so $x^{2n-5} = y^{2n-5}$. It means that x^{2n-5} lies in the centre, and from the relation $x^{2n-2} = yx^{2n-3}y$ we get $x^3 = x^{2n-2}x^{-(2n-5)} = yx^{2n-3}yx^{-(2n-5)} = yx^{2n-3}x^{-(2n-5)}y = yx^2y$.

Lemma 4. – Relations xyx = yxy and $x^3 = yx^2y$ imply $x^5 = y^5$.

PROOF. – We show first that relations xyx = yxy and $x^3 = yx^2y$ imply $y^3 = yx^2y$. The relation $x^3 = yx^2y$ can be written in the form $y^{-1}x^3y = x^2y^2$. Hence we get $(y^{-1}xy)^3 = y^2x^2$, then by (3), we get $xy^3x^{-1} = x^2y^2$ and finally $y^3 = yx^2y$. Now to show that the relation $x^5 = y^5$ holds we use relations xyx = yxy, $x^3 = yx^2y$ and $y^3 = xy^2x$ and we get: $(xyx)^2 = x(yx^2y)x = xx^3x = x^5$ and $(xyx)^2 = (yxy)^2 = y(xy^2x)y = y^5$ so $x^5 = y^5$.

Theorem 4. – Let G_n be the group with presentation:

$$G_n = \langle x, y | xyx = yxy, x = [x, y], y = [y, x] \rangle.$$

Then

- (i) if 5|n then G_n is isomorphic to $Sl_2(5)$,
- (ii) if $5 \nmid n$ then G_n is trivial.

PROOF. – By Lemmas 3 and 4 the presentation of G_n can be written in the form:

$$G_n = \langle x, y | xyx = yxy, x^3 = yx^2y, x^{2n-5} = y^{2n-5} \rangle$$

It can be checked, using the Coxeter-Todd algorithm (see [1]), that G_5 has 120 elements. Moreover, since matrices $A, B \in Sl_2(5)$:

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}$$

generate Sl₂(5) (see [5], Theorem 8.8) and satisfy relations ABA = BAB, $A^3 = BA^2B$ and Sl₂(5) has 120 elements, G_5 is isomorphic to Sl₂(5).

We have shown in Lemma 4 that in G_n the relation $x^5 = y^5$ holds. Hence if 5|n then the relation $x^{2n-5} = y^{2n-5}$ is a consequence of $x^5 = y^5$, so in this case G_n is isomorphic to G_5 .

If $5 \not\mid n$ then numbers 2n-5 and 5 are coprime. Since in G_n we have $x^{2n-5} = y^{2n-5}$ and $x^5 = y^5$, then x^{2n-5} and x^5 belong to the centre of G_n , so (2n-5) and 5 are coprime) x is in the centre and y is also in the centre. It means that G_n is abelian and a mep-group, so it is trivial.

Let us notice that A_5 is isomorphic to $\mathrm{PSl}_2(5) \cong \mathrm{Sl}_2(5)/Z(\mathrm{Sl}_2(5))$ (see [5] p. 226), and since $Z(\mathrm{Sl}_2(5))$ has order two and is generated by x^5 , then A_5 has the presentation:

$$\langle x, y | xyx = yxy, x = [x, 5y], y = [y, 5x], x^5 = 1 \rangle$$

Next we want to investigate nmep-groups generated by nmep-pairs x, y satisfying the relation xyx = yxy.

LEMMA 5. – If xyx = yxy, then relations [x, y] = [x, y], [y, x] = [y, x] are equivalent to the relation $x^{2n-2} = y^{2n-2}$.

PROOF. – By Lemma 2, $[x,_n y] = y^{-(2n-3)}x^{-1}y^{2n-2}$ and $[x,y] = yx^{-1}$, so the relation $[x,y] = [x,_n y]$ implies $yx^{-1} = y^{-(2n-3)}x^{-1}y^{2n-2}$. Hence, we get $xy^{2n-2} = y^{2n-2}x$, which can be written in the form $xy^{2n-2}x^{-1} = y^{2n-2}$ and

$$(4) (xyx^{-1})^{2n-2} = y^{2n-2}.$$

From relations (3) and (4) we get $(y^{-1}xy)^{2n-2} = y^{2n-2}$ and finally $x^{2n-2} = y^{2n-2}$.

COROLLARY 3. – If G is a group generated by elements x, y that satisfy a relation xyx = yxy and x is of finite order, then y has the same order as x and G is a nmep-group. Particularly if G is finite, then G is a nmep-group.

PROOF. – By (3) x and y are conjugated, so they have the same order. If elements x and y satisfy xyx = yxy and have finite order k, then for n = k + 1 we have $x^{2n-2} = y^{2n-2}$. So by Lemma 5 G is a nmep-group.

THEOREM 5. – For every prime number p, $Sl_2(p)$ and $PSl_2(p)$ are nmegroups.

PROOF. – It can be deduced from [5] (Theorem 8.8) that $Sl_2(p)$ is generated by two matrices:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

and matrices A, B satisfy the relation ABA = BAB, so by Corollary 3 the pair A, B is a nmep-pair.

Let us observe that $Sl_2(p)$ is also generated by the nmep-pair:

$$X = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}, Y = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}$$

also satisfying XYX = YXY.

4. – Groups generated by nmep-pairs that satisfy [y,x] = [y,x,x], [x,y] = [x,y,y].

We will use the following commutator identity:

(5)
$$[a, bc] = [a, b][a, b]^c$$

LEMMA 6. – If n, m are positive integers and $d = \gcd(n, m)$, then we have $2^d - 1 = \gcd(2^n - 1, 2^m - 1)$.

Theorem 6. – Let $G_{n,m}$ be the group which has a presentation

$$G_{n,m} = \langle x, y \mid [y, x] = [y, x, x], [x, y] = [x, y, y], x^n, y^m \rangle,$$

where n, m are positive integers. Then $G_{n,m}$ is a finite, metabelian or cyclic group of order $nm(2^d-1)$, where $d=\gcd(m,n)$. Elements x^d , y^d belong to the centre of G. Moreover, $G_{n,m}$ is cyclic if and only if n, m are coprime.

PROOF. – Since $[y, x, x] = [x, y]^2[y, x^2]$, relations [y, x] = [y, x, x] and [x, y] = [x, y, y] are equivalent to $[y, x]^3 = [y, x^2]$ and $[x, y]^3 = [x, y^2]$. Hence the presentation of $G_{n,m}$ can be written in the form:

$$\langle x, y \mid [y, x]^3 = [y, x^2], [x, y]^3 = [x, y^2], x^n, y^m \rangle.$$

We show now that the commutator subgroup $G'_{n,m}$ of $G_{n,m}$ is cyclic and has order 2^d-1 , where $d=\gcd(m,n)$. By ([4], 4.3) if $G_{n,m}$ is generated by x and y, then the commutator subgroup $G'_{n,m}$ of $G_{n,m}$ is generated by commutators $[x^k,y^l]$, where $k,l\in\mathbb{Z}$. Since in $G_{n,m}$ generators have finite orders, its commutator subgroup is generated by all commutators $[x^k,y^l]$, where k,l are nonzero, positive integers. We use relations:

(6)
$$[y, x]^3 = [y, x^2],$$

$$[x, y]^3 = [x, y^2].$$

to obtain some new relations:

(a)
$$[x, y]^y = [x, y]^2$$
.

Indeed using the second relation from (6) we have $[x,y]^y=y^{-1}x^{-1}y^{-1}xy^2=y^{-1}x^{-1}yx[x,y^2]=[y,x][x,y^2]=[y,x][x,y]^3=[x,y]^2$.

(b)
$$[x, y^l] = [x, y]^{2^l - 1}, l \ge 1.$$

We show this by induction on l. It is true for l = 1. Let us assume that it is true for all numbers less or equal to l. Then, using commutator identity (5), the relation (a) and the inductional assumption we get:

$$[x, y^{l+1}] = [x, y][x, y^l]^y = [x, y]([x, y]^{2^l - 1})^y = [x, y]([x, y]^y)^{2^l - 1}$$

$$[x, y][x, y]^{2(2^l - 1)} = [x, y]^{2^{l+1} - 1}.$$

Since relations (6) are symmetric we have also for $k \geq 1$ relations $[x^k,y] = [x,y]^{2^k-1}$ and

(c)
$$[x^k, y^l] = [x, y]^{(2^k - 1)(2^l - 1)}, k \ge 1, l \ge 1.$$

So we have shown that every commutator $[x^k, y^l]$, for $k, l \ge 1$ is a power of [x, y]. It means that [x, y] generates $G'_{n,m}$ and $G'_{n,m}$ is cyclic. Hence $G_{n,m}$ is cyclic-by-abelian. Since $x^n = 1$ and $y^m = 1$ we get:

$$1 = [x^n, y] = [x, y]^{2^n - 1},$$

$$1 = [x, y^m] = [x, y]^{2^m - 1}.$$

By Lemma 6, if $d = \gcd(m, n)$ then $2^d - 1 = \gcd(2^n - 1, 2^m - 1)$, so $[x, y]^{2^d - 1} = 1$. It means that $G'_{n,m}$ is cyclic and has order $2^d - 1$, moreover $G_{n,m}/G'_{n,m}$ is abelian and of order mn, so $G_{n,m}$ has order $mn(2^d - 1)$.

Since $[x^d, y] = [x, y]^{2^{d-1}} = 1$, the element x^d is in the centre of $G_{n,m}$ and similarly y^d is in the centre.

If m, n are coprime, then the order of $G'_{n,m}$ is 1, so $G_{n,m}$ is cyclic of order mn. In Example 7 we show the matrix representation of the group $G_{n,n}$

Example 7. – Let A, B be following 2×2 matrices over the ring $\mathbb{Z}_{2^{n}-1}$:

$$A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 2^{-1} \end{bmatrix}$$

Then A and B satisfy relations $[A,B]=[A,{}_2B], [B,A]=[B,{}_2A]$. Moreover $A^k=\begin{bmatrix}2^k&0\\2^k-1&1\end{bmatrix}$ and $B^k=\begin{bmatrix}1&0\\0&2^{-k}\end{bmatrix}$ and since $2^n\equiv 1 \mod (2^n-1)$, we have $A^n=1$ and $B^n=1$. So A and B have order n. The commutator [A,B] is equal to

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

so [A, B] has order $2^n - 1$. To show that $gp(A, B) \simeq G_{n,n}$ it is enough to prove, by the above Theorem, that gp(A, B) has exactly $n^2(2^n - 1)$ elements. Since gp(A, B)

has a cyclic commutator subgroup, its every element has a form $A^rB^s[A,B]^t$, and it is easy to see that A^rB^s belongs to the commutator subgroup of gp(A,B) if and only if r=s=n. Hence gp(A,B) has $n^2(2^n-1)$ elements and it is isomorphic to $G_{n,n}$.

It can be deduced from the above Theorem that if $d = \gcd(n, m)$ then $H = \gcd(x^d, y^d)$ is contained in the centre of $G_{n,m}$, so it is normal in $G_{n,m}$ and $G_{n,m}/H \simeq G_{d,d}$.

5. – When is a finite metacyclic group a nmep-group?

We say that a group G is metacyclic if it is cyclic-by-cyclic (that is if there exists a normal cyclic subgroup H in G, such that G/H is cyclic).

By Hölder's Theorem (see [6] on page 129) finite metacyclic group has a presentation:

(7)
$$G = \langle x, y \mid x^n = y^t, y^m = 1, yx = xy^k \rangle,$$

where $k^n \equiv 1 \mod m$ and $t(k-1) \equiv 0 \mod m$.

LEMMA 7. – Let G be a finite metacyclic group with presentation (7). Then $G' = \text{gp}(y^{k-1})$, and $\gamma_{n+1}(G) = \text{gp}(y^{(k-1)^n})$.

PROOF. – If G has a presentation (7) then $[y,x]=y^{-1}x^{-1}yx=y^{k-1}$, so $gp(y^{k-1})\subseteq G'$. It is clear that $gp(y^{k-1})$ is normal in G. Then in $G/gp(y^{k-1})$ we have: $\bar{y}\bar{x}=\bar{x}\bar{y}^k=\bar{x}\bar{y}^{k-1}=\bar{x}\bar{y}$, so $G/gp(y^{k-1})$ is abelian, which means that $G'\subseteq gp(y^{k-1})$.

To prove that $\gamma_{n+1}(G)=\operatorname{gp}(y^{(k-1)^n})$, we use an induction on n. We proved this statement for n=1. Let us assume that $\gamma_n(G)=\operatorname{gp}(y^{(k-1)^{n-1}})$, then $\gamma_{n+1}(G)=\operatorname{gp}([y^{s(k-1)^{n-1}},x^r])$. Since

$$\begin{split} &[y^{s(k-1)^{n-1}},x^r] = y^{-s(k-1)^{n-1}}x^{-r}y^{s(k-1)^{n-1}}x^r\\ &= y^{-s(k-1)^{n-1}}y^{sk^r(k-1)^{n-1}} = y^{(k^r-1)s(k-1)^{n-1}} = y^{(k-1)^nu} \end{split}$$

we have $\gamma_{n+1}(G) \subseteq \operatorname{gp}(y^{(k-1)^n})$. It is easy to calculate that $[y,_n x] = y^{(k-1)^n}$, so $\operatorname{gp}(y^{(k-1)^n}) \subseteq \gamma_{n+1}(G)$, which finishes the proof.

COROLLARY 4. – The group G with presentation (7) is nilpotent if and only if k-1 is nilpotent in the ring Z_m .

LEMMA 8. – Let t be an element of the ring Z_m . Then there exists an integer s > 1 such that $t^s = t$ in Z_m if and only if $gcd(t, m) = gcd(t^2, m)$.

PROOF. – Since Z_m is finite, there exists a pair (i,j) of different integers, such that $t^i \equiv t^j \mod m$. Let j > i and j minimal. If i > 1, then m divides $t^i(1-t^{j-i})$ and by relatively primes factors $m = \gcd(t^i,m)\gcd(1-t^{j-i},m)$ with $\gcd(t^i,m) = \gcd(t,m)$, so m divides $t(1-t^{j-i})$ contrary to minimality of j. On the other hand, if $t-t^k$ is divisible by m then $\gcd(t,m) \leq \gcd(t^2,m) \leq \ldots \leq \gcd(t^k,m) = \gcd(t,m)$ gives the result.

Theorem 7. – Let G be a finite metacyclic group with presentation

$$G = \langle x, y \mid x^n = y^t, y^m, yx = xy^k, k^n \equiv 1 \mod m, \ t(k-1) \equiv 0 \mod m \rangle.$$

Then following statements are equivalent:

- (i) G is nmep-group,
- (ii) $G' = \gamma_3(G)$.
- (iii) $gcd(k-1, m) = gcd((k-1)^2, m),$

PROOF. – (i) \Rightarrow (ii) This implication holds in general not only for metacyclic groups (we prove it in Proposition 2).

- (ii) \Rightarrow (iii) If $G' = \gamma_3(G)$, then by Lemma 7 $\langle y^{(k-1)^2} \rangle = \langle y^{k-1} \rangle$, so there exists integer x, such that $(k-1)^2 x \equiv k-1 \mod m$, which means that $\gcd((k-1)^2,m)|k-1$. Hence, $\gcd((k-1)^2,m) = \gcd(k-1,m)$, as required.
- (iii) \Rightarrow (i) Let a = x and b = xy. It is easy to calculate that $[a, n b] = y^{-(k-1)^n}$ and $[b, n a] = y^{(k-1)^n}$. If $\gcd(k-1, m) = \gcd((k-1)^2, m)$ then by Lemma 8 there exists s > 1 such that $(k-1)^s \equiv k-1 \mod m$, so $[a, s b] = y^{-(k-1)^s} = y^{-(k-1)} = [a, b]$ and $[b, a] = y^{(k-1)^s} = y^{k-1} = [b, a]$. Hence G is generated by a mep-pair a, b.

If in the presentation (7), m = p is a prime number, then $gcd(k - 1, p) = gcd((k - 1)^2, p)$, so by using criteria (iii) in Theorem 7 we get two Corollaries:

COROLLARY 5. – If p, q are different primes, then every group of order pq is a nmep-group.

PROOF. – If G is abelian, then G is a nmep-group. So let us assume that G is not abelian. If q>p, then it is easy to see that G has the presentation:

$$\langle x, y \mid x^p, y^q, yx = xy^k, k^p \equiv 1 \mod q \rangle$$

Since q is a prime, we have $gcd(k-1,q) = gcd((k-1)^2,q)$, so by Theorem 7, G is a nmep-group.

COROLLARY 6. – Let C_p be a cyclic group of prime order p. Then every subgroup of its holomorph is metacyclic (or abelian) nmep-group.

PROOF. – The automorphism group of C_p is cyclic group of order p-1, so the holomorph of C_p has a presentation:

$$\text{Hol}(C_p) = \langle x, y \mid x^{p-1} = y^p = 1, yx = xy^k \rangle$$

and it satisfies the condition (iii) from Theorem 7, so it is a nmep-group. Let H be a subgroup of $\operatorname{Hol}(C_p)$. It is enough to assume that H is not abelian. The subgroup H is metacyclic and it is generated by some powers of x and y. Indeed the subgroup $H \cap C_p$ is normal and cyclic and the quotient group $H/H \cap C_p \cong HC_p/C_p$ is also cyclic and H is generated by the power of y (which generates $H \cap C_p$) and the power of x (whose image generates $H/H \cap C_p$). Since every power of y has order p, so H also satisfies the condition (iii) of Theorem 7 and H is a nmep-group.

COROLLARY 7. – The dihedral group D_n is a nmep-group if and only if 4/n.

PROOF. – A dihedral group D_n has the presentation (see [1] 1.5):

$$\langle x, y \mid x^2, y^n, yx = xy^{n-1} \rangle$$

and to show that D_n is a nmep-group it is enough to show that gcd(4, n) = gcd(2, n), which holds if and only if 4 n.

COROLLARY 8. – If G is a finite group whose all Sylow subgroups are cyclic then G is metacyclic, nmep-group.

PROOF. – By Theorem 11 from [6] (on page 175) a group whose all Sylow subgroup are cyclic is metacyclic and has a presentation:

$$\langle x, y \mid x^n, y^m, xy = y^r x \rangle$$

with conditions: $r^n \equiv 1 \mod m$, $\gcd((r-1)n, m) = 1$. If $\gcd((r-1)n, m) = 1$ then $\gcd(r-1, m) = 1$ and also $\gcd((r-1)^2, m) = 1$, so this group satisfies condition (iii) of Theorem 7, so it is a nmep-group.

6. – Matrix groups generated by mep- or nmep-pairs.

Now we want to consider groups generated by two matrices of the form $\begin{bmatrix} a & 0 \\ x & b \end{bmatrix}$ over commutative ring R. Such groups are metabelian and since matrices of the form $\begin{bmatrix} u & 0 \\ 0 & u \end{bmatrix}$ are in their centres it is enough to consider matrices of the form $\begin{bmatrix} a & 0 \\ x & 1 \end{bmatrix}$.

THEOREM 8. – Let R be a commutative ring with unity and let a, b be units in R and $x, y \in R$. If $(a-1)^{m-1} = 1$ and $(b-1)^{n-1} = 1$ then matrices

$$A = \begin{bmatrix} a & 0 \\ x & 1 \end{bmatrix}, B = \begin{bmatrix} b & 0 \\ y & 1 \end{bmatrix}$$

form a non-commutative mep-pair that satisfies [A,B] = [A, nB], [B,A] = [B, mA].

PROOF. – For given A, B we have:

$$[A,B] = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix},$$

where s = x(b-1) - y(a-1) and for $n \ge 1$:

$$[A, {}_{n}B] = \begin{bmatrix} 1 & 0 \\ s(b-1)^{n-1} & 1 \end{bmatrix}, \ [B, {}_{m}A] = \begin{bmatrix} 1 & 0 \\ -s(a-1)^{m-1} & 1 \end{bmatrix}$$

and $[A, {}_{n}B] = [A, B]$ if and only if $s = s(b-1)^{n-1}$. So, if $(b-1)^{n-1} = 1$ then the first relation relation holds, and it can be shown similarly the second one.

Let us notice that if R has no zero divisors then the converse is also true (that is if matrices A, B are as in the above Theorem and satisfy $[A, B] = [A, {}_{n}B]$ and $[B, {}_{m}A] = [B, A]$ then $(b-1)^{n-1} = 1$ and $(a-1)^{m-1} = 1$ or A and B commute).

It is a well-known question: for which complex numbers x,y, matrices $X = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$, $Y = \begin{bmatrix} 1 & 0 \\ y & 1 \end{bmatrix}$ generate a free group? By a classical result this group is free for x = y and $|x| \ge 2$ and $|y| \ge 2$ (see for example [3] in the case if x is an integer). We can ask the question: is it possible that such matrices generate a nmep-group? And the answer is: no. For $C = \begin{bmatrix} 1 & 0 \\ 0 & x \end{bmatrix}$, we have $CXC^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $CYC^{-1} = \begin{bmatrix} 1 & 0 \\ xy & 1 \end{bmatrix}$, hence it is enough to consider matrices of the form $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}$.

Theorem 9. – Let $A=\begin{bmatrix}1&1\\0&1\end{bmatrix}$, $B=\begin{bmatrix}1&0\\b&1\end{bmatrix}$. Then for any complex number b,A,B is not a nmep-pair.

PROOF. — We have $[B, {}_kA] = \begin{bmatrix} * & * \\ b^{2^k} & kb^{2^k} + \sum\limits_{s=0}^k b^{2^k-2^s} \end{bmatrix}$. So the equation $[B,A] = [B, {}_kA]$ holds if and only if

(8)
$$b^2 = b^{2^k} \text{ and } b^2 + b + 1 = kb^{2^k} + \sum_{k=0}^{s=k} b^{2^k - 2^s}.$$

Using the first equation we get

$$\begin{aligned} b^2 + b + 1 &= kb^{2^k} + b^{2^k - 1} + b^{2^k - 2} + b^{2^k - 2^2} + \ldots + b^{2^k - 2^{k - 1}} + 1, \\ b^2 + b + 1 &= kb^2 + b + 1 + b^{2^k - 2^2} + \ldots + b^{2^k - 2^{k - 1}} + 1, \\ -(k - 1)b^2 &= b^{2^k - 2^2} + \ldots + b^{2^k - 2^{k - 1}} + 1. \end{aligned}$$

From $b^2 = b^{2^k}$ we have |b| = 1 and so |-(k-1)b| = k-1, on the right side we have k-1 summands b^z with $|b^z| = 1$, one even equal to 1. So all summands on the right side satisfy $b^z = 1$, and $b^2 = -1$. Now $b^2 = b^{2^k}$ is only possible for k = 1, and hence A, B is not a mep-pair (b = 1) is not a solution.

Acknowledgements. The authors wish to thank Hermann Heineken for interesting them in this area of investigations and for suggesting some ideas of this paper.

REFERENCES

- [1] H.S.M. COXETER, W.O.J. MOSER, Generators and Relations for Discrete Groups, Berlin-Heildeberg-New York 1980.
- [2] H. Heineken, Groups generated by two mutually Engel Periodic elements, Bolletino U.M.I., (8) 3-B (2000), 461-470.
- [3] M.I. KARGAPOLOV, Ju. I. MERZLJAKOV, Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979.
- [4] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Dover Publications, Inc. New York 1976.
- [5] J.J. ROTMAN, An Introduction to the Theory of Groups, Springer-Verlag, Inc. New York 1995.
- [6] H.J. ZASSENHAUS, The Theory of Groups, Dover Publications, Inc., Mineola, New York 1999.

Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland E-mail address: piotr@slanina.com.pl E-mail address: Witold.Tomaszewski@polsl.pl

Pervenuta in Redazione il 19 gennaio 2004 e in forma rivista l'11 aprile 2005