BOLLETTINO UNIONE MATEMATICA ITALIANA

Zbigniew Duszyński

Remarks on S-Closedness in Topological Spaces

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 10-B (2007), n.2, p. 469–483.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10B_2_469_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Remarks on S-Closedness in Topological Spaces.

Zbigniew Duszyński

Sunto. – Relativamente al [27], sono provate alcune proprietà dei sottospazi S-chiusi e dei sottoinsiemi S-chiusi di uno spazio topologico. Sono studiate delle condizioni mediante le quali le applicazioni conservano alcuni sottospazi S-chiusi.

Summary. – Corresponding to [27], some properties of S-closed subspaces and subsets S-closed relative to a topological space are proved. Conditions under which mappings preserve certain S-closed subspaces are investigated.

1. - Preliminaries.

Topological spaces are denoted by (X, τ) . Let S be a subset of a space (X, τ) . We denote the interior and the closure of S in this space by int(S) (or $int_X(S)$) and $\operatorname{cl}(S)$ (or $\operatorname{cl}_X(S)$), respectively. The set S is said to be regular open (resp. regular closed) in (X, τ) , if S = int(cl(S)) (resp. S = cl(int(S))). The S is said to be aopen [23] (resp. semi-open [19]; preopen [20]; semi-preopen [1, 2]), if $S \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(S)))$ (resp. $S \subset \operatorname{cl}(\operatorname{int}(S))$; $S \subset \operatorname{int}(\operatorname{cl}(S))$; $S \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(S)))$). The complement to X of an a-open (resp. semi-open; preopen; semi-preopen) set is said to be an a-closed (resp. semi-closed; preclosed; semi-preclosed) set. The intersection of all a-closed (resp. semi-closed; preclosed; semi-preclosed) sets (in (X,τ)) containing S is called the a-closure (resp. semi-closure; preclosure; semipreclosure) of S in (X, τ) , and it is denoted respectively by a-cl(S) (or $a\text{-cl}_X(S)$), $\operatorname{scl}(S)$ (or $\operatorname{scl}_X(S)$), $\operatorname{pcl}(S)$ (or $\operatorname{pcl}_X(S)$), $\operatorname{spcl}(S)$ (or $\operatorname{spcl}_X(S)$). The set S is a-closed (resp. semi-closed; preclosed; semi-preclosed) if and only if a-cl(S) = S (resp. scl(S) = S; pcl(S) = S; spcl(S) = S). Each closed subset of a space (X, τ) is aclosed, semi-closed, preclosed, and semi-preclosed. The collection of all a-open (resp. semi-open; preopen; semi-preopen) subsets of a space (X, τ) is denoted by a-O(X, τ) or τ^a (resp. SO(X, τ), PO(X, τ); SPO(X, τ)). The family of all regular open (resp. regular closed; semi-closed) subsets of (X, τ) is denoted by $RO(X, \tau)$ (resp. $RC(X, \tau)$, $SC(X, \tau)$). Members of the intersection $SR(X, \tau) = SO(X, \tau) \cap$ $SC(X,\tau)$ are called semi-regular sets [9]. A space (X,τ) is extremally disconnected (briefly e.d.) if $cl(V) \in \tau$ for each $V \in \tau$.

T. Thompson [40] has defined an (X, τ) to be $\mathcal{S}\text{-}closed$, if for every cover $\{V_a: a \in \mathcal{A}\} \subset \mathrm{SO}(X, \tau)$ of X there exists a finite subfamily $\mathcal{A}_1 \subset \mathcal{A}$ such that $X = \bigcup_{a \in \mathcal{A}_1} \mathrm{cl}_X(V_a)$. T. Noiri [27] has defined a subset S of (X, τ) to be $\mathcal{S}\text{-}closed$ relative to (X, τ) , if for every cover $\{V_a: a \in \mathcal{A}\} \subset \mathrm{SO}(X, \tau)$ of S there exists a finite subfamily $\mathcal{A}_1 \subset \mathcal{A}$ such that $S \subset \bigcup_{a \in \mathcal{A}} \mathrm{cl}_X(V_a)$.

2. – S-closed subspaces.

From [27, Corollary 3.4] we obtain, as a particular case, the following

COROLLARY 2.1. – If A and B are both S-closed regular open subspaces of a space (X, τ) , then $A \cap B$ is an S-closed subspace of (X, τ) .

Utilizing [27, Theorem 3.1], we can reexpress Corollary 2.1 as follows:

COROLLARY 2.1'. – If sets A and B are both regular open and are S-closed relative to (X, τ) , then $A \cap B$ is an S-closed subspace of (X, τ) .

This result we generalize in the following way.

THEOREM 2.2. – Let $A, B \in SC(X, \tau)$ and $A \cap B \in \tau$. If A and B are both S-closed relative to (X, τ) , then $A \cap B$ is an S-closed subspace of (X, τ) .

PROOF. – Since $A \cap B \in SC(X, \tau) \cap \tau$, clearly we have $A \cap B \in RO(X, \tau)$ (see also for instance [11, Lemma 2.2 (2)]). So, it follows from [27, Theorems 3.3 and 3.1] that $A \cap B$ is an S-closed subspace.

LEMMA 2.3. – Let A be a subset of (X, τ) . Then, the following holds:

- (a) [18, Proposition 2.7]. $A \in PO(X, \tau)$ iff scl(A) = int(cl(A)).
- (b) [2, Theorem 2.20(a)]. $A \in a\text{-}O(X, \tau)$ iff $\operatorname{spcl}(A) = \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$.
- (c) [2, Theorem 2.20(c)]. $A \in SPO(X, \tau)$ iff a-cl(A) = cl (int (cl (A))).
- (d) $A \in SO(X, \tau)$ iff pcl(A) = cl (int (A)).

PROOF. – To prove the case (d) we use [2, Theorem 1.5 (e)]. \Box

THEOREM 2.4. – Let an A be S-closed relative to (X, τ) . Then,

- (a) $a\text{-cl}_X(A)$, $\operatorname{scl}_X(A)$, $\operatorname{pcl}_X(A)$, $\operatorname{spcl}_X(A)$ are S-closed relative to (X, τ) ;
- (b₁) if $A \in PO(X, \tau)$, then $int_X(scl_X(A))$ is S-closed relative to (X, τ) ;
- (b₂) if $A \in a\text{-O}(X, \tau)$, then $\operatorname{int}_X(\operatorname{spcl}_X(A))$ is S-closed relative to (X, τ) ;
- (b₃) if $A \in SPO(X, \tau)$, then $int_X(a-cl_X(A))$ is S-closed relative to (X, τ) ;
- (b₄) if $A \in SO(X, \tau)$, then $int_X(pcl_X(A))$ is S-closed relative to (X, τ) .

PROOF. — (a). Proofs for all kinds of closures are quite similar to that of [27, Theorem 3.4] (for cl(A)).

(b). We apply: respective parts of the case (a), Lemma 2.3, and [27, Theorem 3.3]. $\hfill\Box$

COROLLARY 2.5. – If $A \in PO(X, \tau)$ (resp. $A \in a\text{-}O(X, \tau)$; $A \in SPO(X, \tau)$; $A \in SO(X, \tau)$) is S-closed relative to (X, τ) , then the set $\text{int}_X(\text{scl}_X(A))$ (respectively $\text{int}_X(\text{spcl}_X(A))$; $\text{int}_X(\text{a-cl}_X(A))$; $\text{int}_X(\text{pcl}_X(A))$) is an S-closed subspace of (X, τ) .

PROOF. — Follows from Theorem 2.4(b), Lemma 2.3, and [27, Theorem 3.1].

Remark 2.6. – Without difficulties one checks that [27, Theorem 3.5] is also true if we replace "A is ... open ..." by "A is an S-closed a-open ...". We obtain below that similar results hold also for weaker kinds of closure of a-open sets.

THEOREM 2.7. – Let A be an S-closed a-open subspace of (X, τ) . Then, $scl_X(A)$, $spcl_X(A)$, $a-cl_X(A)$, and $pcl_X(A)$ are S-closed subspaces of (X, τ) .

PROOF. — We apply respective parts of Lemma 2.3 for each considered case of weak closures, which are of the form int (cl (.)) or cl (int (.)). So, $\operatorname{scl}_X(A)$, $\operatorname{spcl}_X(A)$, $a\operatorname{-cl}_X(A)$, and $\operatorname{pcl}_X(A)$ are semi-open in (X,τ) . The proof for each case is quite similar to that of [27, Theorem 3.5] and hence we can leave details to the reader.

Theorem 2.8. – Let (X, τ) be an S-closed space.

- (A) Let A be a semi-closed (resp. a semi-preclosed) subset of (X, τ) . If $A \in PO(X, \tau)$ (resp. $A \in a\text{-}O(X, \tau)$) then A is an S-closed subspace of (X, τ) .
- (B) Let A be an a-closed (resp. a preclosed) subset of (X, τ) . If $A \in SPO(X, \tau)$ (resp. $A \in SO(X, \tau)$) and Fr(A) is S-closed relative to (X, τ) , then A is S-closed relative to (X, τ) .

PROOF. - (A). This follows from Lemma 2.3 and [27, Corollary 3.2].

(B) follows from Lemma 2.3, [27, Theorem 3.3], and [27, Theorem 3.6] (see the proof of [27, Theorem 3.7]). \Box

Recall that a space (X, τ) is called *locally S-closed* [27, Definition 4.1], if each point of X has an open neighbourhood which is an S-closed subspace of (X, τ) .

THEOREM 2.9. – (see [27, Theorem 4.1]). For a space (X, τ) the following are equivalent:

(1) (X, τ) is locally S-closed.

- (2) Each point of X has an open neighbourhood which is S-closed relative to (X, τ) .
- (3) Each point of X has an open neighbourhood V such that $a\text{-cl}_X(V)$ (resp. $\mathrm{scl}_X(V)$; $\mathrm{pcl}_Y(V)$; $\mathrm{spcl}_Y(V)$) is S-closed relative to (X, τ) .
- (4) Each point of X has an open neighbourhood V such that $\operatorname{int}_X(a\operatorname{-cl}_X(V))$ (resp. $\operatorname{int}_X(\operatorname{scl}_X(V))$); $\operatorname{int}_X(\operatorname{spcl}_X(V))$) is S-closed relative to (X, τ) .
- (5) Each point of X has an open neighbourhood V such that $\operatorname{int}_X(a\operatorname{-cl}_X(V))$ (resp. $\operatorname{int}_X(\operatorname{scl}_X(V))$; $\operatorname{int}_X(\operatorname{pcl}_X(V))$; $\operatorname{int}_X(\operatorname{spcl}_X(V))$) is an S-closed subspace of (X, τ) .

PROOF. $-(1)\Rightarrow(2)$ and $(4)\Rightarrow(5)$ follow from [27, Theorem 3.1]. $(2)\Rightarrow(3)$: the case (a) of Theorem 2.4. $(3)\Rightarrow(4)$: Theorem 2.4. $(5)\Rightarrow(1)$ is obvious.

Lemma 2.10. – [13] (see also Acta Math. Hungar., 105 (3) (2004), p. 235). In every space (X, τ)

$$V \cap \operatorname{scl}(S) \subset \operatorname{cl}(\operatorname{scl}(V \cap S))$$

for each $S \subset X$ and $V \in SO(X, \tau)$.

Remark 2.11. - Recall that

$$RO(X, \tau) \cup RC(X, \tau) \subset SR(X, \tau),$$

[39, Lemma 2.3]. This inclusion is proper, in general.

The following theorem is a slight improvement of [27, Theorem 3.3] for the case of spaces that are not e.d.

THEOREM 2.12. – Assume that a space (X, τ) is not e.d. Let an $A \subset X$ be S-closed relative to (X, τ) and a set $B \in RO(X, \tau)$ or $B \in SR(X, \tau) \setminus RO(X, \tau)$ with cl(B) = scl(B). Then $A \cap B$ is S-closed relative to (X, τ) .

PROOF. – Suppose $A \cap B \subset \bigcup_{a \in \mathcal{A}} V_a$, where $V_a \in SO(X, \tau)$ for each $a \in \mathcal{A}$. Since $B \in SR(X, \tau)$, thus $X \setminus B \in SO(X, \tau)$ [39, Lemma 2.2 (ii)] and

$$A\subset (X\setminus B)\cup\bigcup_{a\in\mathcal{A}}V_a.$$

But A is an S-closed relative to (X, τ) , thus there exists a finite subfamily $A_1 \subset A$ such that

$$A \subset \operatorname{cl}(X \setminus B) \cup \bigcup_{a \in \mathcal{A}_1} \operatorname{cl}(V_a).$$

Utilizing Lemma 2.10 we obtain

$$A\cap B\subset ig(B\cap\operatorname{scl}(X\setminus B)ig)\cupigcup_{a\in\mathcal{A}_1}\operatorname{cl}\left(V_a
ight)=igcup_{a\in\mathcal{A}_1}\operatorname{cl}\left(V_a
ight).$$

This shows that $A \cap B$ is S-closed relative to (X, τ) .

REMARK 2.13. – (a). The author proved in [14] that a space (X, τ) is e.d. if and only if for each $S \in SO(X, \tau)$, scl(S) = int(cl(S)) = cl(int(S)). Thus, by [24, Lemma 2] we obtain that in e.d. spaces cl(S) = scl(S) for each $S \in SO(X, \tau)$. The reversed implication is also true. This equivalence was proved in [9, Proposition 2.4].

(b). The author proved in [14] that a space (X,τ) is e.d. if and only if $RO(X,\tau)=RC(X,\tau)$. On the other hand, by [10, Proposition 2(i)] $(SR(X,\tau)=RO(X,\tau)\cap RC(X,\tau))$ and [39, Lemma 2.3] (see Remark 2.11), we have $RO(X,\tau)\cup RC(X,\tau)=SR(X,\tau)$ in any e.d. space. Consequently, in these spaces we have $RO(X,\tau)=SR(X,\tau)$. To give an example of a set $B\in SR(X,\tau)\setminus RO(X,\tau)$ for which cl(B)=scl(B), it is enough to consider the space of reals with usual topology and B=[0,1].

COROLLARY 2.14. – (see [27, Corollary 3.2]). If (X, τ) is an S-closed not e.d. space and an $A \in RO(X, \tau)$ or $A \in SR(X, \tau) \setminus RO(X, \tau)$ with cl(A) = scl(A), then A is S-closed relative to (X, τ) .

PROOF. – To see S-closedness of A relative to (X, τ) we apply [27, Theorem 3.1] and Theorem 2.12. Notice that if $A \in SR(X, \tau)$ and cl(A) = scl(A), then $A \in RC(X, \tau)$.

COROLLARY 2.15. – (see [27, Corollary 3.3]). Let (X, τ) be not an e.d. space. If an A is S-closed relative to (X, τ) and a set $B \in RO(X, \tau)$ or $B \in SR(X, \tau) \setminus RO(X, \tau)$ with cl(B) = scl(B), then

- (1) $A \cap B$ is S-closed relative to B.
- (2) B is S-closed relative to (X, τ) , if $B \subset A$.

PROOF. - (1) follows from Theorem 2.12 and [27, Theorem 3.2] (strong sufficiency). (2): Theorem 2.12.

The following corollary is an improvement of [27, Corollary 3.1].

COROLLARY 2.16. – Let A and X_0 be a-open subsets of a space (X, τ) such that $A \subset X_0$. Then, A is an S-closed subspace of (X_0, τ_{X_0}) if and only if A is an S-closed subspace of (X, τ) .

PROOF. – We use [33, Lemma 2], [27, Theorem 3.1], and [27, Theorem 3.2]. $\hfill\Box$

The next corollary is an immediate consequence of [27, Theorem 3.2].

COROLLARY 2.17. – Let $A \subset X_0 \subset X_1 \subset X$ and X_0, X_1 be a-open subsets of (X, τ) . Then, A is an S-closed relative to (X_0, τ_{X_0}) if and only if A is an S-closed relative to (X_1, τ_{X_1}) .

Using [33, Lemma 2] and Corollary 2.16 we infer what follows.

COROLLARY 2.18. – Let $A \subset X_0 \subset X_1 \subset X$ and A, X_0, X_1 be a-open subsets of (X, τ) . Then, A is S-closed subspace of (X_0, τ_{X_0}) if and only if A is S-closed subspace of (X_1, τ_{X_1}) .

THEOREM 2.19. – Let A be an S-closed a-open subspace of (X, τ) . Then, $\mathrm{scl}_X(A)$ is S-closed relative to $(\mathrm{cl}_X(A), \tau_{\mathrm{cl}_X(A)})$.

PROOF. – Let $\{V_a: a \in \mathcal{A}\} \subset \mathrm{SO}\big(\mathrm{cl}_X(A), \tau_{\mathrm{cl}_X(A)}\big)$ be a cover of $\mathrm{scl}_X(A)$. Obviously, $\{V_a: a \in \mathcal{A}\}$ is a cover of A. Since $A \in \tau^a$, $\mathrm{cl}_X(A) \in \mathrm{SO}(X,\tau)$. Hence $V_a \in \mathrm{SO}(X,\tau)$ for each $a \in \mathcal{A}$ [24, Theorem 1]. By [27, Theorem 3.1] the set A is \mathcal{S} -closed relative to (X,τ) . Thus, there exists a finite subset $\mathcal{A}_1 \subset \mathcal{A}$ with $A \subset \bigcup_{a \in \mathcal{A}_1} \mathrm{cl}_X(V_a)$. This inclusion implies that $\mathrm{scl}_X(A) \subset \bigcup_{a \in \mathcal{A}_1} \mathrm{cl}_X(V_a)$. So, we obtain $\mathrm{scl}_X(A) \subset \bigcup_{a \in \mathcal{A}_1} \left(\mathrm{cl}_X(V_a) \cap \mathrm{cl}_X(A)\right) = \bigcup_{a \in \mathcal{A}_1} \mathrm{cl}_{\mathrm{cl}_X(A)}(V_a)$ and the proof is complete. \square

REMARK 2.20. – Let an $A \in \mathrm{RO}(X,\tau)$ be such that $\mathrm{cl}_X(A) \in \tau^a$. The set $\mathrm{scl}_X(A)$ is \mathcal{S} -closed relative to $\left(\mathrm{cl}_X(A), \tau_{\mathrm{cl}_X(A)}\right)$ if and only if A is an \mathcal{S} -closed subspace of (X,τ) .

Proof. – It is enough to show that A is closed in (X, τ) . Namely, we have

$$\operatorname{cl}_X(A) \subset \operatorname{int}_X(\operatorname{cl}_X(\operatorname{cl}_X(A))) \subset \operatorname{cl}_X(A).$$

So, $\operatorname{cl}_X(A) = \operatorname{int}_X\left(\operatorname{cl}_X(A)\right)$ and by hypothesis $\operatorname{cl}_X(A) = A$.

COROLLARY 2.21. – Let an $A \in RO(X, \tau)$ be such that $cl_X(A) \in \tau^a$. Then, A is an S-closed subspace of (X, τ) if and only if $scl_X(A)$ is S-closed relative to $(cl_X(A), \tau_{cl_X(A)})$.

Recall that a topological space (X, τ) is said to be *semi-connected* [32], if X cannot be written as a union of two nonempty disjoint semi-open sets in (X, τ) . In the opposite case a space is called *semi-disconnected*.

THEOREM 2.22. – Let $A \neq \emptyset$ be S-closed relative to (X, τ) and $\operatorname{cl}(A) \subsetneq X_0 \subset X$. If there exists a subfamily $\{V_a : a \in A\} \subset \operatorname{SO}(X, \tau)$ such that $(\mathbf{a}_1) A \supset \bigcup_{a \in A} V_a$ and $(\mathbf{a}_2) A \subset \bigcup_{a \in A} \operatorname{cl}(V_a)$, then (X_0, τ_{X_0}) is semi-disconnected.

PROOF. – We have $\operatorname{cl}(V_a) \in \operatorname{SO}(X,\tau)$ for each $a \in \mathcal{A}$. Since A is an \mathcal{S} -closed relative to (X,τ) , thus by (\mathbf{a}_2) there exists a finite subset $\mathcal{A}_1 \subset \mathcal{A}$ such that $A \subset \bigcup_{a \in \mathcal{A}_1} \operatorname{cl}(V_a)$. Hence $\operatorname{cl}(A) \subset \bigcup_{a \in \mathcal{A}_1} \operatorname{cl}(V_a)$. On the other hand, by (\mathbf{a}_1) we have $\operatorname{cl}(A) \supset \bigcup_{a \in \mathcal{A}_1} \operatorname{cl}(V_a) \supset \bigcup_{a \in \mathcal{A}_1} \operatorname{cl}(V_a)$. Thus, $\operatorname{cl}(A) = \bigcup_{a \in \mathcal{A}_1} \operatorname{cl}(V_a)$ and hence

$$\operatorname{cl}_{X_0}(A) = \bigcup_{a \in \mathcal{A}_1} \operatorname{cl}_{X_0}(V_a).$$

By (\mathbf{a}_1) , $V_a \subset X_0$ for each $a \in \mathcal{A}$, thus by [19, Theorem 6] every set $V_a \in \mathrm{SO}(X_0, \tau_{X_0})$. So, (1) implies that $\mathrm{cl}_{X_0}(A) \in \mathrm{SO}(X_0, \tau_{X_0})$ [19, Theorem 2]. To finish the proof it is enough to observe that $\emptyset \neq X_0 \setminus \mathrm{cl}_{X_0}(A) \in \tau_{X_0}$.

It is known that the family τ^a induced by τ forms a topology on X [23], which is different than τ , in general. Recall that for any $S \in SO(X, \tau)$ we have a-cl(S) = cl(S) [18, Proposition 2.2].

THEOREM 2.23. – Let (X, τ) be a space, $A \in SO(X, \tau)$, $B \in \tau^a$, and $A \cap B = \emptyset$. If the set $A \cup B$ is S-closed relative to (X, τ) , then the set B is S-closed relative to (X, τ) .

PROOF. – Let $\mathcal{F} = \{U_a : a \in \nabla\} \subset \mathrm{SO}(X,\tau)$ be a cover of B. Then, the family $\mathcal{F} \cup \{A\}$ covers $A \cup B$. By hypothesis there exists a finite subfamily $\mathcal{F}' = \{U_{a_i} : i = 1, \dots, n\} \subset \mathcal{F}$ such that

$$A \cup B \subset igcup_{i=1}^n \operatorname{cl}\left(U_{a_i}
ight) \cup \operatorname{cl}\left(A
ight).$$

So, we obtain

$$B \subset \bigcup_{i=1}^{n} \operatorname{cl}(U_{a_i}) \cup a\operatorname{-cl}(A \cap B) = \bigcup_{i=1}^{n} \operatorname{cl}(U_{a_i}).$$

This shows that *B* is *S*-closed relative to (X, τ) .

In [15] the author has proved that a space (X, τ) is semi-disconnected if and only if there exist nonempty sets $U_1 \in SO(X, \tau)$, $U_2 \in \tau^a$ such that $X = U_1 \cup U_2$ and $U_1 \cap U_2 = \emptyset$. Directly from this result and Theorem 2.23 one obtains the following corollary.

COROLLARY 2.24. – Let (X, τ) be a semi-disconnected and S-closed space. Then there exists a nonempty a-open proper subset of X, S-closed relative to (X, τ) .

REMARK 2.25. – Let (X, τ) be S-closed and A be clopen. Then $X \setminus A$ is S-closed relative to (X, τ) (hence S-closed subspace of (X, τ) [27, Theorem 3.1]).

PROOF. – Obvious since $X \setminus A$ is clopen in (X, τ) .

Theorem 2.26. – Let a subset A of a space (X, τ) be clopen and be an S-closed subspace of (X, τ) . Then (X, τ) is S-closed if and only if $X \setminus A$ is an S-closed subspace of (X, τ) .

PROOF. – It follows from Remark 2.25, [27, Theorem 3.1], and [27, Theorem 3.6]. \Box

In [5] Cameron introduced the concept of I-compactness of a space. It was established [5, Corollary 3] that I-compact spaces are precisely the S-closed spaces which are e.d. Recall that a subset S of a space (X,τ) is I-compact relative $to(X,\tau)$ if every cover of S with semi-open sets has a finite subfamily interiors of closures of whose members cover S [37]. A subset A of a space (X,τ) is N-closed if every cover with regular open sets has a finite subcover [6]. A space is said to be $weakly\ Hausdorff$ if for each point $x \in X$, $\{x\}$ is the intersection of all regular closed sets containing x [38].

THEOREM 2.27. – Let (X, τ) be weakly Hausdorff. If $A \in PO(X, \tau)$ is I-closed relative to (X, τ) and $X \setminus A$ is N-closed, then there exists a finite partition of X by regular open subsets of (X, τ) .

PROOF. – This is an immediate consequence of [37, Lemma 4.13] and [37, Theorem 4.16] (we use [11, Lemma 2.2(4)] and the well known fact that the intersection of two regular open sets is regular open too [12, p. 92, 22g]).

3. – Mappings and S-closedness.

DEFINITION 3.1. – [17]. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be **almost** continuous (in the sense of Husain), if for each $x\in X$ and each neighbourhood V of f(x), cl $(f^{-1}(V))$ is a neighbourhood of x.

Mashhour et al. observed [20] that almost continuity in the sense of Husain coincides with *precontinuity* (i.e., $f^{-1}(V) \subset \text{int} \left(\text{cl} \left(f^{-1}(V) \right) \right)$ for each $V \in \sigma$).

DEFINITION 3.2. – [19]. A mapping $f:(X,\tau)\to (Y,\sigma)$ is semi-continuous if $f^{-1}(V)\in \mathrm{SO}(X,\tau)$ for every set $V\in\sigma$.

A. Neubrunnová showed [22] that precontinuity and semi-continuity are independent of each other.

DEFINITION 3.3. – [29]. A mapping $f:(X,\tau)\to (Y,\sigma)$ is strongly semicontinuous (Mashhour et al. [21] call these mappings a-continuous) if $f^{-1}(V) \in \tau^a$ for each $V \in \sigma$.

DEFINITION 3.4. – [8]. A mapping $f:(X,\tau)\to (Y,\sigma)$ is **irresolute** if $f^{-1}(V)\in SO(X,\tau)$ for each $V\in SO(Y,\sigma)$.

Each irresolute mapping is semi-continuous ($\tau \subset SO(X, \tau)$). Each *a*-continuous mapping is semi-continuous and precontinuous ($\tau \subset SO(X, \tau) \cap PO(X, \tau) = \tau^a$ [30, Lemma 3.1]).

Janković showed the following.

THEOREM 3.5. – [18, Corollary 4.14]. Let $f:(X,\tau) \to (Y,\sigma)$ be a precontinuous and irresolute mapping. If G is a subset S-closed relative to (X,τ) , then f(G) is S-closed relative to (Y,σ) .

Without difficulties it may be observed that this theorem can be obtained with the use of [18, Proposition 3.1(c)].

Notions of precontinuity and irresoluteness are independent of each other as the following examples show.

EXAMPLE 3.6. – We apply [30, Example 3.11]. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{b, c\}\}$, and let $f : (X, \tau) \to (Y, \sigma)$ be the identity mapping. Then f is irresolute and it is not precontinuous because $f^{-1}(\{b, c\}) \notin PO(X, \tau)$.

EXAMPLE 3.7. – (a). [30, Theorem 3.12] shows that there exists an a-continuous mapping which is not irresolute. We shall give an example of such a mapping. (b). Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, and let $f: (X, \tau) \to (Y, \sigma)$ be defined as follows: f(a) = f(b) = a, f(c) = c. Then f is continuous but it is not irresolute since $f^{-1}(\{b, c\}) = \{c\} \notin SO(X, \tau)$.

The above examples show that a-continuity and irresoluteness are independent of each other, as it was observed in [30]. We recall now definitions of some weak forms of openness of mappings.

DEFINITION 3.8. – [36]. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be **almost** open in the sense of Singal (briefly a.o.S.), if $f(U)\in \sigma$ for each $U\in \mathrm{RO}(X,\tau)$.

DEFINITION 3.9. – [41]. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be **almost** open in the sense of Wilansky (briefly a.o.W.), if $f^{-1}(\operatorname{cl}(V))\subset\operatorname{cl}\left(f^{-1}(V)\right)$ for each $V\in\sigma$.

Rose has proved [35, Theorem 11], that a mapping $f:(X,\tau)\to (Y,\sigma)$ is a.o.W. if and only if $f(U)\in \mathrm{PO}(Y,\sigma)$ for each subset $U\in\tau$.

Definition 3.10. – [3]. A mapping $f:(X,\tau)\to (Y,\sigma)$ is **semi-open** if $f(U)\in \mathrm{SO}(Y,\sigma)$ for each $U\in\tau$.

Notions of a.o.S., a.o.W., and of semi-openness (as given above), are independent of each other (see respective examples in [28]).

DEFINITION 3.11. – [34]. A mapping $f:(X,\tau)\to (Y,\sigma)$ is weakly open if $f(U)\subset \operatorname{int}(f(\operatorname{cl}(U))$ for each set $U\in \tau$.

Each a.o.S. mapping is weakly open [28, Lemma 1.4], but the converse is not true, in general [28, Example 1.5]. Notions of weak openness and a.o.W. are independent of each other (respective examples in [28]).

Lemma 3.12. – [25, Theorem 1]. Every a.o.W. and semi-continuous mapping is irresolute.

Combining Theorem 3.5 and Lemma 3.12 we obtain the following generalization of [26, Theorem 2.1].

THEOREM 3.13. – If a mapping $f: (X, \tau) \to (Y, \sigma)$ is a-continuous and a.o.W., and if a G is S-closed relative to (X, τ) , then f(G) is S-closed relative to (Y, σ) .

REMARK 3.14. – Notions of a.o.W. and α -continuity are independent of each other. The mapping f from [28, Example 1.6] is a.o.W., while it is not α -continuous. The mapping f from Example 3.7(**b**) is α -continuous and it is not a.o.W., since $f^{-1}(\operatorname{cl}(\{b\})) \not\subset \operatorname{cl}(f^{-1}(\{b\})) = \emptyset$.

Lemma 3.15. – [28, Theorem 1.12]. Every a.o.S. and semi-continuous mapping is irresolute.

Combining Theorem 3.5 and Lemma 3.15 we get the following.

THEOREM 3.16. – If a mapping $f:(X,\tau)\to (Y,\sigma)$ is a-continuous and a.o.S., and if a G is S-closed relative to (X,τ) , then f(G) is S-closed relative to (Y,σ) .

REMARK 3.17. – Notions of a.o.S. and a-continuity are independent of each other. [28, Example 1.7] shows that there exists an a.o.S. mapping which is not a-continuous. In Example 3.7(**b**) the mapping f is not a.o.S. because f(X) is not open in the range.

LEMMA 3.18. – [28, Theorem 1.14]. If a space (Y, σ) is e.d. and a mapping $f: (X, \tau) \to (Y, \sigma)$ is semi-open and semi-continuous, then f is irresolute.

Recall that a semi-open semi-continuous (hence a-continuous) mapping, must not be irresolute if the range is not e.d. [31, Example 19].

Applying Theorem 3.5 and Lemma 3.18 we obtain what follows.

THEOREM 3.19. – Let a mapping $f:(X,\tau)\to (Y,\sigma)$ be a-continuous and semiopen. If (Y,σ) is e.d. and $G\subset X$ is S-closed relative to (X,τ) , then f(G) is S-closed relative to (Y,σ) .

REMARK 3.20. – Semi-openness and a-continuity of an f are independent notions, even if the range of f is e.d. (a). [28, Example 1.8] shows that the f (from this example) is a-continuous and not semi-open. (b). [28, Example 1.9] shows that a mapping may be semi-open and not a-continuous, but the range in this example is not e.d. (c). Let $X = \{a, b, c\}, \quad \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \quad Y = \{a, b\}, \quad \text{and} \quad \sigma = \{\emptyset, Y, \{a\}, \{b\}\}.$ The mapping $f: (X, \tau) \to (Y, \sigma)$ defined as follows: f(a) = f(b) = a, f(c) = b, is semi-open and not a-continuous.

DEFINITION 3.21. – [16]. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be **somewhat continuous** if for each set $V\in\sigma$ with $f^{-1}(V)\neq\emptyset$, there exists a set $U\in\tau$ such that $\emptyset\neq U\subset f^{-1}(V)$.

Each semi-continuous mapping is somewhat continuous [16] (semi-continuity and quasi-continuity are equivalent [22]), but the converse is not true in general [16, Example 1].

Lemma 3.22. – [28, Theorem 1.11]. If $f:(X,\tau)\to (Y,\sigma)$ is a weakly open somewhat continuous injection, then it is irresolute.

Using once again Theorem 3.5 and Lemma 3.22 we obtain the following.

THEOREM 3.23. – Let $f:(X,\tau)\to (Y,\sigma)$ be an a-continuous weakly open injection. If G is S-closed relative to (X,τ) , then f(G) is S-closed relative to (Y,σ) .

Remark 3.24. – Weak openness and a-continuity are independent notions. (a). The mapping f from [28, Example 1.5] is weakly open, but it is not a-continuous

(in fact, it is not semi-continuous). (b). Let $X = \{a, b\} = Y$, $\tau = \{\emptyset, X, \{a\}, \{b\}\}$, and $\sigma = \{\emptyset, Y, \{a\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity mapping. Then f is continuous and it is not weakly open, because $f(\{b\}) \not\subset \operatorname{int} (f(\operatorname{cl}(\{b\}))) = \emptyset$.

The next theorem is an immediate consequence of Theorems 3.13, 3.16, 3.19, 3.23 (for the respective parts).

THEOREM 3.25. – Let $f:(X,\tau)\to (Y,\sigma)$ be a mapping.

- (1) If f is a-continuous and a.o.W., and if (X, τ) is S-closed, then f(X) is S-closed relative to (Y, σ) .
- (2) If f is a-continuous and a.o.S., and if (X, τ) is S-closed, then f(X) is S-closed relative to (Y, σ) .
- (3) If f is a-continuous and semi-open, (Y, σ) is e.d., and if (X, τ) is S-closed, then f(X) is S-closed relative to (Y, σ) .
- (4) If f is an a-continuous weakly open injection, and if (X, τ) is S-closed, then f(X) is S-closed relative to (Y, σ) .

Using Theorem 3.25 (3) one trivially obtains the following corollary.

COROLLARY 3.26. – Let $f:(X,\tau)\to (Y,\sigma)$ be a surjection and (Y,σ) be e.d. If f is a-continuous, semi-open and if (X,τ) is S-closed, then (Y,σ) is I-compact.

It is interesting to compare this corollary with [37, Theorem 5.5].

DEFINITION 3.27. — A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be **contra-semi-open** if $f(U)\in \mathrm{SC}(Y,\sigma)$ for every $U\in\tau$.

LEMMA 3.28. – Let $f:(X,\tau)\to (Y,\sigma)$ be a.o.W. and contra-semiopen. Then $f(U)\in \mathrm{RO}(Y,\sigma)$ for each $U\in \tau$.

PROOF. - By [35, Theorem 11] and by Definition 3.27 we have

$$f(U) \subset \operatorname{int}(\operatorname{cl}(f(U))) \subset f(U).$$

THEOREM 3.29. – Let $f:(X,\tau)\to (Y,\sigma)$ be a-continuous, a.o.W., and contrasemiopen. If (X,τ) is an S-closed space and $G\in \mathrm{RO}(X,\tau)$, then f(G) is an S-closed subspace of (Y,σ) .

PROOF. – This follows from Lemma 3.28, Theorem 3.13, [27, Corollary 3.2 and Theorem 3.1]. $\hfill\Box$

Recall that a mapping $f:(X,\tau)\to (Y,\sigma)$ is semi-continuous if and only if $f(\mathrm{scl}(A))\subset \mathrm{cl}\,(f(A))$ for every subset $A\subset X$ [7, Theorem 1.6].

П

LEMMA 3.30. – Let $f:(X,\tau)\to (Y,\sigma)$ be a.o.S., contra-semiopen, and semi-continuous. Then $f(U)\in \mathrm{RO}(Y,\sigma)$ for each $U\in\tau$.

PROOF. – By [7, Theorem 1.16] and [18, Proposition 2.7(a)] we have $f(\operatorname{int}(\operatorname{cl}(U)) \subset \operatorname{cl}(f(U))$. But f is contra-semiopen, therefore applying [34, Theorem 4] we obtain what follows

$$f(U) \subset \operatorname{int}(f(\operatorname{int}(\operatorname{cl}(U)))) \subset \operatorname{int}(\operatorname{cl}(f(U))) \subset f(U).$$

This shows that $f(U) \in RO(Y, \sigma)$ for any $U \in \tau$.

THEOREM 3.31. – Let $f:(X,\tau)\to (Y,\sigma)$ be a-continuous, a.o.S., and contrasemiopen. If (X,τ) is an S-closed space and $G\in \mathrm{RO}(X,\tau)$, then f(G) is an S-closed subspace of (Y,σ) .

Proof. – We apply Lemma 3.30, Theorem 3.16, [27, Corollary 3.2 and Theorem 3.1]. $\hfill\Box$

LEMMA 3.32. – Let a space (Y, σ) be e.d. and a mapping $f : (X, \tau) \to (Y, \sigma)$ be semi-open and contra-semiopen. Then $f(U) \in RO(Y, \sigma)$ for each $U \in \tau$.

PROOF. – For any $U \in \tau$ we have what follows:

$$\operatorname{int} \left(\operatorname{cl} \left(f(U) \right) \right) \subset f(U) \subset \operatorname{cl} \left(\operatorname{int} \left(f(U) \right) \right)$$

$$= \operatorname{int} \left(\operatorname{cl} \left(\operatorname{int} \left(f(U) \right) \right) \right) \subset \operatorname{int} \left(\operatorname{cl} \left(f(U) \right) \right). \quad \Box$$

THEOREM 3.33. – Let a space (Y, σ) be e.d. and a mapping $f: (X, \tau) \to (Y, \sigma)$ be a-continuous, semi-open, and contra-semiopen. If (X, τ) is an S-closed space and $G \in RO(X, \tau)$, then f(G) is an S-closed subspace of (Y, σ) .

PROOF. – This follows from Lemma 3.32, Theorem 3.19, [27, Corollary 3.2 and Theorem 3.1]. $\hfill\Box$

LEMMA 3.34. – Let $f:(X,\tau)\to (Y,\sigma)$ be weakly open, contra-semiopen, and precontinuous. Then $f(U)\in \mathrm{RO}(Y,\sigma)$ for each $U\in\tau$.

PROOF. – By hypothesis and by [18, Proposition 3.1 (c)] we have

$$f(U) \subset \operatorname{int}(f(\operatorname{cl}(U))) \subset \operatorname{int}(\operatorname{cl}(f(U))) \subset f(U).$$

THEOREM 3.35. – Let $f:(X,\tau) \to (Y,\sigma)$ be an a-continuous, weakly open and contra-semiopen injection. If (X,τ) is an S-closed space and $G \in \mathrm{RO}(X,\tau)$, then f(G) is an S-closed subspace of (Y,σ) .

REMARK 3.36. – It is easy to see that the statement " (X, τ) is an S-closed space and $G \in RO(X, \tau)$ " in conclusions of Theorems 3.29, 3.31, 3.33, and 3.35 may be

replaced by "G is regular open S-closed subspace of (X, τ) ". Thus, these theorems give conditions under which a mapping preserves regular open S-closed subspaces.

By Remark 3.36, respective theorems mentioned in this remark, and by [27, Theorem 4.1(5)], we obtain the following result.

THEOREM 3.37. – Let (X, τ) be a locally S-closed space and $f: (X, \tau) \to (Y, \sigma)$ be a mapping.

- (1) If f is an a-continuous, a.o.W. (or a.o.S.), and contra-semiopen surjection, then (Y, σ) is locally S-closed.
- (2) If (Y, σ) is e.d. and f is an a-continuous, semi-open, and contra-semi-open surjection, then (Y, σ) is locally S-closed.
- (3) If f is an a-continuous, weakly open, and contra-semiopen bijection, then (Y, σ) is locally S-closed.

The reader is advised to compare Theorem 3.37 with [27, Theorem 4.4].

REFERENCES

- [1] M. E. ABD EL-MONSEF S. N. EL-DEEB R. A. MAHMOUD, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- [3] N. BISWAS, On some mappings in topological spaces, Bull. Cal. Math. Soc., 61 (1969), 127-135.
- [4] D. E. CAMERON, Properties of S-closed spaces, Proc. Amer. Math. Soc., 72 (1978), 581-586.
- [5] D. E. CAMERON, Some maximal topologies which are QHC, Proc. Amer. Math. Soc., 75 (1979), 149-156.
- [6] D. A. CARNAHAN, Locally nearly compact spaces, Boll. Un. Mat. Ital., 6 (4) (1972), 146-153:
- [7] C. G. CROSSLEY S. K. HILDEBRAND, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci., 22 (1971), 123-126.
- [8] C. G. CROSSLEY S. K. HILDEBRAND, Semi-topological properties, Fundamenta Mathematicae, 74 (1972), 233-254.
- [9] G. Di Maio, T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18 (3) (1987), 226-233.
- [10] K. Dlaska N. Ergun M. Ganster, On the topology generated by semi-regular sets, Indian J. Pure Appl. Math., 25 (11) (1994), 1163-1170.
- [11] J. Dontchev T. Noiri, Contra-semicontinuous functions, Math. Pannon., 10 (2) (1999), 159-168.
- [12] J. Dugundji, *Topology*, Allyn&Bacon, Inc., Boston 1966.
- [13] Z. Duszyński, On pre-semi-open mappings, submitted.
- [14] Z. Duszyński, On some classes of subsets in extremally disconnected spaces, to appear in Far East J. Mat. Sci. (2007).
- [15] Z. Duszyński, On some concepts of weak connectedness of topological spaces, Acta Math. Hungar., 110 (1-2) (2006), 81-90.

- [16] K. R. GENTRY, H. B. HOYLE III, Somewhat continuous functions, Czechoslovak Mathematical Journal, 21(96) (1971), 5-12.
- [17] T. Husain, Almost continuous mappings, Prace Mat., 10 (1966), 1-7.
- [18] D. S. Janković, A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46 (1-2) (1985), 83-92.
- [19] N. LEVINE, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [20] A. S. MASHHOUR M. E. ABD EL-MONSEF S. N. EL-DEEB, On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [21] A. S. MASHHOUR I. A. HASANEIN S. N. EL-DEEB, a-continuous and a-open mappings, Acta Math. Hungar., 41 (1983), 213-218.
- [22] A. NEUBRUNNOVÁ, On certain generalizations of the notion of continuity, Mat. Časopis, 23 (4) (1973), 374-380.
- [23] O. NJÅSTAD, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [24] T. Noiri, On semi-continuous mappings, Lincei-Rend. Sc. fis. mat. e nat., 54 (1973), 210-214.
- [25] T. Noiri, On semi-T₂ spaces, Ann. Soc. Sci. Bruxelles, 90 (1976), 215-220.
- [26] T. Noiri, On S-closed spaces, Ann. Soc. Sci. Bruxelles, 91 (1977), 189-194.
- [27] T. Noiri, On S-closed subspaces, Lincei-Rend. Sc. fis. mat. e nat., 64 (1978), 157-162.
- [28] T. Noiri, Semi-continuity and weak-continuity, Czechoslovak Mathematical Journal, 31(106) (1981), 314-321.
- [29] T. Noiri, A function which preserves connected spaces, Čas. pěst. mat., 107 (1982), 393-396.
- [30] T. Noiri, On a-continuous functions, Čas. pěst. mat., 109 (1984), 118-126.
- [31] Z. Piotrowski, On semi-homeomorphisms, Boll. Un. Mat. Ital., (5) 16-A (1979), 501-509.
- [32] V. PIPITONE G. RUSSO, Spazi semiconnessi a spazi semiaperti, Rend. Circ. Mat. Palermo, 24 (2) (1975), 273-285.
- [33] I. L. Reilly M. K. Vamanamurthy, Connectedness and strong semi-continuity, Čas. pest. mat., 109 (1984), 261-265.
- [34] D. A. Rose, Weak openness and almost openness, Internat. J. Math. & Math. Sci., 7(1) (1984), 35-40.
- [35] D. A. Rose, Weak continuity and almost continuity, Internat. J. Math. & Math. Sci., 7(2) (1984), 311-318.
- [36] M. K. Singal Asha Rani Singal, Almost-continuous mappings, Yokohama Math. J., 16 (1968), 63-73.
- [37] D. SIVARAJ, *I-compact subsets*, Boll. Un. Mat. Ital., (6) 3-B (1984), 87-98.
- [38] T. SOUNDARARAJAN, Weakly Hausdorff spaces and cardinality of topological spaces, General Topology and its application to Modern Analysis and Algebra III, Proc. Conf. Kanpur 1968, Academia, Prague, (1977), 301-306.
- [39] S. F. Tadros, A. B. Khalaf, On regular semi-open sets and s*-closed spaces, Tamkang J. Math., 23(4) (1992), 337-348.
- [40] T. THOMPSON, S-closed spaces, Proc. Amer. Math. Soc., 60 (1976), 335-338.
- [41] A. WILANSKY, Topics in functional analysis, Lecture Notes in Mathematics, vol. 45, Springer-Verlag 1967.

Institute of Mathematics, Casimirus the Great University, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland