ZBIGNIEW DUSZYŃSKI

Remarks on S-Closedness in Topological Spaces

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10B_2_469_0>
Remarks on S-Closedness in Topological Spaces.

Zbigniew Duszyński

Sunto. – Relativamente al [27], sono provate alcune proprietà dei sottospazi S-chiusi e dei sottoinsiemi S-chiusi di uno spazio topologico. Sono studiate delle condizioni mediante le quali le applicazioni conservano alcuni sottospazi S-chiusi.

Summary. – Corresponding to [27], some properties of S-closed subspaces and subsets S-closed relative to a topological space are proved. Conditions under which mappings preserve certain S-closed subspaces are investigated.

1. – Preliminaries.

Topological spaces are denoted by (X, τ). Let S be a subset of a space (X, τ). We denote the interior and the closure of S in this space by $\text{int}(S)$ (or $\text{int}_X(S)$) and $\text{cl}(S)$ (or $\text{cl}_X(S)$), respectively. The set S is said to be regular open (resp. regular closed) in (X, τ), if $S = \text{int}(\text{cl}(S))$ (resp. $S = \text{cl}(\text{int}(S))$). The S is said to be a-open [23] (resp. semi-open [19]; preopen [20]; semi-preopen [1, 2]), if $S \subset \text{int}(\text{cl}(\text{int}(S)))$ (resp. $S \subset \text{cl}(\text{int}(S))$; $S \subset \text{int}(\text{cl}(S))$). The complement to X of an a-open (resp. semi-open; preopen; semi-preopen) set is said to be an a-closed (resp. semi-closed; preclosed; semi-preclosed) set. The intersection of all a-closed (resp. semi-closed; preclosed; semi-preclosed) sets (in (X, τ)) containing S is called the a-closure (resp. semi-closure; preclosure; semi-preclosure) of S in (X, τ), and it is denoted respectively by $a\text{-cl}(S)$ (or $a\text{-cl}_X(S)$), $\text{sc}(S)$ (or $\text{sc}_X(S)$), $\text{pcl}(S)$ (or $\text{pcl}_X(S)$), $\text{spcl}(S)$ (or $\text{spcl}_X(S)$). The set S is a-closed (resp. semi-closed; preclosed; semi-preclosed) if and only if $a\text{-cl}(S) = S$ (resp. $\text{sc}(S) = S$; $\text{pcl}(S) = S$; $\text{spcl}(S) = S$). Each closed subset of a space (X, τ) is a-closed, semi-closed, preclosed, and semi-preclosed. The collection of all a-open (resp. semi-open; preopen; semi-preopen) subsets of a space (X, τ) is denoted by $a\text{-O}(X, \tau)$ or a^c (resp. $\text{SO}(X, \tau)$, $\text{PO}(X, \tau)$; $\text{SPO}(X, \tau)$). The family of all regular open (resp. regular closed; semi-closed) subsets of (X, τ) is denoted by $\text{RO}(X, \tau)$ (resp. $\text{RC}(X, \tau)$, $\text{SC}(X, \tau)$). Members of the intersection $\text{SR}(X, \tau) = \text{SO}(X, \tau) \cap \text{SC}(X, \tau)$ are called semi-regular sets [9]. A space (X, τ) is extremally disconnected (briefly e.d.) if $\text{cl}(V) \in \tau$ for each $V \in \tau$.
T. Thompson [40] has defined an (X, τ) to be \textit{S-closed}, if for every cover \(\{V_a : a \in A\} \subset \text{SO}(X, \tau)\) of \(X\) there exists a finite subfamily \(A_1 \subset A\) such that \(X = \bigcup_{a \in A_1} \text{cl}_X(V_a)\). T. Noiri [27] has defined a subset \(S\) of \((X, \tau)\) to be \textit{S-closed relative} to \((X, \tau)\), if for every cover \(\{V_a : a \in A\} \subset \text{SO}(X, \tau)\) of \(S\) there exists a finite subfamily \(A_1 \subset A\) such that \(S \subset \bigcup_{a \in A_1} \text{cl}_X(V_a)\).

2. – \textit{S-closed subspaces}.

From [27, Corollary 3.4] we obtain, as a particular case, the following

\textsc{Corollary 2.1.} – If \(A\) and \(B\) are both \textit{S-closed regular open} subspaces of a space \((X, \tau)\), then \(A \cap B\) is an \textit{S-closed} subspace of \((X, \tau)\).

Utilizing [27, Theorem 3.1], we can reexpress Corollary 2.1 as follows:

\textsc{Corollary 2.1‘.} – If sets \(A\) and \(B\) are both regular open and are \textit{S-closed relative} to \((X, \tau)\), then \(A \cap B\) is an \textit{S-closed} subspace of \((X, \tau)\).

This result we generalize in the following way.

\textsc{Theorem 2.2.} – Let \(A, B \in \text{SC}(X, \tau)\) and \(A \cap B \in \tau\). If \(A\) and \(B\) are both \textit{S-closed relative} to \((X, \tau)\), then \(A \cap B\) is an \textit{S-closed} subspace of \((X, \tau)\).

\textsc{Proof.} – Since \(A \cap B \in \text{SC}(X, \tau) \cap \tau\), clearly we have \(A \cap B \in \text{RO}(X, \tau)\) (see also for instance [11, Lemma 2.2 (2)]). So, it follows from [27, Theorems 3.3 and 3.1] that \(A \cap B\) is an \textit{S-closed} subspace.

\textsc{Lemma 2.3.} – Let \(A\) be a subset of \((X, \tau)\). Then, the following holds:

\textbf{(a)} [18, Proposition 2.7]. \(A \in \text{PO}(X, \tau)\) iff \(\text{scl}(A) = \text{int}(\text{cl}(A))\).

\textbf{(b)} [2, Theorem 2.20(a)]. \(A \in a-O(X, \tau)\) iff \(\text{spcl}(A) = \text{int}(\text{cl}(\text{int}(A)))\).

\textbf{(c)} [2, Theorem 2.20(c)]. \(A \in \text{SPO}(X, \tau)\) iff \(a-\text{cl}(A) = \text{cl}(\text{int}(\text{cl}(A)))\).

\textbf{(d)} \(A \in \text{SO}(X, \tau)\) iff \(\text{pcl}(A) = \text{cl}(\text{int}(A))\).

\textsc{Proof.} – To prove the case (d) we use [2, Theorem 1.5 (e)].

\textsc{Theorem 2.4.} – Let \(A\) be \textit{S-closed relative} to \((X, \tau)\). Then,

\textbf{(a)} \(a-\text{cl}_X(A), \text{scl}_X(A), \text{pcl}_X(A), \text{spcl}_X(A)\) are \textit{S-closed relative} to \((X, \tau)\);

\textbf{(b)} \(A \in \text{PO}(X, \tau)\), then \(\text{int}_X(\text{scl}_X(A))\) is \textit{S-closed relative} to \((X, \tau)\);

\textbf{(b)} \(A \in a-O(X, \tau)\), then \(\text{int}_X(\text{spcl}_X(A))\) is \textit{S-closed relative} to \((X, \tau)\);

\textbf{(b)} \(A \in \text{SPO}(X, \tau)\), then \(\text{int}_X(a-\text{cl}_X(A))\) is \textit{S-closed relative} to \((X, \tau)\);

\textbf{(b)} \(A \in \text{SO}(X, \tau)\), then \(\text{int}_X(\text{pcl}_X(A))\) is \textit{S-closed relative} to \((X, \tau)\).
PROOF. – (a). Proofs for all kinds of closures are quite similar to that of [27, Theorem 3.4] (for \(\text{cl}(A) \)).

(b). We apply: respective parts of the case (a), Lemma 2.3, and [27, Theorem 3.3]. \(\square \)

Corollary 2.5. – If \(A \in \text{PO}(X, \tau) \) (resp. \(A \in a-\text{O}(X, \tau) \); \(A \in \text{SPO}(X, \tau) \); \(A \in \text{SO}(X, \tau) \)) is \(S \)-closed relative to \((X, \tau)\), then the set \(\text{int}_X(\text{scl}_X(A)) \) (respectively \(\text{int}_X(\text{spcl}_X(A)); \text{int}_X(a-\text{cl}_X(A)); \text{int}_X(\text{pcl}_X(A)) \)) is an \(S \)-closed subspace of \((X, \tau)\).

Proof. – Follows from Theorem 2.4(b), Lemma 2.3, and [27, Theorem 3.1]. \(\square \)

Remark 2.6. – Without difficulties one checks that [27, Theorem 3.5] is also true if we replace “\(A \) is \(S \)-open ...” by “\(A \) is an \(S \)-closed \(a \)-open ...”. We obtain below that similar results hold also for weaker kinds of closure of \(a \)-open sets.

Theorem 2.7. – Let \(A \) be an \(S \)-closed \(a \)-open subspace of \((X, \tau)\). Then, \(\text{scl}_X(A), \text{spcl}_X(A), a-\text{cl}_X(A), \) and \(\text{pcl}_X(A) \) are \(S \)-closed subspaces of \((X, \tau)\).

Proof. – We apply respective parts of Lemma 2.3 for each considered case of weak closures, which are of the form \(\text{int}(\text{cl}(.) \) or \(\text{cl}(\text{int}(.) \). So, \(\text{scl}_X(A), \text{spcl}_X(A), a-\text{cl}_X(A), \) and \(\text{pcl}_X(A) \) are semi-open in \((X, \tau)\). The proof for each case is quite similar to that of [27, Theorem 3.5] and hence we can leave details to the reader. \(\square \)

Theorem 2.8. – Let \((X, \tau)\) be an \(S \)-closed space.

(a) Let \(A \) be a semi-closed (resp. a semi-preclosed) subset of \((X, \tau)\). If \(A \in \text{PO}(X, \tau) \) (resp. \(A \in a-\text{O}(X, \tau) \)) then \(A \) is an \(S \)-closed subspace of \((X, \tau)\).

(b) Let \(A \) be an \(a \)-closed (resp. a preclosed) subset of \((X, \tau)\). If \(A \in \text{SPO}(X, \tau) \) (resp. \(A \in \text{SO}(X, \tau) \)) and \(\text{Fr}(A) \) is \(S \)-closed relative to \((X, \tau)\), then \(A \) is \(S \)-closed relative to \((X, \tau)\).

Proof. – (A). This follows from Lemma 2.3 and [27, Corollary 3.2].

(B) follows from Lemma 2.3, [27, Theorem 3.3], and [27, Theorem 3.6] (see the proof of [27, Theorem 3.7]). \(\square \)

Recall that a space \((X, \tau)\) is called **locally \(S \)-closed** [27, Definition 4.1], if each point of \(X \) has an open neighbourhood which is an \(S \)-closed subspace of \((X, \tau)\).

Theorem 2.9. – (see [27, Theorem 4.1]). For a space \((X, \tau)\) the following are equivalent:

1. \((X, \tau)\) is locally \(S \)-closed.
(2) Each point of X has an open neighbourhood which is S-closed relative to (X, τ).

(3) Each point of X has an open neighbourhood V such that a-$\text{cl}_X(V)$ (resp. $\text{sc}_X(V); \text{pel}_X(V); \text{sc}_{\text{pel}}_X(V)$) is S-closed relative to (X, τ).

(4) Each point of X has an open neighbourhood V such that $\text{int}_X(a$-$\text{cl}_X(V))$ (resp. $\text{int}_X(\text{sc}_X(V)); \text{int}_X(\text{pel}_X(V); \text{int}_X(\text{sc}_{\text{pel}}_X(V)$) is S-closed relative to (X, τ).

(5) Each point of X has an open neighbourhood V such that $\text{int}_X(a$-$\text{cl}_X(V)$ (resp. $\text{int}_X(\text{sc}_X(V); \text{int}_X(\text{pel}_X(V); \text{int}_X(\text{sc}_{\text{pel}}_X(V)$) is an S-closed subspace of (X, τ).

Proof. – (1)\Rightarrow(2) and (4)\Rightarrow(5) follow from [27, Theorem 3.1]. (2)\Rightarrow(3): the case (a) of Theorem 2.4. (3)\Rightarrow(4): Theorem 2.4. (5)\Rightarrow(1) is obvious.

In every space (X, τ)
$$V \cap \text{sc}(S) \subset \text{cl}(\text{sc}(V \cap S))$$
for each $S \subset X$ and $V \in \text{SO}(X, \tau)$.

Remark 2.11. – Recall that
$$\text{RO}(X, \tau) \cup \text{RC}(X, \tau) \subset \text{SR}(X, \tau),$$
[39, Lemma 2.3]. This inclusion is proper, in general.

The following theorem is a slight improvement of [27, Theorem 3.3] for the case of spaces that are not e.d.

Theorem 2.12. – Assume that a space (X, τ) is not e.d. Let an $A \subset X$ be S-closed relative to (X, τ) and a set $B \in \text{RO}(X, \tau)$ or $B \in \text{SR}(X, \tau) \setminus \text{RO}(X, \tau)$ with $\text{cl}(B) = \text{sc}(B)$. Then $A \cap B$ is S-closed relative to (X, τ).

Proof. – Suppose $A \cap B \subset \bigcup_{a \in A} V_a$, where $V_a \in \text{SO}(X, \tau)$ for each $a \in A$. Since $B \in \text{SR}(X, \tau)$, thus $X \setminus B \in \text{SO}(X, \tau)$ [39, Lemma 2.2 (ii)] and
$$A \subset (X \setminus B) \bigcup \bigcup_{a \in A} V_a.$$
But A is an S-closed relative to (X, τ), thus there exists a finite subfamily $A_1 \subset A$ such that
$$A \subset \text{cl}(X \setminus B) \bigcup \bigcup_{a \in A_1} \text{cl}(V_a).$$
Utilizing Lemma 2.10 we obtain
\[A \cap B \subseteq (B \cap \text{scl}(X \setminus B)) \cup \bigcup_{a \in A_1} \text{cl}(V_a) = \bigcup_{a \in A_1} \text{cl}(V_a). \]

This shows that \(A \cap B \) is \(S \)-closed relative to \((X, \tau)\).

\(\Box \)

Remark 2.13. – (a). The author proved in [14] that a space \((X, \tau)\) is e.d. if and only if for each \(S \in \text{SO}(X, \tau) \), \(\text{sel}(S) = \text{int}(\text{cl}(S)) = \text{cl}(\text{int}(S)) \). Thus, by [24, Lemma 2] we obtain that in e.d. spaces \(\text{cl}(S) = \text{scl}(S) \) for each \(S \in \text{SO}(X, \tau) \). The reversed implication is also true. This equivalence was proved in [9, Proposition 2.4].

(b). The author proved in [14] that a space \((X, \tau)\) is e.d. if and only if \(\text{RO}(X, \tau) = \text{RC}(X, \tau) \). On the other hand, by [10, Proposition 2(i)] \(\text{SR}(X, \tau) = \text{RO}(X, \tau) \cap \text{RC}(X, \tau) \) and [39, Lemma 2.3] (see Remark 2.11), we have \(\text{RO}(X, \tau) \cup \text{RC}(X, \tau) = \text{SR}(X, \tau) \) in any e.d. space. Consequently, in these spaces we have \(\text{RO}(X, \tau) = \text{SR}(X, \tau) \). To give an example of a set \(B \in \text{SR}(X, \tau) \setminus \text{RO}(X, \tau) \) for which \(\text{cl}(B) = \text{scl}(B) \), it is enough to consider the space of reals with usual topology and \(B = [0, 1] \).

Corollary 2.14. – (see [27, Corollary 3.2]). If \((X, \tau)\) is an \(S \)-closed not e.d. space and an \(A \in \text{RO}(X, \tau) \) or \(A \in \text{SR}(X, \tau) \setminus \text{RO}(X, \tau) \) with \(\text{cl}(A) = \text{scl}(A) \), then \(A \) is \(S \)-closed relative to \((X, \tau)\).

Proof. – To see \(S \)-closedness of \(A \) relative to \((X, \tau)\) we apply [27, Theorem 3.1] and Theorem 2.12. Notice that if \(A \in \text{SR}(X, \tau) \) and \(\text{cl}(A) = \text{scl}(A) \), then \(A \in \text{RC}(X, \tau) \).

\(\Box \)

Corollary 2.15. – (see [27, Corollary 3.3]). Let \((X, \tau)\) be not an e.d. space. If an \(A \) is \(S \)-closed relative to \((X, \tau)\) and a set \(B \in \text{RO}(X, \tau) \) or \(B \in \text{SR}(X, \tau) \setminus \text{RO}(X, \tau) \) with \(\text{cl}(B) = \text{scl}(B) \), then

1. \(A \cap B \) is \(S \)-closed relative to \(B \).
2. \(B \) is \(S \)-closed relative to \((X, \tau)\), if \(B \subseteq A \).

Proof. – (1) follows from Theorem 2.12 and [27, Theorem 3.2] (strong sufficiency). (2): Theorem 2.12.

\(\Box \)

The following corollary is an improvement of [27, Corollary 3.1].

Corollary 2.16. – Let \(A \) and \(X_0 \) be \(a \)-open subsets of a space \((X, \tau)\) such that \(A \subset X_0 \). Then, \(A \) is an \(S \)-closed subspace of \((X_0, \tau_{X_0})\) if and only if \(A \) is an \(S \)-closed subspace of \((X, \tau)\).
Proof. – We use [33, Lemma 2], [27, Theorem 3.1], and [27, Theorem 3.2].

The next corollary is an immediate consequence of [27, Theorem 3.2].

Corollary 2.17. – Let $A \subset X_0 \subset X_1 \subset X$ and X_0, X_1 be a-open subsets of (X, τ). Then, A is an S-closed relative to (X_0, τ_{X_0}) if and only if A is an S-closed relative to (X_1, τ_{X_1}).

Using [33, Lemma 2] and Corollary 2.16 we infer what follows.

Corollary 2.18. – Let $A \subset X_0 \subset X_1 \subset X$ and A, X_0, X_1 be a-open subsets of (X, τ). Then, A is S-closed subspace of (X_0, τ_{X_0}) if and only if A is S-closed subspace of (X_1, τ_{X_1}).

Theorem 2.19. – Let A be an S-closed a-open subspace of (X, τ). Then, $scl_X(A)$ is S-closed relative to $(cl_X(A), \tau_{cl_X(A)})$.

Proof. – Let $\{V_a : a \in A\} \subset SO(cl_X(A), \tau_{cl_X(A)})$ be a cover of $scl_X(A)$. Obviously, $\{V_a : a \in A\}$ is a cover of A. Since $A \in \tau^a$, $cl_X(A) \in SO(X, \tau)$. Hence $V_a \in SO(X, \tau)$ for each $a \in A$ [24, Theorem 1]. By [27, Theorem 3.1] the set A is S-closed relative to (X, τ). Thus, there exists a finite subset $A_1 \subset A$ with $A \subset \bigcup_{a \in A_1} cl_X(V_a)$. This inclusion implies that $scl_X(A) \subset \bigcup_{a \in A_1} cl_X(V_a)$. So, we obtain $scl_X(A) \subset \bigcup_{a \in A_1} (cl_X(V_a) \cap cl_X(A)) = \bigcup_{a \in A_1} cl_{cl_X(A)}(V_a)$ and the proof is complete. □

Remark 2.20. – Let an $A \in RO(X, \tau)$ be such that $cl_X(A) \in \tau^a$. The set $scl_X(A)$ is S-closed relative to $(cl_X(A), \tau_{cl_X(A)})$ if and only if A is an S-closed subspace of (X, τ).

Proof. – It is enough to show that A is closed in (X, τ). Namely, we have

\[
cl_X(A) \subset int_X(cl_X(int_X(cl_X(A)))) \subset cl_X(A).
\]

So, $cl_X(A) = int_X(cl_X(A))$ and by hypothesis $cl_X(A) = A$. □

Corollary 2.21. – Let an $A \in RO(X, \tau)$ be such that $cl_X(A) \in \tau^a$. Then, A is an S-closed subspace of (X, τ) if and only if $scl_X(A)$ is S-closed relative to $(cl_X(A), \tau_{cl_X(A)})$.

Recall that a topological space (X, τ) is said to be semi-connected [32], if X cannot be written as a union of two nonempty disjoint semi-open sets in (X, τ). In the opposite case a space is called semi-disconnected.
Theorem 2.22. Let $A \neq \emptyset$ be S-closed relative to (X, τ) and $\text{cl}(A) \subseteq X_0 \subset X$. If there exists a subfamily $\{V_a : a \in A\} \subset \text{SO}(X, \tau)$ such that $(a_1) A \supset \bigcup_{a \in A} V_a$ and $(a_2) A \subset \bigcup_{a \in A} \text{cl}(V_a)$, then (X_0, τ_{X_0}) is semi-disconnected.

Proof. We have $\text{cl}(V_a) \subset \text{SO}(X, \tau)$ for each $a \in A$. Since A is an S-closed relative to (X, τ), thus by (a_2) there exists a finite subset $A_1 \subset A$ such that $A \subset \bigcup_{a \in A_1} \text{cl}(V_a)$. Hence $\text{cl}(A) \subset \bigcup_{a \in A_1} \text{cl}(V_a)$. On the other hand, by (a_1) we have $\text{cl}(A) \supset \bigcup_{a \in A_1} \text{cl}(V_a) \supset \bigcup_{a \in A_1} \text{cl}(V_a)$. Thus, $\text{cl}(A) = \bigcup_{a \in A_1} \text{cl}(V_a)$ and hence

$$
\text{cl}_{X_0}(A) = \bigcup_{a \in A_1} \text{cl}_{X_0}(V_a).
$$

By (a_1), $V_a \subset X_0$ for each $a \in A$, thus by [19, Theorem 6] every set $V_a \subset \text{SO}(X_0, \tau_{X_0})$. So, (1) implies that $\text{cl}_{X_0}(A) \subset \text{SO}(X_0, \tau_{X_0})$ [19, Theorem 2]. To finish the proof it is enough to observe that $\emptyset \neq X_0 \setminus \text{cl}_{X_0}(A) \in \tau_{X_0}$. \hfill \Box

It is known that the family τ^a induced by τ forms a topology on X [23], which is different than τ, in general. Recall that for any $S \in \text{SO}(X, \tau)$ we have $a\text{-cl}(S) = \text{cl}(S)$ [18, Proposition 2.22].

Theorem 2.23. Let (X, τ) be a space, $A \in \text{SO}(X, \tau)$, $B \in \tau^a$, and $A \cap B = \emptyset$. If the set $A \cup B$ is S-closed relative to (X, τ), then the set B is S-closed relative to (X, τ).

Proof. Let $\mathcal{F} = \{U_a : a \in \nabla\} \subset \text{SO}(X, \tau)$ be a cover of B. Then, the family $\mathcal{F} \cup \{A\}$ covers $A \cup B$. By hypothesis there exists a finite subfamily $\mathcal{F}' = \{U_{a_i} : i = 1, \ldots, n\} \subset \mathcal{F}$ such that

$$
A \cup B \subset \bigcup_{i=1}^n \text{cl}(U_{a_i}) \cup \text{cl}(A).
$$

So, we obtain

$$
B \subset \bigcup_{i=1}^n \text{cl}(U_{a_i}) \cup a\text{-cl}(A \cap B) = \bigcup_{i=1}^n \text{cl}(U_{a_i}).
$$

This shows that B is S-closed relative to (X, τ). \hfill \Box

In [15] the author has proved that a space (X, τ) is semi-disconnected if and only if there exist nonempty sets $U_1 \in \text{SO}(X, \tau)$, $U_2 \in \tau^a$ such that $X = U_1 \cup U_2$ and $U_1 \cap U_2 = \emptyset$. Directly from this result and Theorem 2.23 one obtains the following corollary.
COROLLARY 2.24. – Let (X, τ) be a semi-disconnected and S-closed space. Then there exists a nonempty a-open proper subset of X, S-closed relative to (X, τ).

REMARK 2.25. – Let (X, τ) be S-closed and A be clopen. Then $X \setminus A$ is S-closed relative to (X, τ) (hence S-closed subspace of (X, τ) [27, Theorem 3.1]).

PROOF. – Obvious since $X \setminus A$ is clopen in (X, τ). □

THEOREM 2.26. – Let a subset A of a space (X, τ) be clopen and be an S-closed subspace of (X, τ). Then (X, τ) is S-closed if and only if $X \setminus A$ is an S-closed subspace of (X, τ).

PROOF. – It follows from Remark 2.25, [27, Theorem 3.1], and [27, Theorem 3.6]. □

In [5] Cameron introduced the concept of I-compactness of a space. It was established [5, Corollary 3] that I-compact spaces are precisely the S-closed spaces which are e.d. Recall that a subset S of a space (X, τ) is I-compact relative to (X, τ) if every cover of S with semi-open sets has a finite subfamily interiors of closures of whose members cover S [37]. A subset A of a space (X, τ) is N-closed if every cover with regular open sets has a finite subcover [6]. A space is said to be weakly Hausdorff if for each point $x \in X$, $\{x\}$ is the intersection of all regular closed sets containing x [38].

THEOREM 2.27. – Let (X, τ) be weakly Hausdorff. If $A \in \text{PO}(X, \tau)$ is I-closed relative to (X, τ) and $X \setminus A$ is N-closed, then there exists a finite partition of X by regular open subsets of (X, τ).

PROOF. – This is an immediate consequence of [37, Lemma 4.13] and [37, Theorem 4.16] (we use [11, Lemma 2.2(4)] and the well known fact that the intersection of two regular open sets is regular open too [12, p. 92, 22g]). □

3. – Mappings and S-closedness.

DEFINITION 3.1. – [17]. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be almost continuous (in the sense of Husain), if for each $x \in X$ and each neighbourhood V of $f(x)$, $\text{cl} \ (f^{-1}(V))$ is a neighbourhood of x.

Mashhour et al. observed [20] that almost continuity in the sense of Husain coincides with precontinuity (i.e., $f^{-1}(V) \subset \text{int} \ (\text{cl} \ (f^{-1}(V)))$ for each $V \in \sigma$).
DEFINITION 3.2. – [19]. A mapping $f : (X, \tau) \to (Y, \sigma)$ is **semi-continuous** if $f^{-1}(V) \in \text{SO}(X, \tau)$ for every set $V \in \sigma$.

A. Neubrunnová showed [22] that precontinuity and semi-continuity are independent of each other.

DEFINITION 3.3. – [29]. A mapping $f : (X, \tau) \to (Y, \sigma)$ is **strongly semi-continuous** (Mashhour et al. [21] call these mappings a-continuous) if $f^{-1}(V) \in \tau'$ for each $V \in \sigma$.

DEFINITION 3.4. – [8]. A mapping $f : (X, \tau) \to (Y, \sigma)$ is **irresolute** if $f^{-1}(V) \in \text{SO}(X, \tau)$ for each $V \in \text{SO}(Y, \sigma)$.

Each irresolute mapping is semi-continuous ($\tau \subset \text{SO}(X, \tau)$). Each a-continuous mapping is semi-continuous and precontinuous ($\tau \subset \text{SO}(X, \tau) \cap \text{PO}(X, \tau) = \tau'$ [30, Lemma 3.1]).

Janković showed the following.

THEOREM 3.5. – [18, Corollary 4.14]. Let $f : (X, \tau) \to (Y, \sigma)$ be a precontinuous and irresolute mapping. If G is a subset S-closed relative to (X, τ), then $f(G)$ is S-closed relative to (Y, σ).

Without difficulties it may be observed that this theorem can be obtained with the use of [18, Proposition 3.1(c)].

Notions of precontinuity and irresoluteness are independent of each other as the following examples show.

Example 3.6. – We apply [30, Example 3.11]. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{b, c\}\}$, and let $f : (X, \tau) \to (Y, \sigma)$ be the identity mapping. Then f is irresolute and it is not precontinuous because $f^{-1}(\{b, c\}) \notin \text{PO}(X, \tau)$.

Example 3.7. – (a). [30, Theorem 3.12] shows that there exists an a-continuous mapping which is not irresolute. We shall give an example of such a mapping. (b). Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, and let $f : (X, \tau) \to (Y, \sigma)$ be defined as follows: $f(a) = f(b) = a$, $f(c) = c$. Then f is continuous but it is not irresolute since $f^{-1}(\{b, c\}) = \{c\} \notin \text{SO}(X, \tau)$.

The above examples show that a-continuity and irresoluteness are independent of each other, as it was observed in [30]. We recall now definitions of some weak forms of openness of mappings.

Definition 3.8. – [36]. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be **almost open in the sense of Singal** (briefly a.o.S.), if $f(U) \in \sigma$ for each $U \in \text{RO}(X, \tau)$.
Definition 3.9. – [41]. A mapping \(f : (X, \tau) \to (Y, \sigma) \) is said to be **almost open in the sense of Wilansky** (briefly a.o.W.), if \(f^{-1}(\text{cl}(V)) \subseteq \text{cl}(f^{-1}(V)) \) for each \(V \in \sigma \).

Rose has proved [35, Theorem 11], that a mapping \(f : (X, \tau) \to (Y, \sigma) \) is a.o.W. if and only if \(f(U) \in \text{PO}(Y, \sigma) \) for each subset \(U \in \tau \).

Definition 3.10. – [3]. A mapping \(f : (X, \tau) \to (Y, \sigma) \) is **semi-open** if \(f(U) \in \text{SO}(Y, \sigma) \) for each \(U \in \tau \).

Notions of a.o.S., a.o.W., and of semi-openness (as given above), are independent of each other (see respective examples in [28]).

Definition 3.11. – [34]. A mapping \(f : (X, \tau) \to (Y, \sigma) \) is **weakly open** if \(f(U) \subseteq \text{int}(f(\text{cl}(U))) \) for each set \(U \in \tau \).

Each a.o.S. mapping is weakly open [28, Lemma 1.4], but the converse is not true, in general [28, Example 1.5]. Notions of weak openness and a.o.W. are independent of each other (respective examples in [28]).

Lemma 3.12. – [25, Theorem 1]. Every a.o.W. and semi-continuous mapping is irresolute.

Combining Theorem 3.5 and Lemma 3.12 we obtain the following generalization of [26, Theorem 2.1].

Theorem 3.13. – If a mapping \(f : (X, \tau) \to (Y, \sigma) \) is a-continuous and a.o.W., and if \(G \) is S-closed relative to \((X, \tau) \), then \(f(G) \) is S-closed relative to \((Y, \sigma) \).

Remark 3.14. – Notions of a.o.W. and a-continuity are independent of each other. The mapping \(f \) from [28, Example 1.6] is a.o.W., while it is not a-continuous. The mapping \(f \) from Example 3.7(b) is a-continuous and it is not a.o.W., since \(f^{-1}(\text{cl}([b])) \not\subseteq \text{cl}(f^{-1}([b])) = \emptyset \).

Lemma 3.15. – [28, Theorem 1.12]. Every a.o.S. and semi-continuous mapping is irresolute.

Combining Theorem 3.5 and Lemma 3.15 we get the following.

Theorem 3.16. – If a mapping \(f : (X, \tau) \to (Y, \sigma) \) is a-continuous and a.o.S., and if \(G \) is S-closed relative to \((X, \tau) \), then \(f(G) \) is S-closed relative to \((Y, \sigma) \).
REMARK 3.17. – Notions of a.o.S. and a-continuity are independent of each other. [28, Example 1.7] shows that there exists an a.o.S. mapping which is not a-continuous. In Example 3.7(b) the mapping f is not a.o.S. because $f(X)$ is not open in the range.

Lemma 3.18. – [28, Theorem 1.14]. If a space (Y, σ) is e.d. and a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is semi-open and semi-continuous, then f is irresolute.

Recall that a semi-open semi-continuous (hence a-continuous) mapping, must not be irresolute if the range is not e.d. [31, Example 19].

Applying Theorem 3.5 and Lemma 3.18 we obtain what follows.

Theorem 3.19. – Let a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ be a-continuous and semi-open. If (Y, σ) is e.d. and $G \subset X$ is S-closed relative to (X, τ), then $f(G)$ is S-closed relative to (Y, σ).

Remark 3.20. – Semi-openness and a-continuity of an f are independent notions, even if the range of f is e.d. (a). [28, Example 1.8] shows that the f (from this example) is a-continuous and not semi-open. (b). [28, Example 1.9] shows that a mapping may be semi-open and not a-continuous, but the range in this example is not e.d. (c). Let $X = \{a, b, c\}$, $\tau = \emptyset, X, \{a\}, \{b\}, \{a, b\}$, $Y = \{a, b\}$, and $\sigma = \emptyset, Y, \{a\}, \{b\}$. The mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ defined as follows: $f(a) = f(b) = a, f(c) = b$, is semi-open and not a-continuous.

Definition 3.21. – [16]. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be somewhat continuous if for each set $V \in \sigma$ with $f^{-1}(V) \neq \emptyset$, there exists a set $U \in \tau$ such that $\emptyset \neq U \subset f^{-1}(V)$.

Each semi-continuous mapping is somewhat continuous [16] (semi-continuity and quasi-continuity are equivalent [22]), but the converse is not true in general [16, Example 1].

Lemma 3.22. – [28, Theorem 1.11]. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a weakly open somewhat continuous injection, then it is irresolute.

Using once again Theorem 3.5 and Lemma 3.22 we obtain the following.

Theorem 3.23. – Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be an a-continuous weakly open injection. If G is S-closed relative to (X, τ), then $f(G)$ is S-closed relative to (Y, σ).

Remark 3.24. – Weak openness and a-continuity are independent notions. (a). The mapping f from [28, Example 1.5] is weakly open, but it is not a-continuous.
(in fact, it is not semi-continuous). (b). Let \(X = \{a, b\} = Y, \tau = \{\emptyset, X, \{a\}, \{b\}\}, \) and \(\sigma = \{\emptyset, Y, \{a\}\}. \) Let \(f : (X, \tau) \to (Y, \sigma) \) be the identity mapping. Then \(f \) is continuous and it is not weakly open, because \(f(\{b\}) \not\subset \text{int} \left(\text{cl} \left(\{b\} \right) \right) = \emptyset. \)

The next theorem is an immediate consequence of Theorems 3.13, 3.16, 3.19, 3.23 (for the respective parts).

Theorem 3.25. – Let \(f : (X, \tau) \to (Y, \sigma) \) be a mapping.

1. If \(f \) is a-continuous and a.o.W., and if \((X, \tau) \) is S-closed, then \(f(X) \) is S-closed relative to \((Y, \sigma) \).
2. If \(f \) is a-continuous and a.o.S., and if \((X, \tau) \) is S-closed, then \(f(X) \) is S-closed relative to \((Y, \sigma) \).
3. If \(f \) is a-continuous and semi-open, \((Y, \sigma) \) is e.d., and if \((X, \tau) \) is S-closed, then \(f(X) \) is S-closed relative to \((Y, \sigma) \).
4. If \(f \) is an a-continuous weakly open injection, and if \((X, \tau) \) is S-closed, then \(f(X) \) is S-closed relative to \((Y, \sigma) \).

Using Theorem 3.25 (3) one trivially obtains the following corollary.

Corollary 3.26. – Let \(f : (X, \tau) \to (Y, \sigma) \) be a surjection and \((Y, \sigma) \) be e.d. If \(f \) is a-continuous, semi-open and if \((X, \tau) \) is S-closed, then \((Y, \sigma) \) is I-compact.

It is interesting to compare this corollary with [37, Theorem 5.5].

Definition 3.27. – A mapping \(f : (X, \tau) \to (Y, \sigma) \) is said to be **contra-semiopen** if \(f(U) \in \text{SC}(Y, \sigma) \) for every \(U \in \tau \).

Lemma 3.28. – Let \(f : (X, \tau) \to (Y, \sigma) \) be a.o.W. and contra-semiopen. Then \(f(U) \in \text{RO}(Y, \sigma) \) for each \(U \in \tau \).

Proof. – By [35, Theorem 11] and by Definition 3.27 we have

\[
\text{f(U) \subset \text{int}(\text{cl}(f(U))) \subset f(U).}
\]

Theorem 3.29. – Let \(f : (X, \tau) \to (Y, \sigma) \) be a-continuous, a.o.W., and contra-semiopen. If \((X, \tau) \) is an S-closed space and \(G \in \text{RO}(X, \tau) \), then \(f(G) \) is an S-closed subspace of \((Y, \sigma) \).

Proof. – This follows from Lemma 3.28, Theorem 3.13, [27, Corollary 3.2 and Theorem 3.1].

Recall that a mapping \(f : (X, \tau) \to (Y, \sigma) \) is semi-continuous if and only if \(f(\text{scl}(A)) \subset \text{cl}(f(A)) \) for every subset \(A \subset X \) [7, Theorem 1.6].
Lemma 3.30. Let \(f : (X, \tau) \to (Y, \sigma) \) be a.o.S., contra-semiopen, and semi-continuous. Then \(f(U) \in \text{RO}(Y, \sigma) \) for each \(U \in \tau \).

Proof. By [7, Theorem 1.16] and [18, Proposition 2.7(a)] we have \(f(\text{int}(\text{cl}(U))) \subset \text{cl}(f(U)) \). But \(f \) is contra-semiopen, therefore applying [34, Theorem 4] we obtain what follows
\[
f(U) \subset \text{int}(f(\text{int}(\text{cl}(U)))) \subset \text{int}(\text{cl}(f(U))) \subset f(U).
\]
This shows that \(f(U) \in \text{RO}(Y, \sigma) \) for any \(U \in \tau \). \(\square \)

Theorem 3.31. Let \(f : (X, \tau) \to (Y, \sigma) \) be a-continuous, a.o.S., and contra-semiopen. If \((X, \tau)\) is an S-closed space and \(G \in \text{RO}(X, \tau) \), then \(f(G) \) is an S-closed subspace of \((Y, \sigma)\).

Proof. We apply Lemma 3.30, Theorem 3.16, [27, Corollary 3.2 and Theorem 3.1]. \(\square \)

Lemma 3.32. Let a space \((Y, \sigma)\) be e.d. and a mapping \(f : (X, \tau) \to (Y, \sigma) \) be semi-open and contra-semiopen. Then \(f(U) \in \text{RO}(Y, \sigma) \) for each \(U \in \tau \).

Proof. For any \(U \in \tau \) we have what follows:
\[
\text{int}(\text{cl}(f(U))) \subset f(U) \subset \text{cl}(\text{int}(f(U))) = \text{int}(\text{cl}(\text{int}(f(U)))) \subset \text{int}(\text{cl}(f(U))). \quad \square
\]

Theorem 3.33. Let a space \((Y, \sigma)\) be e.d. and a mapping \(f : (X, \tau) \to (Y, \sigma) \) be a-continuous, semi-open, and contra-semiopen. If \((X, \tau)\) is an S-closed space and \(G \in \text{RO}(X, \tau) \), then \(f(G) \) is an S-closed subspace of \((Y, \sigma)\).

Proof. This follows from Lemma 3.32, Theorem 3.19, [27, Corollary 3.2 and Theorem 3.1]. \(\square \)

Lemma 3.34. Let \(f : (X, \tau) \to (Y, \sigma) \) be weakly open, contra-semiopen, and precontinuous. Then \(f(U) \in \text{RO}(Y, \sigma) \) for each \(U \in \tau \).

Proof. By hypothesis and by [18, Proposition 3.1 (c)] we have
\[
f(U) \subset \text{int}(f(\text{cl}(U))) \subset \text{int}(\text{cl}(f(U))) \subset f(U). \quad \square
\]

Theorem 3.35. Let \(f : (X, \tau) \to (Y, \sigma) \) be an a-continuous, weakly open and contra-semiopen injection. If \((X, \tau)\) is an S-closed space and \(G \in \text{RO}(X, \tau) \), then \(f(G) \) is an S-closed subspace of \((Y, \sigma)\). \(\square \)

Remark 3.36. It is easy to see that the statement “\((X, \tau)\) is an S-closed space and \(G \in \text{RO}(X, \tau)\)” in conclusions of Theorems 3.29, 3.31, 3.33, and 3.35 may be
replaced by “G is regular open S-closed subspace of (X, τ)”. Thus, these theorems give conditions under which a mapping preserves regular open S-closed subspaces.

By Remark 3.36, respective theorems mentioned in this remark, and by [27, Theorem 4.1(5)], we obtain the following result.

Theorem 3.37. — Let (X, τ) be a locally S-closed space and $f : (X, \tau) \rightarrow (Y, \sigma)$ be a mapping.

1. If f is an a-continuous, a.o.W. (or a.o.S.), and contra-semiopen surjection, then (Y, σ) is locally S-closed.

2. If (Y, σ) is e.d. and f is an a-continuous, semi-open, and contra-semiopen surjection, then (Y, σ) is locally S-closed.

3. If f is an a-continuous, weakly open, and contra-semiopen bijection, then (Y, σ) is locally S-closed.

The reader is advised to compare Theorem 3.37 with [27, Theorem 4.4].

References

Institute of Mathematics, Casimirus the Great University, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

Pervenuta in Redazione
il 31 ottobre 2005