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Bollettino U. M. 1.
(8) 10-B (2007), 469-483

Remarks on S-Closedness in Topological Spaces.

ZBIGNIEW DUSZYNSKI

Sunto. — Relativamente al [27], sono provate alcune proprieta dei sottospazi S-chiusi e
dei sottoinsiemi S-chiust di uno spazio topologico. Sono studiate delle condizioni
mediante le quali le applicazioni conservano alcuni sottospazi S-chiusi.

Summary. — Corresponding to [27], some properties of S-closed subspaces and subsets S-
closed relative to a topological space are proved. Conditions under which mappings
preserve certain S-closed subspaces are investigated.

1. — Preliminaries.

Topological spaces are denoted by (X, 7). Let S be a subset of a space (X, 7).
We denote the interior and the closure of S in this space by int (S) (or intx(S)) and
el (S) (or clx(S)), respectively. The set S is said to be regular open (resp. regular
closed) in (X, 1), if S =int(cl(S)) (resp. S = cl(int(S))). The S is said to be a-
open [23] (resp. semi-open [19]; preopen [20]; semi-preopen [1, 2]), if
S C int (el (int (S))) (resp. S C el (int (S)); S C int (el (S)); S C el (int (cl(S)))). The
complement to X of an a-open (resp. semi-open; preopen; semi-preopen) set is
said to be an a-closed (resp. semi-closed; preclosed; semi-preclosed) set. The
intersection of all a-closed (resp. semi-closed; preclosed; semi-preclosed) sets (in
(X, 1)) containing S is called the a-closure (resp. semi-closure; preclosure; semi-
preclosure) of S in (X, 1), and it is denoted respectively by a-cl(S) (or a-clx(S)),
sel (S) (or sclx(S)), pel (S) (or pely(S)), spel(S) (or spely(S)). The set S is a-closed
(resp. semi-closed; preclosed; semi-preclosed) if and only if a-cl(S) =S (resp.
scl(S) = S; pel(S) = S; spel(S) = S). Each closed subset of a space (X, 1) is a-
closed, semi-closed, preclosed, and semi-preclosed. The collection of all a-open
(resp. semi-open; preopen; semi-preopen) subsets of a space (X, 7) is denoted by
a-0(X,7) or t* (resp. SOX, 1), PO(X,1); SPO(X, 7). The family of all regular
open (resp. regular closed; semi-closed) subsets of (X, 7) is denoted by RO(X, 1)
(resp. RC(X, 1), SC(X,1)). Members of the intersection SR(X,7) = SOX, )N
SC(X, 1) are called semi-regular sets [9]. A space (X,t) is extremally dis-
connected (briefly e.d.) if cl (V) € t for each V € 1.
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T. Thompson [40] has defined an (X,7) to be S-closed, if for every cover
{Vy: a€ A} CSOX,1) of X there exists a finite subfamily .4; C A such that
X = U clx(V,). T. Noiri [27] has defined a subset S of (X, 1) to be S-closed

acA
relatiSe 1to (X, 1), if for every cover {V, : a € A} C SO(X, 1) of S there exists a
finite subfamily A; C A such that S C |J clx(Vy).

aEA;

2. — S-closed subspaces.

From [27, Corollary 3.4] we obtain, as a particular case, the following

COROLLARY 2.1. — If A and B are both S-closed regular open subspaces of a
space (X, 1), then A N B is an S-closed subspace of (X, 7).

Utilizing [27, Theorem 3.1], we can reexpress Corollary 2.1 as follows:

COROLLARY 2.1". — If sets A and B are both regular open and are S-closed
relative to (X, 1), then A N B is an S-closed subspace of (X, 7).

This result we generalize in the following way.

THEOREM 2.2. — Let A,B € SC(X,t) and ANB € t. If A and B are both S-
closed relative to (X, 1), then A N B is an S-closed subspace of (X, 7).

ProOF. — Since AN B € SC(X, 1) N1, clearly we have AN B € ROX, 1) (see
also for instance [11, Lemma 2.2 (2)]). So, it follows from [27, Theorems 3.3
and 3.1] that A N B is an S-closed subspace. |

LEMMA 2.3. - Let A be a subset of (X, t). Then, the following holds:

(a) [18, Proposition 2.7]. A € POX, 1) iff scl(4) = int (cl (A)).

(b) [2, Theorem 2.20(a)]. A € a-O(X, 1) iff spcl (A) = int (cl (int (4))).
(¢) [2, Theorem 2.20(c)]. A € SPOX, 1) iff a-cl(A) = cl (int (cl (A))).
(d) A € SOX, 1) iff pel(A) = el (int (A)).

PrOOF. — To prove the case (d) we use [2, Theorem 1.5 (e)]. O

THEOREM 2.4. — Let an A be S-closed relative to (X, 7). Then,

(@) a-cly(A), sclx(A), pely(A), spely(A) are S-closed relative to (X, 7);
(by) if A € PO(X, 1), then intx(scly(A)) is S-closed relative to (X, t);
(b2) if A € a-O(X, 1), then intx(spely(A4)) is S-closed relative to (X, t);
(bg) if A € SPO(X, 1), then intx(a-cly(A)) is S-closed relative to (X, t);
(bg) if A € SOX, 1), then intx(pcly(A)) is S-closed relative to (X, 7).
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Proor. — (a). Proofs for all kinds of closures are quite similar to that of [27,
Theorem 3.4] (for cl (4)).

(b). We apply: respective parts of the case (a), Lemma 2.3, and [27,
Theorem 3.3]. O

COROLLARY 2.5. — If A € PO(X,7) (resp. A € a-O(X,7); A € SPOX,7); A €
SO(X, 1)) is S-closed relative to (X, 1), then the set inty(scly(A)) (respectively
intx(spely(A)); intx(a-cly(A)); intx(pely(A4))) is an S-closed subspace of (X, 7).

Proor. — Follows from Theorem 2.4(b), Lemma 2.3, and [27, Theorem 3.1].
O

REMARK 2.6. — Without difficulties one checks that [27, Theorem 3.5] is also
true if we replace “A is ... open ... " by “A is an S-closed a-open ... ”. We obtain below
that similar results hold also for weaker kinds of closure of a-open sets.

THEOREM 2.7. — Let A be an S-closed a-open subspace of (X, t). Then, sclx(A),
spely(4), a-clx(A4), and pely(A) are S-closed subspaces of (X, 7).

Proor. — We apply respective parts of Lemma 2.3 for each considered case of
weak closures, which are of the form int (el (.)) or cl (int (.)). So, sclx(4), spely(4),
a-clx(A), and pely (A) are semi-openin (X, 7). The proof for each case is quite similar
to that of [27, Theorem 3.5] and hence we can leave details to the reader. O

THEOREM 2.8. — Let (X, 1) be an S-closed space.

(A) Let A be a semi-closed (resp. a semi-preclosed) subset of (X,7). If
A € POX, 1) (resp. A € a-0(X, 7)) then A is an S-closed subspace of (X, 7).

(B) Let A be an a-closed (resp. a preclosed) subset of (X, 7). IfA € SPO(X, 1)
(resp. A € SOX, 1)) and Fr(A) is S-closed relative to (X, 1), then A is S-closed
relative to (X, 7).

ProoF. — (A). This follows from Lemma 2.3 and [27, Corollary 3.2].
(B) follows from Lemma 2.3, [27, Theorem 3.3], and [27, Theorem 3.6] (see
the proof of [27, Theorem 3.7]). O

Recall that a space (X, 7) is called locally S-closed [27, Definition 4.1], if each
point of X has an open neighbourhood which is an S-closed subspace of (X, ).

THEOREM 2.9. — (see [27, Theorem 4.1]). For a space (X, 1) the following are
equivalent:

1) (X, 1) 1s locally S-closed.
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(2) Eachpoint of X has an open neighbourhood which is S-closed relative to
X, ).

(3) Each point of X has an open neighbourhood V such that a-clx(V) (resp.
selxy(V); pely(V); spely (V) is S-closed relative to (X, 7).

(4) Each point of X has an open neighbourhood V such that intx(a-clx(V))
(resp. intx(sclx(V)); intx(pely(V)); intx(spely(V))) is S-closed relative to (X, 7).

(5) Each point of X has an open neighbourhood V such that intx(a-clx(V))
(resp. intx(selx(V)); intx(pely(V)); intx(spely(V))) s an S-closed subspace of
X, 7).

Proor. - (1)=(2) and (4)=(5) follow from [27, Theorem 3.1]. (2)=-(3): the case
(a) of Theorem 2.4. (3)=-(4): Theorem 2.4. (5)=-(1) is obvious. |

LEMMA 2.10. — [13] (see also Acta Math. Hungar., 105 (3) (2004), p. 235).
In every space (X, 1)

V nsellS) c el(sel(VNS))
foreach S Cc X and V € SOX, 7).

REMARK 2.11. — Recall that
ROX,7) URC(X, 1) Cc SR(X, 1),

[39, Lemma 2.3]. This inclusion is proper, in general.

The following theorem is a slight improvement of [27, Theorem 3.3] for the
case of spaces that are not e.d.

THEOREM 2.12. — Assume that a space (X, 1) is not e.d. Let an A C X be S-
closed relative to (X, 1) and a set B € ROX, 1) or B € SR(X, 1) \ ROX, 1) with
cl(B) = scl(B). Then A N B is S-closed relative to (X, 7).

ProOF. — Suppose ANB C |J V,, where V, € SOX, 7) for each a € A. Since
acA
B € SR(X, 1), thus X \ B € SO(X, 1) [39, Lemma 2.2 (ii)] and
Acx\BulJV.
acA

But A is an S-closed relative to (X, 7), thus there exists a finite subfamily A; C A
such that

AcdX\BU | dVy).

ac Ay
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Utilizing Lemma 2.10 we obtain

ANBC (BnsdX\B)u | dWy) =[] dV).

acA,; acA;

This shows that A N B is S-closed relative to (X, 7). O

REMARK 2.13. — (a). The author proved in [14] that a space (X, 1) is e.d. if
and only if for each S € SO(X, 7), scl(S) = int (cl (S)) = cl (int (S)). Thus, by [24,
Lemma 2] we obtain that in e.d. spaces cl(S) = scl(S) for each S € SO(X, 7).
The reversed implication is also true. This equivalence was proved in [9,
Proposition 2.4].

(b). The author proved in [14] that a space (X,7) is e.d. if and only if
ROX, 1) = RC(X, 7). On the other hand, by [10, Proposition 231)] (SR(X, 1) =
ROX, 1) nRC(X, 1)) and [39, Lemma 2.3] (see Remark 2.11), we have RO(X, 1) U
RC(X,7) = SR(X, 1) in any e.d. space. Consequently, in these spaces we have
ROX, ) = SR(X, 7). To give an example of a set B € SR(X,7) \ ROX, 1) for
which cl (B) = scl(B), it is enough to consider the space of reals with usual to-
pology and B = [0, 1].

COROLLARY 2.14. — (see [27, Corollary 3.2]). If (X, 1) is an S-closed not e.d.
space and an A € ROX, 1) or A € SR(X, 1) \ ROX, 7) with cl(A) = scl(A), then
A 1is S-closed relative to (X, 7).

Proor. — To see S-closedness of A relative to (X,7) we apply [27,
Theorem 3.1] and Theorem 2.12. Notice that if A € SR(X, 1) and cl (4) = scl(4),
then A € RC(X, 7). O

COROLLARY 2.15. — (see [27, Corollary 3.3]). Let (X, 1) be not an e.d. space.
If an A is S-closed relative to (X,7) and a set B € ROX,7) or Be€
SRX, 1) \ ROX, 1) with cl(B) = scl(B), then
(1) AN B s S-closed relative to B.
(2) B is S-closed relative to (X, 1), if B C A.

Proor. — (1) follows from Theorem 2.12 and [27, Theorem 3.2] (strong suffi-
ciency). (2): Theorem 2.12. O

The following corollary is an improvement of [27, Corollary 3.1].

COROLLARY 2.16. — Let A and Xy be a-open subsets of a space (X, t) such that
A C Xy. Then, A is an S-closed subspace of (Xo, tx,) if and only if A is an S-
closed subspace of (X, 7).
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ProoF. -- We use [33, Lemma 2], [27, Theorem 3.1], and [27, Theorem 3.2].
O

The next corollary is an immediate consequence of [27, Theorem 3.2].

COROLLARY 2.17. - Let A C Xy C X1 C X and Xy, Xy be a-open subsets of
(X, 7). Then, A is an S-closed relative to (X, tx,) if and only if A is an S-closed
relative to (X1, tx,)-

Using [33, Lemma 2] and Corollary 2.16 we infer what follows.

COROLLARY 2.18. — Let A C Xy C X1 C X and A, Xy, X1 be a-open subsets of
(X,7). Then, A s S-closed subspace of (Xo,tx,) if and only if A is S-closed
subspace of (X1, tx,)-

THEOREM 2.19. — Let A be an S-closed a-open subspace of (X, 7). Then, scly(A)
is S-closed relative to (clx(A), Taya))-

PrOOF. — Let {V,: a € A} C SO(clx(A), 7a,)) be a cover of scly(A).
Obviously, {V, : a € A} is a cover of A. Since A € 1%, clx(4) € SOX, 7). Hence
V, € SOX, 7) for each a € A[24, Theorem 1]. By [27, Theorem 3.1]the set A is S-
closed relative to (X,7). Thus, there exists a finite subset A; C A with
A C | clx(V,). This inclusion implies that sclx(4) C | clx(V,). So, we obtain

acA acA
scly(A) 1C U (ch(Va) ﬂch(A)) = U clgyuy(Vy) and thelproof is complete. O

acA; acA;

REMARK 2.20. — Let an A € RO(X, 1) be such that cly(A) € t*. The set sclx(A)
is S-closed relative to (ch(A), 101X<A)) if and only if A is an S-closed subspace of
X, ).

PrOOF. — It is enough to show that A is closed in (X, 7). Namely, we have
clx(A) C inty (cly (intx (clx(4)))) C clx(A).
So, clx(A) = inty (ch(A)) and by hypothesis cly(4) = A. |

COROLLARY 2.21. — Let an A € ROX, t) be such that clx(A) € t* Then, A is
an S-closed subspace of (X,7) if and only if scly(A) is S-closed relative to
(elx(A), Tayw))-

Recall that a topological space (X, 7) is said to be semi-connected [32], if X
cannot be written as a union of two nonempty disjoint semi-open sets in (X, 7). In
the opposite case a space is called semi-disconnected.
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THEOREM 2.22. — Let A # () be S-closed relative to (X, 1) and cl(A) ¢ Xy C X.
If there exists a subfomily {V,: a € A} C SOX,1) such that (a;) AD> |J V,

and (ag) A C |J cl(Vy), then (X, tx,) ts semi-disconnected. a€A
acA

Proor. — We have cl(V,) € SOX, 7) for each a € A. Since A is an S-closed
relative to (X, 1), thus by (ag) there exists a finite subset A; C A such that
AcC | e(V,). Hence cl(A) ¢ |J cl(V,). On the other hand, by (a;) we have

a€A acA;
cld) > U cdV,) o U (V). Thus, cl(4) = |J cl(V,) and hence
acA aEA,; aEA;
e elx,(4) = | elx, (Vo).

acAy

By (a1), V,c Xy for each a € A, thus by [19, Theorem 6] every set
V. € SOXy, tx,)- So, (1) implies that cly,(4) € SO(Xy, 7x,) [19, Theorem 2]. To
finish the proof it is enough to observe that §) # Xj \ clx,(4) € tx,. O

It is known that the family * induced by 7 forms a topology on X [23],
which is different than 7, in general. Recall that for any S € SO(X, 7) we have
a-cl(S) = cl(S) [18, Proposition 2.2].

THEOREM 2.23. — Let (X, 1) be a space, A € SOX,7), Be 1 and ANB = (.
If the set AU B is S-closed relative to (X, 1), then the set B is S-closed relative
to (X, 7).

Proor. — Let F ={U, : a € V} C SOX, 1) be a cover of B. Then, the fa-
mily FU{A} covers AUB. By hypothesis there exists a finite subfamily
F'={U, :i=1,...,n} C F such that

n
AUBCJdW,) ud).
1=1
So, we obtain

Bc|JdWy ua-ddnB) = JdUs).

i=1 i=1

This shows that B is S-closed relative to (X, 7). O

In [15] the author has proved that a space (X, 7) is semi-disconnected if and
only if there exist nonempty sets U; € SO(X, 1), Uz € t* such that X = U; U Uy
and U; N Us = 0. Directly from this result and Theorem 2.23 one obtains the
following corollary.
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COROLLARY 2.24. — Let (X,1) be a semi-disconnected and S-closed space.
Then there exists a nonempty a-open proper subset of X, S-closed relative to
X, 7).

REMARK 2.25. — Let (X, 7) be S-closed and A be clopen. Then X \ A is S-closed
relative to (X, 7) (hence S-closed subspace of (X, 7) [27, Theorem 3.1]).

Proor. — Obvious since X \ 4 is clopen in (X, 7). |

THEOREM 2.26. — Let a subset A of a space (X, 7) be clopen and be an S-closed
subspace of (X, 7). Then (X, 1) is S-closed if and only if X \ A is an S-closed
subspace of (X, 7).

Proor. —- It follows from Remark 2.25, [27, Theorem 3.1], and [27,
Theorem 3.6]. O

In [5] Cameron introduced the concept of I-compactness of a space. It was
established [5, Corollary 3] that /-compact spaces are precisely the S-closed
spaces which are e.d. Recall that a subset S of a space (X, 7) is I-compact relative
to (X, 7) if every cover of S with semi-open sets has a finite subfamily interiors of
closures of whose members cover S [37]. A subset A of a space (X, 1) is N-closed if
every cover with regular open sets has a finite subcover [6]. A space is said to be
weakly Hausdorff if for each point x € X, {x} is the intersection of all regular
closed sets containing x [38].

THEOREM 2.27. — Let (X, 7) be weakly Hausdorff. If A € PO(X, 1) is I-closed
relative to (X, 1) and X \ A is N-closed, then there exists a finite partition of X by
regular open subsets of (X, 7).

PRrROOF. — This is an immediate consequence of [37, Lemma 4.13] and [37,
Theorem 4.16] (we use [11, Lemma 2.2(4)] and the well known fact that the in-
tersection of two regular open sets is regular open too [12, p. 92, 22g]). O

3. — Mappings and S-closedness.

DEFINITION 3.1. — [17]. A mapping f : (X,7) — (Y, 0) is said to be almost
continuous (in the sense of Husain), if for each x € X and each neighbourhood V
of f(x), el (f~1(V)) is a neighbourhood of .

Mashhour et al. observed [20] that almost continuity in the sense of Husain
coincides with precontinuity (i.e., f~1(V) C int (cl (f~1(V))) for each V € o).
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DEFINITION 3.2. - [19]. A mapping f : (X,7) — (Y, 0) is semi-continuous if
£ 1(V) e SOX, 1) for every set V € a.

A. Neubrunnova showed [22] that precontinuity and semi-continuity are in-
dependent of each other.

DEFINITION 3.3. — [29]. A mapping [ : (X,1) — (Y,0) is strongly semi-
continuous (Mashhour et al. [21] call these mappings a-continuous) if
V) e foreach V € o.

DEFINITION 3.4. — [8]. A mapping f : (X, 1) — (Y, 0) is irresolute if f (V) €
SOX, ©) for each V € SO(Y, o).

Each irresolute mapping is semi-continuous (z € SO(X, 7)). Each a-continuous
mapping is semi-continuous and precontinuous (r ¢ SO(X, 1) N POX, t) =z [30,
Lemma 3.1)).

Jankovié showed the following.

THEOREM 3.5. — [18, Corollary 4.14]. Let f: (X,t) — (Y,0) be a precontr-
nuous and rresolute mapping. If G is a subset S-closed relative to (X, 1), then
f(@) is S-closed relative to (Y, o).

Without difficulties it may be observed that this theorem can be obtained with
the use of [18, Proposition 3.1(c)].

Notions of precontinuity and irresoluteness are independent of each other as
the following examples show.

ExampLE 3.6. - We apply [30, Example 3.11]. Let X =Y = {a,b,¢},
t={0,X,{a},{b},{a,b}} and o = {0, X, {a},{b,c}}, and let f: (X, 1) — (Y, 0)
be the identity mapping. Then f is irresolute and it is not precontinuous because

b, chH ¢ POX, 7).

ExAMPLE 3.7. — (a).[30, Theorem 3.12] shows that there exists an a-continuous
mapping which is not irresolute. We shall give an example of such a mapping. (b).
Let X =Y = {a,b,c}, v = {0, X, {a},{a,b} } and o = {0, X, {a}, {b},{a, b} }, and
let f:(X,1) — (Y,0) be defined as follows: f(a) = f(b) = a, f(c) = c. Then f is
continuous but it is not irresolute since f~'({b,c}) = {c} ¢ SO(X, 7).

The above examples show that a-continuity and irresoluteness are indepen-
dent of each other, as it was observed in [30]. We recall now definitions of some
weak forms of openness of mappings.

DEFINITION 3.8. - [36]. A mapping f : (X,7) — (Y, 0) is said to be almost
open in the sense of Singal (briefly a.o0.S.), if f(U) € o for each U € ROX, 7).
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DEFINITION 3.9. - [41]. A mapping f : (X, 1) — (Y, 0) is said to be almost
open in the sense of Wilansky (briefly a.o.W.), if f1(c1(V)) C el (f~1(V)) for
each V € o.

Rose has proved [35, Theorem 11], that a mapping f : (X, 1) — (Y, 0) is a.0.W.
if and only if f(U) € PO(Y, o) for each subset U € 7.

DEeFINITION 3.10. - [3]. A mapping [ : (X,7) — (Y,0) is semi-open if
fU) € SOY, o) for each U € 1.

Notions of a.0.S., a.0.W., and of semi-openness (as given above), are in-
dependent of each other (see respective examples in [28]).

DEFINITION 3.11. - [34]. A mapping [ : (X,7) — (Y,0) is weakly open if
f(U) c int (f(el(U)) for each set U € .

Each a.o.S. mapping is weakly open [28, Lemma 1.4], but the converse is not
true, in general [28, Example 1.5]. Notions of weak openness and a.o.W. are
independent of each other (respective examples in [28]).

LEMMA 3.12. — [25, Theorem 1]. Every a.0.W. and semi-continuous mapping
18 trresolute.

Combining Theorem 3.5 and Lemma 3.12 we obtain the following general-
ization of [26, Theorem 2.1].

THEOREM 3.13. — Ifamapping f : (X,1) — (Y, 0) is a-continuous and a.0.W.,
and if a G is S-closed relative to (X, 1), then f(G) is S-closed relative to (Y, o).

REMARK 3.14. — Notions of a.0.W. and a-continuity are independent of each
other. The mapping f from [28, Example 1.6]is a.0.W., while it is not a-continuous.
The mapping f from Example 3.7(b) is a-continuous and it is not a.0.W., since

FHAdbh) ¢ d (F71{0D) = 0.

LEMMA 3.15. — [28, Theorem 1.12]. Every a.0.S. and semi-continuous map-
ping 1s irresolute.

Combining Theorem 3.5 and Lemma 3.15 we get the following.

THEOREM 3.16. — Ifa mapping f : (X, 1) — (Y, 0) is a-continuous and a.o.S.,
and if a G is S-closed relative to (X, t), then f(G) is S-closed relative to (Y, o).
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REMARK 3.17. — Notions of a.0.S. and a-continuity are independent of each
other. [28, Example 1.7] shows that there exists an a.0.S. mapping which is not a-
continuous. In Example 3.7(b) the mapping f is not a.0.S. because f(X) is not open
in the range.

LeEmMA 3.18. — [28, Theorem 1.14]. If a space (Y, 0) is e.d. and a mapping
f: X, 1) — (Y,0) is semi-open and semi-continuous, then f is irresolute.

Recall that a semi-open semi-continuous (hence a-continuous) mapping, must
not be irresolute if the range is not e.d. [31, Example 19].
Applying Theorem 3.5 and Lemma 3.18 we obtain what follows.

THEOREM 3.19. — Let amappingf : (X, 1) — (Y, o) be a-continuous and semi-
open. If (Y, o) is e.d. and G C X is S-closed relative to (X, 1), then f(G) s S-closed
relative to (Y, o).

REMARK 3.20. — Semi-openness and a-continuity of an f* are independent no-
tions, even if the range of f is e.d. (a). [28, Example 1.8] shows that the f (from this
example) is a-continuous and not semi-open. (b). [28, Example 1.9] shows that a
mapping may be semi-open and not a-continuous, but the range in this example is
not ed. (¢). Let X ={a,b,c}, = {0,X,{a},{b},{a,b}}, Y ={a,b}, and
o=1{0,Y,{a},{b}}. The mapping f : (X,7) — (Y,0) defined as follows: f(a) =
f(®) = a, f(c) = b, is semi-open and not a-continuous.

DEFINITION 3.21. — [16]. A mapping [ : (X,7) — (Y, 0) is said to be some-
what continuous if for each set V € o with f~1(V) # (), there exists a set U € t
such that ) # U C f~1(V).

Each semi-continuous mapping is somewhat continuous [16] (semi-continuity
and quasi-continuity are equivalent [22]), but the converse is not true in general
[16, Example 1].

LEMMA 3.22. — [28, Theorem 1.11]. If f: (X,7) — (Y, 0) is a weakly open
somewhat continuous mjection, then it is irresolute.

Using once again Theorem 3.5 and Lemma 3.22 we obtain the following.

THEOREM 3.23. — Let f : (X, 1) — (Y, 0) be an a-continuous weakly open in-
jection. If G is S-closed relative to (X, 1), then f(G) is S-closed relative to (Y, o).

REMARK 3.24. — Weak openness and a-continuity are independent notions. (a).
The mapping f from [28, Example 1.5] is weakly open, but it is not a-continuous
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(in fact, it is not semi-continuous). (b). Let X = {a,b} =Y, t = {0, X, {a}, {0} },
and o = {0,Y,{a}}. Let f : (X,7) — (Y, ) be the identity mapping. Then f is
continuous and it is not weakly open, because f({b}) ¢ int (f(cl({b}))) = 0.

The next theorem is an immediate consequence of Theorems 3.13, 3.16, 3.19,
3.23 (for the respective parts).

THEOREM 3.25. — Letf : (X,7) — (Y, 0) be a mapping.

1) Iff is a-continuous and a.o.W., and if (X, t) 1s S-closed, then f(X) is S-
closed relative to (Y, o).

(2) Iff is a-continuous and a.0.S., and if (X, t) is S-closed, then f(X) is S-
closed relative to (Y, o).

3) Iff is a-continuous and semi-open, (Y, a)is e.d., and if (X, 7) is S-closed,
then f(X) is S-closed relative to (Y, o).

@) Iff is an a-continuous weakly open injection, and if (X, 1) is S-closed,
then f(X) is S-closed relative to (Y, o).

Using Theorem 3.25 (3) one trivially obtains the following corollary.

COROLLARY 3.26. — Let f : (X, 1) — (Y, 0) be a surjection and (Y , o) be e.d. Iff
1s a-continuous, semi-open and if (X, 1) is S-closed, then (Y, o) is I-compact.

It is interesting to compare this corollary with [37, Theorem 5.5].

DEFINITION 3.27. — A mapping f : (X, 1) — (Y, 0) is said to be contra-semi-
open if f(U) € SC(Y, o) for every U € t.

LeEMMA 3.28. - Let f : (X, 1) — (Y,0) be a.0o.W. and contra-semiopen. Then
f) € ROY,0) for each U € 1.

ProOF. — By [35, Theorem 11] and by Definition 3.27 we have
fU) Cint (el (f (1)) C f(U). O

THEOREM 3.29. — Let f : (X, 1) — (Y, 0) be a-continuous, a.o.W., and contra-
semiopen. If (X, 1) is an S-closed space and G € ROX, 1), then f(G) is an S-closed
subspace of (Y, o).

PrOOF. — This follows from Lemma 3.28, Theorem 3.13, [27, Corollary 3.2
and Theorem 3.1]. |

Recall that a mapping f : (X,7) — (Y,0) is semi-continuous if and only if
f(scl(A)) C el (f(A)) for every subset A C X [7, Theorem 1.6].
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LemMmA 3.30. — Let f : (X,7) — (Y, 0) be a.0.S., contra-semiopen, and semi-
continuous. Then f(U) € RO(Y, o) for each U € .

Proor. — By [7, Theorem 1.16] and [18, Proposition 2.7(a)] we have
f(nt (el (U)) C el (f(U)). But f is contra-semiopen, therefore applying [34,
Theorem 4] we obtain what follows

fU) C int (f(int (cl (U)))) C int (el (f(U))) C f(U).
This shows that f(U) € RO(Y, o) for any U € . O

THEOREM 3.31. — Let f : (X, 1) — (Y, 0) be a-continuous, a.0.S., and contra-
semiopen. If (X, 1) is an S-closed space and G € RO(X, 1), then f(G) is an S-closed
subspace of (Y, o).

Proor. — We apply Lemma 3.30, Theorem 3.16, [27, Corollary 3.2 and
Theorem 3.1]. O

LeMMA 3.32. — Let a space (Y, a) be e.d. and a mapping f : (X, 1) — (Y, 0) be
semi-open and contra-semiopen. Then f(U) € RO(Y, o) for each U € .

ProoF. — For any U € 7 we have what follows:

int (el (f(1))) C £(U) € el (int (1))
= int (cl (int (f(1)))) C int (el (f(1))). O

THEOREM 3.33. — Let a space (Y, o) be e.d. and a mapping f : (X, 1) — (Y, 0) be
a-continuous, semi-open, and contra-semiopen. If (X, t) is an S-closed space and
G € ROX, 1), then f(G) is an S-closed subspace of (Y, o).

ProoF. — This follows from Lemma 3.32, Theorem 3.19, [27, Corollary 3.2
and Theorem 3.1]. O

LEMMA 3.34. — Let f : (X, 1) — (Y, 0) be weakly open, contra-semiopen, and
precontinuous. Then f(U) € RO(Y, o) for each U € .
Proor. — By hypothesis and by [18, Proposition 3.1 (¢)] we have
FO) Cint (f(el (D)) C int(cl (f(U))) C f(U). O
THEOREM 3.35. — Let f : (X, 1) — (Y, 0) be an a-continuous, weakly open and

contra-semiopen injection. If (X, 1) is an S-closed space and G € ROX, 1), then
f(@) is an S-closed subspace of (Y, o). O

REMARK 3.36. — Itis easy to see that the statement “(X, 1) is an S-closed space
and G € RO(X, 1)” in conclusions of Theorems 3.29, 3.31, 3.33, and 3.35 may be
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replaced by “G is regular open S-closed subspace of (X , 7)”. Thus, these theorems
give conditions under which a mapping preserves regular open S-closed subspaces.

By Remark 3.36, respective theorems mentioned in this remark, and by [27,
Theorem 4.1(5)], we obtain the following result.

THEOREM 3.37. — Let (X, 1) be a locally S-closed space and f : (X,7) — (Y, 0)
be a mapping.

Q) If f is an a-continuous, a.0.W. (or a.0.S.), and contra-semiopen sur-
jection, then (Y, o) is locally S-closed.

2) If Y,0) is e.d. and f is an a-continuous, semi-open, and contra-semi-
open surjection, then (Y, o) is locally S-closed.

3) If f is an a-continuous, weakly open, and contra-semiopen bijection,
then (Y, o) is locally S-closed.

The reader is advised to compare Theorem 3.37 with [27, Theorem 4.4].
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