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Bollettino U. M. 1.
(8) 10-B (2007), 485-497

Groups Generated by (near) Mutually Engel Periodic Pairs.

P10TR SLANINA - WITOLD TOMASZEWSKI

Sunto. - Scriviamo [x,y] = [x,1 yl e [x.111 y] = [ y], y] Nel presente mostriamo certe
proprieta ed esempi dei gruppi con i generatori x,y tali che x =[x, Y],y = [Yymx] 0
(2, y] = [Xnyl. [y, 2] = [y 2]

Summary. -- We use notations: [x,1 y] = [x,y] and (21 y] =[x, y], ¥yl for k> 1. We
consider groups generated by x,y satisfying relations x =[x, yl,y = ynx] or
[x,y] =[x, y], [y, x] = [y, x]. We call groups of the first type mep-groups and of the
second type nmep-groups. We show many properties and examples of mep- and
nmep-groups. We prove that if p is a prime then the group Sla(p) is a nmep-group. We
give the necessary and sufficient conditions for metacyclic group to be a wmep-group
and we show that wmep-groups with presentation (x,y|lx,y]l =[x, 2yl y,x] =
[y, 2], 2™, y™) are finite.

1. — Introduction.

We use standard notations: [x,y]=[x,;y] ="'y 'y and for k> 1,
[x, . y] = [, .1 ¥], y]. Two elements x, y will be called a mutually Engel periodic
pair (in short a mep-pair) if there exist positive integers m,n, such that
x=1[2,myl, ¥y =¥,»x] and x,y will be called a near mep-pair (a nmep-pair) if
there are m,n > 1 such that [x, y] = [x, ,, ¥], [y, ] = [y, » x]. We say that a group
G is a mep-group (a nmep-group resp.) if it is generated by a mep-pair (a nmep-
pair resp.).

If a = [a,, b] then [a, b] = [a, , 1 b], SO every mep-group is also nmep-group.
The converse statement is not true because every non-trivial two-generator
abelian group is a nmep-group but is not a mep-group.

Groups generated by mep-pairs were considered by H. Heineken in [2].
He showed that if a group G is generated by a mep-pair «,y then G is perfect
(that is G = [G, G]) and elements x, %!, xy~! are conjugated in G. He also find
mep-pairs in groups Sly(¢) in some cases: for every prime q of the form 8t + 5,
for some prime g of the form 8t + 1, for every prime ¢ such that ¢® — q is
divisible by 7 and for ¢ = p?, where p is a prime such that 7 does not divide

P —p.
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In this paper we show some properties and examples of mep- and nmep-
groups. We prove that for every prime p, Sle(p) is the nmep-group. We prove also
that if x, % is a nmep-pair and 2? = y? = 1 then the group generated by x,y is a
dihedral group of order 2"+! + 4 and we prove that groups with presentation
(@, y|le, y] =[x, 2y, [y, 2] = [y, 2 ¢], 2", &™) are finite metabelian (or abelian in
the case when m, n are coprime). We give necessary and sufficient conditions for
finite metacyclic group to be a nmep-group. Finally we construct some matrix
nmep-groups.

Asusual if G is a group then y,,(G) is a member of the lower central series of G,
that is y,(G) = G and for » > 1 we have y,(G) = [y,_1(@),G].

Let us start with some examples.

2. — Examples and properties of mep and nmep-groups.

ExaMPLE 1. - Let G = (x,ylyz = xy*). We show that G is a nmep-group
with a trivial centre. If @ = zy,b = x then [a, - b] = [a,b] and [b,, a] = [b, a], so
a, b is a nmep-pair, generating G. We show that the centre Z(G) of G is trivial.
The relation yr = xy? implies y"2" = z"y™*" and x "y" = y"* 2" for every
integer m and every positive integer n. Hence every element g € G can be
written in the form g = x*y'2™", where [ is an integer and k, n are non-negative.
If 1 # g = zFy!a™ € Z(G) then g cannot be a power of z, so [ # 0. A relation
gr = xg implies 7 'gz = g, and we get xFy? 'z = zFy/x™", so o/ = 1, but it is
possible in G only if [ = 0, which contradicts [ # 0.

ExaMpPLE 2. — If C is an arbitrary cyclic group then A; x C' is a nmep-group
with non-trivial centre (see Corollary 2).

ExampLE 3. — The alternating group As is a mep-group since every pair x, y
of the form x = (ay,as,as,a4,0as),y=(a1,as,as,a;s,ay) generates A; and
satisfies z = [z, 5 y] and y = [y, 5 z].

ExAMPLE 4. — The alternating group Ag is not a mep-group because every
mep-pair in Ag generates a subgroup isomorphic to As.

PROOF. — We can deduce from [2] that if x, % is a mep-pair then x, ~ and 2y !
are conjugated. Soif x, y is a mep-pair generating Sg then x, %, ! have the same
cycle structure and they have the same order. Now we see that x, % cannot be of
order 2, 3,4, since in the first case the group would be dihedral, in the second case
3-cycles never generate Ag and also two permutations which have the structure
(1,7, k), m,n) do not generate Ag (since Ag has an outer automorphism mapping
1,2,3)onto (1,2,3)(4,5,6)),in case of order 4if x = (1,2, 3,4)(5, 6) then there is no
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y such that ' and xy~! are both of order 4. In case of order 5, it is enough to
assume that x = (1,2, 3,4,5) and that y is a 5-cycle fixing the object 1. Such y can
be chosen on 24 ways, but only in 9 cases 2y~ have order 5. If y belongs to the set
{2,3,5,4,6),(2,3,6,5,4),(2,4,5,6,3),(2,6,4,5,3)} then x,y satisfy the relation
[x,y] = [x,11 y] and since x # [x,;, y] for k < 11, x, y is not a mep-pair. If y belongs
to the set {(2,3,5,6,4),(2,4,5,6,3)} then «x,y satisfy the relation [x, y] = [x,13 ¥]
and since « # [«x,; y] for k < 13, x,y is not a mep-pair. If ¥ belongs to the set
{2,5,3,4,6),(2,5,6,3,4)} then x,y satisfy the relation: [y,3x] = [y,13x] and y #
[y, «] for k < 13, so &,y also is not a mep-pair (it can be interesting that in this
case x and y satisfy the relation x = [x,19 ¥] but they do not satisfy y = [y,10 x]).
Finally if x = (1,2,3,4,5) and y = (2,6, 5, 3,4) then «,y is a mep-pair satisfying
relations: x = [x,5%], ¥ = [¥,52], xyx = yxy, > = yx’y and they generate the
group isomporphic to A; (see the Theorem 4 and remarks below that theorem).

ExaMPLE 5. — There are three forms of mep-pairs that generate A;:

(1) x = (a1, a7, 02,04, 05,03,06), Yy = (01,04, 03,07, 06, A2, As5)
(2) © = (a1, a2)(as, a4, a5, 06), Y = (a2, ag)(a4, a7, a5, ag)
() x = (a1, a2, ag)ayg, as)as, ar), y = (a1, as, a5)(az, ar)(as, ag)

Moreover, the pair x = (a1, ag)(ag, aq, a5, ag), ¥y = (a5, ag)ag, ag, a7, ay) is also
a mep-pair in A7 and it generates a simple group of order 168 (all calculations
were done by M. Zabka).

EXAMPLE 6. — For n € {3,4,5,6,7}, S, is a nmep-group.

ProoF. — (1) If » = 3thenforx = (1 2)andy = (1 3) we have [x, y] = [x,3¥]
and [y, x] = [y,3].

(2) If n = 4 then the pair x = (123 4),y = (1 3 2 4) satisfies [x, y] = [y, 5],
[y, 2] = [y, 5] and since x>y = (1 2), S4 is a nmep-group.

(3) If » =5 then the pair x = (12)(345) and y = (1 3)(2 5 4) generates Ss,
because «* = (1 2) and x> = (1 2 3 4 5). We can check that [x, %] = [«, 13 %] and
[y, x] = [y, 13 «], so S5 is a nmep-group.

(4) If n =6 then for the pair: x = (14)326) and y = (1 5)@2 3 4), we get
[x,y] = [x,73y] and [y, x] = [y, 3 x]. We can observe that x,y generate Sg¢ be-

cause x*y%x® = (4 5) and 2 yxy® = (16453 2). It follows that Sg is a nmep-

group.

(5) If n="T then the pair x =(12)34567), y=(13)24765) satisfies
[z, y] =[x, 31 %], [y, 2] = [y,31 x]. Because x° = (12) and x> = (123456 7), S;
is also a nmep-group. O

PRrOPOSITION 1. — Every quotient group of a mep-group (wmep-group) is also
a mep-group (nmep-group).
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PROPOSITION 2. — If G is a mep-group, then G = G'. If G is a nmep-group,

PRrOOF. — For the first statement it is enough to show that G C G’ and for the
second that G’ C y5(G@). If G is a mep-group then G is generated by elements which
are contained in G’ so G C G'. If G is generated by a nmep-pair «x, y that satisfies

[, y1 = [, , y], [y, %] = [y, 2] then [x,y] C 3, 1(G) C p3(@. Since y5(G) is nor-
mal in G and G is normally generated by [x, y], then G' C y5(G). O

PROPOSITION 3. — If G is a solvable (nilpotent) mep-group, then G is trivial.

ProoF. - By the above Proposition a non-trivial mep-group cannot be
solvable. |

PROPOSITION 4. — If G is a nilpotent nmep-group, then G is abelian.

PROPOSITION 5. — If G is generated by = and y which satisfy relations
[z,y] = z and [y, x] = v, then G is trivial.

PrOOF. — We have & = [x, y]=[y,x] '=y tand y L= =[x, y]=[y L, y]=1,
80 G = gp(x, y) is trivial. O

PROPOSITION 6. — Relations x =[z,, yl,y =y, x] and [z,y] =z, ,, y], [y, x] =
[y, m ] are equivalent to x = [z, qyl,y = [y, 4 x], where d = ged(n, m — 1). More-
overif ged(n,m — 1) = 1 then the group generated by x and y is trivial.

ProoOF. - Let d = ged(n,m — 1) and let elements «, y satisfy relations x =
[x,»y],y =y, nx] and [x,y] =[x, ¥], [y, 2] = [y, n 2]. Then there exist positive
integers s, t such that d = sn — t(m — 1). We use assumed relations and we get

(1) [90, y] = [96', Ysm—1 y] = [967 Y, 2(m—1) y] = .. = [9(/', Y, ttm—1) y]a

2) r=[xnyl=[2,2.9l=... =[x, 5yl
By (1) and (2) we get
=2, syl = [, grtom-1)Y] = [, Y, tom-1) ¥s d—1 Y] = [2, 9,41 y] = [, g ¥,

and similarly [y, g ] = y. If d = 1, then by Proposition 5 the group generated by x
and y is trivial. O

PROPOSITION 7. — Let x,y be nontrivial elements of a group G. If k, 1 are the
minimal numbers such that v = [z, y] and [z,y] = [z, y] then | = k + 1.
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Proor. — By Proposition 6 if x = [x, ;] and [x,y] = [x,; y] then x = [«, s ¥]
for d = ged(k,l — 1). Hence d < k,d <1—1 and by the minimality of k£ and [
d=k=1-1,80l=k+1. d

THEOREM 1. — Let x,y be elements of a group G. If N is a subgroup of G, such
that N C Z(G) and xN,yN € G/N is a mep pair then x,y is a nmep-pair.

PRrOOF. — Since a«N,yN is a mep pair there exists k such that
N = [xN,,yN] = [, yIN. So, [z, yle~! € N C Z(G) and then

[ 1yl = [, 0 ]y e, pyly = 2 el gl Dy e, yle Dy = 2y lay =

[, y]

and similarly [y, .1 2] = [y, «]. So «,y is a nmep pair. O

COROLLARY 1. — Let x,y € G be a mep-pair and let a, b belong to the centre of
G. Then H = gp(x,y, a,b) is a nmep-group generated by a wmep-pair xa, yb.

Proor. — By assumptions N = gp(a, b) is contained in Z(H), and xaN, ybN is
a mep-pair. So by the previous Theorem xa, xb is a nmep-pair. Now we show that
the subgroup H = gp(x,y,a,b) is generated by xa,yb. Clearly, gp(xa,yb) C
gp(x, ¥, a, b), so it is enough to prove that x,y € gp(xa, yb). From x = [«,,, ] and
y=Iy,me] we get x=[x,,yl=I[ra,,yd] € gp(ra,yb) and y = [yb,, xa] €
€ gp(xa,yb). O

COROLLARY 2. — If G is a mep-group and A is either cyclic or two-generated
abelian group, then G x A is a nmep-group.

PrOOF. — Since G is generated by a mep-pair x,y, A C Z(G x A) and A is
generated by a,b, we have by Corollary 1 that G is generated by a nmep-pair
xa, yb. O

THEOREM 2. — Pairs u,v of a group G1 and a, b of a group G are mep-pairs if
and only if the pair ua,vb is the mep-pair in G1 x Ga. Moreover, if Gy is gen-
erated by u,v and Gs is generated by a,b and Gy, Gs do not posses the normal
subgroups My, Mz such that G1/M; = Go/Ms # 1 then ua, vb generates G1 x Gg
(so G1 x G2 is & mep-group).

Proor. — First part of Theorem is clear. We can consider G; and G as quo-
tient groups of the two-generated free group ¥, so G; = F /N7 and Gz = F /N,. If
G, and Gy satisfy assumptions of the theorem then N;N; =F (because
F/NiNs = (F/N1)/(N1N2/N1) = (F/N2)/(N1N2/N2)). So there exists a word
w(x,y), such that u = w(u,v) and w(a,b) =1. If we consider the subgroup
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gp(ua, vb) of the group G; x Gg then w(ua, vb) = w(u, v)w(a, b) = wu,v) = u, so
u € gp(ua,vb), and similarly v € gp(ua, vb) and hence gp(ua,vb) = Gy x Go. O

LEMMA 1. — If 2,y € G have order 2, then [z, ., y] = (yx)~2".

PROOF. — If 2, % have order 2 then xy = (yx)~'. To prove the equality we use
an induction on m. For m = 1 we get [x,y] = 'y oy = (xy)* = (yx) > Let us

assume that the formula is true for all integers less or equal m then

[, 1 Y] = [, ] M,y = ()™ 2 L) 2y =

(yx)_(_z)m (xy)(_z)m _ (yx)(_z)nPd )
O

Let us remind that the dihedral group D, has the presentation
(@, yla?, o, (@y)") (see [1] 1.5).

THEOREM 3. — Let G = (x, y|[x, y] = [, y1, [y, 2] = [y, m ], 2%, y?). Then for
even m, G is isomorphic to a dihedral group Don o and for odd m, G is isomorphic
to a dihedral group Don_s.

ProoOF. — By Lemma 1, from ythe relation [x,y] = [, y], we get (y.oc)f2 =
(yx)(_z) . For even m we get (yac)zm+2 =1, so (7 is isomorphic to Don 2. For odd m
we get (y%)zm*2 =1, so G is isomorphic to Don_g. O

3. — Mep-pairs and nmep-pairs x, y satisfying the relation xyx = yxy.

The group Aj; is generated by a mep-paira = (12345),b=(13254) and it
is easy to check that a and b satisfy relations aba = bab, a® =1 and
a = [a,5b],b = [b, 5 a]. The relation xyx = yay simplifies commutators [, ,, ], so
one can ask if there exist many mep-groups in which map-pair «,y satisfies re-
lation xyx = yay? The answer is: there are only two such non-trivial groups: A;
and Sla(5).

First we observe that the relation xyx = yxy implies

3) ayr =y lwy

LEMMA 2. — If elements x, y satisfy the relation xyx = yxy, then for every
positive integer n, [x,, y] =y~ @1y 2,

PrOOF. - We use an induction on n. It follows from xyx = yxy that
[x,y] = yx~!, so the statement is true for n = 1. Let us assume that it is true for n,
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then using the relation xyx = yxy we get:
@1yl = [0 y) My e yly =y 2y e P =
2-2N 09— 170—1,,—1,,20 2-2N,p0pp—1,,—1,0—1,,200

yr Ty ey YT =y e Ty Ty =
y7(2n71)x71y2n — yf(Z(nJrl)73)9071?/2(7%1)72 0
LemMA 3. - If elements x and y satisfy xyx =yxy, then relations
x=[2,,y),y =y, x] are equivalent to x* = ya®y and x** > = y?* >,

PROOF. — If xyx = yxy, then by Lemma 2, x = [, , y] = ¥~ @ Px~1y?"~2 and
by symmetry, y = =@y~ 122"-2 Hence, we get relations y**~2 = xy**3x and
2?2 = yx?"~3y. From the relation 2" 2 = xy®3x follows xy?" 2x~1 = x?y?" 3
and (xyax~ ¥ % = «2y?"3. Now, by using the relation (3), we get y a2y =
2?y?" =3 and x*"2 = ya?y?" 4. We can combine this last relation with 2?2 =
yx?" -3y obtaining ya’y>"* = ya® 3y, so ¥®° =y*°. It means that x> °
lies in the centre, and from the relation % 2=yx* 3y we get
9(13 _ '%.27172%.7(2%75) _ yx2n73yx7(2nf5) — yx2n73x7(217,75)y — yny O

LEMMA 4. — Relations xyx = yxy and x® = yxPy imply «° = °.

PRrROOF. — We show first that relations xyx = yxy and «® = ya?y imply
y? = ya®y. The relation x® = yx®y can be written in the form y~'ady = %y
Hence we get (ylxy)® = y2x2, then by (3), we get xydx! = 2%y% and finally
Y3 = yx*y. Now to show that the relation x® =%° holds we use relations
xyx = yay, 3 = ya2y and y? = xye and we get: (eyx)® = a(yady)r = vade = o
and (vyx)” = (yay)® = y@y?x)y = y° so a® = 1P O

THEOREM 4. — Let G,, be the group with presentation:
Gn = (x,yleyx = yxy,x = [x,, yl,y = [y, nx]).

Then
@) if5|n then Gy, is isomorphic to Sla(5),
() i 5/ n then G, is trivial.

ProOF. — By Lemmas 3 and 4 the presentation of G,, can be written in the
form:

2n—5 __ 2n—5>

G = (x,yleyx = yay, o® = yaty,x y

It can be checked, using the Coxeter-Todd algorithm (see [1]), that G5 has 120
elements. Moreover, since matrices A, B € Slx(5):

a=7 a)s=[0 ]
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generate Slo(5) (see [5], Theorem 8.8) and satisfy relations ABA = BAB,
A3 = BA?B and Sly(5) has 120 elements, G5 is isomorphic to Sly(5).

We have shown in Lemma 4 that in G,, the relation 2°> = % holds. Hence if 5|n
then the relation x2*~> = %**5 is a consequence of &> = #°, so in this case G, is
isomorphic to Gs.

If 5% then numbers 2n — 5 and 5 are coprime. Since in G,, we have x
y?® and 2° = 3°, then #**~° and 2° belong to the centre of G, so (2n — 5 and 5
are coprime) x is in the centre and y is also in the centre. It means that G, is
abelian and a mep-group, so it is trivial. O

2n—5 _

Let us notice that Aj is isomorphic to PSla(5) = Sla(5)/Z(Sla(5)) (see [5] p.
226), and since Z(Sly(5)) has order two and is generated by «°, then A5 has the
presentation:

(@, ylaeye = yry, @ =[x, 59,y = [y,52],2° = 1)
Next we want to investigate nmep-groups generated by nmep-pairs x,y sa-
tisfying the relation xyx = yxy.

LEMMA 5. — If xyx = yay, then relations [x,y] =[x, y], [y, ] = [y, x] are
equivalent to the relation x*"—2 = y>'~2,

PROOF. — By Lemma 2, [x,, y] =y 32 1y* 2 and [x,y] = yx !, so the
relation [x,y]=[x,,y] implies yx =y @ Ir 1922 Hence, we get

xy?" 2 = y?" 2, which can be written in the form xy?" 22! = y**~2 and

(4) (90?/9071)27172 — y2n72.

From relations (3) and (4) we get (y 'ay)* 2 = "2 and finally 42" 2 = y2*~2,
O

COROLLARY 3. — If G is a group generated by elements x,y that satisfy a
relation xyx = yay and x is of finite order, then y has the same order as x and G
s a nmep-group. Particularly if G is finite, then G is a nmep-group.

ProOF. — By (3) « and y are conjugated, so they have the same order. If ele-
ments & and y satisfy xyx = yaxy and have finite order k, then for n = k + 1 we
have x?"~2 = y?*~2, So by Lemma 5 G is a nmep-group. O

THEOREM 5. — For every prime nuwmber p, Sla(p) and PSla(p) are nmep-
groups.

PROOF. - It can be deduced from [5] (Theorem 8.8) that Sla(p) is generated by

two matrices:
1 1 1 0
a=[o 1)e=]1 1]
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and matrices A, B satisfy the relation ABA = BAB, so by Corollary 3 the pair A,
B is a nmep-pair.
Let us observe that Sly(p) is also generated by the nmep-pair:

[ -]

also satisfying XYX = YXY.

4. — Groups generated by nmep-pairs that satisfy [y,x] = [y, x, ], [x,y] =
[z, y,y].

We will use the following commutator identity:
®) [a, bel = [a, blla, DI

LEMMA 6. — If n,m are positive integers and d = ged(n, m), then we have
20 _1=ged(2"—1,2"—1).

THEOREM 6. — Let Gy, ., be the group which has a presentation
Gum = (@, y |y, x] = [y, », 2], [, y] = [x,y,y], 2", y™),

where n, m are positive integers. Then G, , is a finite, metabelian or cyclic group
of order nm(2%¢ — 1), where d = ged(m,n). Elements %, y? belong to the centre of
G. Movreovey, Gy, ts cyclic if and only if n,m are coprime.

PROOF. — Since [y, x, 2] = [x, yPly, #2], relations [y, 2] = [y, x, x] and [x,y] =
[x,y,y] are equivalent to [y,x]3 = [y, 2?] and [z, y]3 = [x,%?]. Hence the pre-
sentation of G, ,, can be written in the form:

<9€,y | [?/;90]3 = [?/7902]7 [907?/]3 = [x7y2]7xn7ym>.

We show now that the commutator subgroup G/, ,, of G, is cyclic and has

order 2¢ — 1, where d = ged(m,n). By (4], 4.3) if Gn;m is generated by « and y,
then the commutator subgroup G, , of G, is generated by commutators
[*, '], where k,l € 7. Since in Gn‘my generators have finite orders, its commu-
tator subgroup is generated by all commutators [«*, '], where k, [ are nonzero,
positive integers. We use relations:

3 2
©) [y,ac]3 = [y, »"],
[907?/] - [907?/2]-

to obtain some new relations:
(@) [2,y) =[x,y
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Indeed using the second relation from (6) we have [x,y]! = y o1y lay? =

y e Yyele, y2] = [y, «llx, y2] = [y, «llxe, y TP = [, y 2.

®) [e, 91 =2,y ", 1> 1.

We show this by induction on /. It is true for [ = 1. Let us assume that it is
true for all numbers less or equal to I. Then, using commutator identity (5), the
relation (a) and the inductional assumption we get:

[, 511 = [, yllee, 51 = [, y)lew, yFF ) = [, y)(lew, )2
Lz, e, y P20 = [ar, P

Sir)lcce relations (6) are symmetric we have also for k > 1 relations [x¥, y] =
[x,y]* ' and

© [,y = [, )% V¢ k>10>1.

So we have shown that every commutator [, '], for k,1 > 1 is a power of
[, y]. It means that [x, y] generates G, ,, and G}, ,, is cyclic. Hence Gy, 5, is cyelic-
by-abelian. Since " = 1 and ™ = 1 we get:

1=[a",y] =[x,y Y,

1 =[x, y"] =[x,y *1.

By Lemma 6, if d = ged(m, n) then 2/ —1 = ged(@"—1,2" —1), so [z, y ' ' = 1. It
means that G, , is cyclic and has order 2?1, moreover Gy, /G, ,, is abelian and
of order mm, so Gy, has order mn24—1).

Since [90 ,yl =[x, y]2 = 1, the element a¢ is in the centre of Gy and si-
milarly ¢ is in the centre.

If m,n are coprime, then the order of G, m is 1, 80 Gy, is cyclic of order mn.

In Example 7 we show the matrix representation of the group G,

n,m

ExamMpLE 7. — Let A, B be following 2 x 2 matrices over the ring Zon_4

2 0 1 0
A‘[1 1}’ B_[o 2-1}

Then A and B satisfy relations [A,B] =1[A,2B],[B,A] = [B,2A]. Moreover

%
AF = [zkz_ 1 ﬂ and B¥ = [(1) ZOk] and since 2" =1 mod (2" — 1), we have

A" =1 and B" = 1. So A and B have order n. The commutator [A, B] is equal to

1 0

11
so [A, B] has order 2" — 1. To show that gp(4, B) ~ G,,, it is enough to prove, by
the above Theorem, that gp(4, B) has exactly n%(2" — 1) elements. Since gp(4, B)
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has a cyclic commutator subgroup, its every element has a form A”B5[A, BT, and
it is easy to see that A" B* belongs to the commutator subgroup of gp(4, B) if and
only if » = s = n. Hence gp(A4, B) has n%(2" — 1) elements and it is isomorphic to
Gnn

It can be deduced from the above Theorem that if d = ged(n, m) then H =
gp@?,y?) is contained in the centre of Gum, SO it is normal in G,, and
Gn,m/H = Gd,d~

5. — When is a finite metacyclic group a nmep-group?

We say that a group G is metacyeclic if it is cyclie-by-cyelie (that is if there
exists a normal cyclie subgroup H in G, such that G/H is cyclic).

By Hélder’s Theorem (see [6] on page 129) finite metacyclic group has a
presentation:

) G=(xy|a" =y y" =1yx=ay"),

where k" =1 mod m and ¢(k — 1) = 0 mod m.

LEMMA 7. — Let G be a finite metacyclic group with presentation (7). Then
G' = gp(F ), and y,,,(G) = gply*1").

PRrROOF. — If G has a presentation (7) then [y,x] =y 'a~lyx = y* 1, so
gp(y*1) C G'. Tt is clear that gp(y*!) is normal in G. Then in G/gp(y*~!) we
have: yx = xy* = zyy* ' = zy, so G/gp(y* 1) is abelian, which means that
G' C gp* .

To prove that y,.1(G) = gp(y*~1"), we use an induction on 7. We proved this
statement for n = 1. Let us assume that y,(G) = op(y®=D""), then Yur1(G) =
ap([y*®-"" 2"7). Since

. n—1 N n—1 . n—1
[ys(kfl) 7901"] :yfs(kfl) xﬂys(kfl) x"

s(kfl)“’lyskr(kfl)”’l k' —1)sk—1)" _ gD

= y7 — y(
we have 7,.1(@ C gp(y*~"). It is easy to calculate that [y,, 2] = y*~V'", so
gp(y*") C y,.1(@), which finishes the proof. 0

COROLLARY 4. — The group G with presentation (7) is nilpotent if and only if
k — 1 is nilpotent in the ring Z,.

LEMMA 8. — Let t be an element of the ring Z,,. Then there exists an integer
s > 1 such that t* =t in Z,, if and only if ged(t,m) = ged(t?, m).
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PRrOOF. — Since Z,, is finite, there exists a pair (z,)) of different integers, such
that t' = ¢/ mod m. Let j > i and j minimal. If ¢ > 1, then m divides t'(1 — t/~7)
and by relatively primes factors m = ged(t’, m)ged(1 — ¢/, m) with ged(#, m) =
ged(t, m), so m divides t(1—¢/~) contrary to minimality of j. On the other hand, if
t — t* is divisible by m then ged(t, m) < ged(t?,m) < ... < ged(t*, m) = ged(t, m)
gives the result. O

THEOREM 7. — Let G be a finite metacyclic group with presentation
G=(xy|a"=y,y" yr=ay* k" =1 modm, t(k —1) =0 mod m).
Then following statements are equivalent:

() G is mmep-group,
(i) G' = y5(G).
(i) ged(k — 1,m) = ged((k — 1)2,m),

ProoF. — (i) = (ii) This implication holds in general not only for metacyclic
groups (we prove it in Proposition 2).

(ii) = (iii) If G’ = p4(G), then by Lemma 7 (y(’“‘”2> = (y*~1), so there exists in-
teger x, such that (k — 1%z =k — 1 mod m, which means that ged((k— l)z,m)|k— 1.
Hence, ged((k — 1)?,m) = ged(k — 1,m), as required.

(iii) = (i) Let @ = x and b = xy. It is easy to calculate that [a,, D] = ¥
and [b, , a] = y* V", If ged(k — 1,m) = ged((k — 1)*,m) then by Lemma 8 there
exists s > 1 such that (k —1)* =k — 1 mod m, so [a,sb] =y * V" =4y &D =
[a,b]and [b, s a] = y* V" = y*~1 =[b, a]. Hence G is generated by a mep-pair a, b.

O

—(k-1"

If in the presentation (7), m = p is a prime number, then ged(k — 1,p) =
ged((k — 1)%,p), so by using criteria (iii) in Theorem 7 we get two Corollaries:

COROLLARY 5. — If p, q are different primes, then every group of order pq is a
nmep-group.

ProoF. — If G is abelian, then G is a nmep-group. So let us assume that G is
not abelian. If ¢ > p, then it is easy to see that G has the presentation:
(w,y | 2P, y", yo = wy®, kP = 1 mod q)
Since ¢ is a prime, we have ged(k — 1, q) = ged((k — 1)2, qQ), s0 by Theorem 7, G is

a nmep-group. O

COROLLARY 6. — Let C,, be a cyclic group of prime order p. Then every
subgroup of its holomorph is metacyclic (or abelian) nmep-group.
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ProOF. — The automorphism group of C, is eyclic group of order p — 1, so the
holomorph of C,, has a presentation:

Hol(C)) = (x,y | 2" = 9" =1,y = ay/¥)

and it satisfies the condition (iii) from Theorem 7, so it is a nmep-group. Let H
be a subgroup of Hol(C,). It is enough to assume that H is not abelian. The
subgroup H is metacyclic and it is generated by some powers of x and y.
Indeed the subgroup H NC, is normal and cyclic and the quotient group
H/HNC, =~ HC,/C,is also cyclic and H is generated by the power of y (which
generates H N C,) and the power of x (whose image generates H/H N C,).
Since every power of y has order p, so H also satisfies the condition (iii) of
Theorem 7 and H is a nmep-group. O

COROLLARY 7. — The dihedral group D,, is a mmep-group if and only if 4/ n.

PrOOF. — A dihedral group D,, has the presentation (see [1] 1.5):

(o, y | @y ye = ay" )
and to show that D,, is a nmep-group it is enough to show that ged(4,n) =
ged(2, n), which holds if and only if 4 n. O

COROLLARY 8. — If G is a finite group whose all Sylow subgroups are cyclic
then G is metacyclic, nmep-group.

Proor. — By Theorem 11 from [6] (on page 175) a group whose all Sylow
subgroup are cyclic is metacyelic and has a presentation:

(x,y | ", y", oy = y'x)

with conditions: #" =1 mod m, ged((r — I)n,m) =1. If ged((r — D)n,m) =1
then ged(r —1,m) =1 and also ged((r — l)z,m) =1, so this group satisfies
condition (iii) of Theorem 7, so it is a nmep-group. O

6. — Matrix groups generated by mep- or nmep-pairs.

Now we want to consider groups generated by two matrices of the form
{a (b)} over commutative ring R. Such groups are metabelian and since ma-
trices of the form [73 0 } are in their centres it is enough to consider matrices of

the form {a O}.
x 1
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THEOREM 8. — Let R be a commutative ring with unity and let a, b be units in
Randx,y € R If(a — D" ' =1 and (b—1)""" =1 then matrices

R

form a mon-commutative mep-pair that satisfies [A,B]=1[A,, Bl [B,A]=
[B,m Al

PrOOF. — For given A, B we have:
10
[A,B] = [S 1] ,

where s = (b — 1) — y(a — 1) and for n > 1:

1 0 1 0
[A,n B] = |:S(b _ 1)%71 1:|a [vaA] = |:—S(a/ _ 1)m71 1

and [A,,, B] = [A, B] if and only if s = s(b — 1)""*. So, if (b — 1)""! =1 then the
first relation relation holds, and it can be shown similarly the second one. 0O

Let us notice that if R has no zero divisors then the converse is also true (that
is if matrices A, B are as in the above Theorem and satisfy [A,B] =[A,,, B] and
[B, Al =[B,Al then (b —1)"' =1 and (@ — 1)" ' =1 or A and B commute).

It is a well-known question: for which complex numbers x,y, matrices

X = {(1) ﬂ, Y = [; (1)] generate a free group? By a classical result this

group is free for ¥ =y and |x| > 2 and |y| > 2 (see for example [3] in the case
if « is an integer). We can ask the question: is it possible that such matrices

generate a nmep-group? And the answer is: no. For C = [(1) g}, we have

L1
cxXC _{0 .

of the form A = [1 1},B: [1 0}.

], CcYC! = [xly (1)}, hence it is enough to consider matrices

01 b 1

10

11
THEOREMQ.—LetAZ[O 1},32[[] 1

}. Then for any complex number
b, A, B is not a nmep-pair.

* *
Proor. - Wehave [B, ;A]= R Xk: bzkzs} .Sothe equation[B,A] =
[B, ;. A] holds if and only if 5=0
s=k
® B =0 and b +b+1=kt" +> ¥ 7

s=0
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Using the first equation we get

VPrb+1=kb? + 02 140224022 2
V+b+1=kb>2+b+1+ b2’°—22 N bz/c_gkq 41,
(-1 =% ¢ 2 L

From b2 = b2 we have |b| = 1 and so | — (k — 1)b| = k — 1, on the right side we
have k — 1 summands b* with |b?| = 1, one even equal to 1. So all summands on
the right side satisfy b° = 1, and b% = —1. Now b% = b?" is only possible for k = 1,
and hence A, B is not a mep-pair (b = 1 is not a solution). O
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