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Bollettino U. M. 1.
(8) 10-B (2007), 455-467

On Ponomarev-Systems (*).

YING GE - SHOU LIN

Sunto. — In questo lavoro vengono studiate le relazioni fra mappe e famiglie di sot-
toinsiemi nei sistemi di Ponomarev, e si ottengono i sequenti risultati. (1) f e una
“sequence-covering” (visp. una “l-sequence-covering”) mappa se e solo se P ¢ una csf
rete (risp. una snf rete) di X per un sistema di Ponomarev (f,M,X,P); (2) f ¢ una
“sequence-covering” (risp. una “l-sequence-covering”) mappa se e solo se ogni Py, é un
cs ricoprimento (risp. un wsn ricoprimento) di X per un sistema di Ponomarev
(f,M,X,{P,}). Come applicazione di questi risultati vengono discusse alcune re-
lazioni fra “sequence-covering” mappe e “1-sequence-covering” mappe, e si fornisce la
risposta a una domanda posta da S. Lin.

Summary. — In this paper the velations of mappings and families of subsets are in-
vestigated in Ponomarev-systems, and the following results are obtained. (1) f is a
sequence-covering (resp. 1-sequence-covering) mapping iff P is a csf-network (vesp.
snf-network) of X for a Ponomarev-system (f,M,X,P); (2)f is a sequence-covering
(resp. 1-sequence-covering) mapping iff every Py is a cs-cover (resp. wsn-cover) of X
for a Ponomarev-system (f,M,X,{P,}). As applications of these results, some re-
lations between sequence-covering mappings and 1-sequence-covering mappings are
discussed, and a question posed by S. Lin is answered.

1. — Introduction.

In 1960, V. 1. Ponomarev [11] proved that every first countable space can be
characterized as an open image of a subspace of a Baire’s zero-dimensional space.
Recently S. Lin [6] generalized the “Ponomarev’s method” to established two
systems (f,M,X,P) and (f,M,X,{P,}), which are called Ponomarev-systems
[9, 13]. The following results have be obtained [6, 13].

THEOREM 1.1. — The following hold for a Ponomarev-system (f, M, X, P).
1) If P is a point-finite (resp. point-countable) network of X, then f is a
compact mapping (resp. s-mapping).
2) IfPis a point-countable cs-network of X, then f is a sequence-covering,
s-mapping.

(*) This project was supported by NSFC (No. 10571151)
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3) If P is a point-countable sn-network of X, then f is a 1-sequence-cov-
ering, s-mapping.

THEOREM 1.2. — The following hold for a Ponomarev-system (f,M,X,{Py}).

1) Ifevery Py is a point-finite (resp. point-countable) cover of X, then f is a
compact mapping (resp. s-mapping).

(2) If every P, is a cs-cover (resp. sn-cover) of X, then f is a sequence-
covering mapping (resp. 1-sequence-covering mapping).

Take the above theorems into account, the following question naturally arises.

QUESTION 1.3. — Can implications in Theorem 1.1 and Theorem 1.2 be re-
versed?

In addition, P. Yan and S. Lin proved that every sequence-covering,
compact mapping from a metric space is 1-sequence-covering ([8, Theorem
4.4]. In view of this result, the following question was posed by S. Lin in [6,
Question 3.4.3].

QUESTION 1.4. — Is every sequence-covering, n-mapping from a metric space
1-sequence-covering?

In this paper, we investigate the above two Ponomarev-systems, answer
Question 1.3 affirmatively except for 1-sequence-covering mapping, and give
two sufficient and necessary conditions such that f is a 1-sequence-covering
mapping in two Ponomarev-systems respectively. As some applications of
these results, for a Ponomarev-system (f, M, X, P), f is a sequence-covering,
s-mapping iff it is a 1-sequence-covering, s-mapping for an sn-first countable
space X, and where sn-first countability of X can not be omitted; for a
Ponomarev-system (f,M,X,{P,}), f is a sequence-covering, s-mapping iff it
is a 1-sequence-covering, s-mapping, and where “s” can not be omitted, which
answers Question 1.4 negatively.

Throughout this paper, all spaces are assumed to be Hausdorff and all
mappings are continuous and onto. Let X be a space and A C X. A sequence
{x,} converging to x in X is eventually in A if {x, : » > k} U {x} C A for some
k € N. Let P be a family of subsets of X and x € X. st(x, P) and (P), denote
the union (J{P € P:x € P} and the subfamily {P € P:x € P} of P respec-
tively. For a sequence {P, : n € N} of covers of a space X and a sequence
{P,:n €N} of subsets of a space X, we abbreviate {P,:n € N} and
{P,:mneN} to {P,} and {P,} respectively. A point b= (f,)ex of a
Tychonoff-product space is abbreviated to (§,), and the n-th coordinate f, of
b is also denoted by (b),.
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2. — On Ponomarev-system (f, M, X, P).

DEFINITION 2.1. — Let P = |J Py be a cover of a space X, where P, C (P),. P
xeX
18 called a network of X/[10] if for every x € U with U open in X, there exists

P ¢ P, such that x € P C U, where P, is called a network at x in X.

DEFINITION 2.2. — Let P be a network of a space X. Assume that there exists a
countable P, C P such that P, is a network at x in X for every x € X. Put
P ={Pp:p € A}. Foreveryn € N, put A, = Aand endow A, a discrete topology.
Put M = {b= (B, € HyexAy: {Pg } forms a network at some point xy, in X},
then M, which is a subspace of the product space I1,cx Ay, 1S a metric space and x;,
1s unique for every b € M. Define f : M — X by f(b) = xp, then f is a mapping,
and (f,M,X,P) is called a Ponomarev-system [9, 13].

DEFINITION 2.3. — Let (X, d) be a metric space, and let f : X — Y be a map-
ping. [ is called a m-mapping [11] if for every y € U with U open in Y,
a(f 'y, X 1) > 0.

REMARK 2.4. — Recall a mapping f: X — Y is a compact mapping (resp.
s-mapping) if f~}(y) is a compact (resp. separable) subset of X for every
y € Y. It is clear that every compact mapping from a metric space is an s- and
7-mapping.

DEFINITION 2.5. - Let f : X — Y be a mapping.

(1) f is called a sequence-covering mapping [12] if whenever {y,} is a
convergent sequence in Y there exists a convergent sequence {x, } in X with every
@y € f 7 Yk

(2) f is called a 1-sequence-covering mapping [8] if for every y € Y there
exists x € f~1(y) such that whenever {y,} is a sequence converging toy in Y there
exists a sequence {x,} converging to x in X with every x, € f~1(y,).

REMARK 2.6. — (1) Sequence-covering mapping in Definition 2.5(1), which is
called sequence-covering mapping in the sense of Siwiee, is different from
sequence-covering mapping in the sense of Gruenhage-Michael-Tanaka. G.
Gruenhage, E. Michael and Y. Tanaka [3] called a mapping f: X — Y a se-
quence-covering mapping if for every sequence S converging to y in Y, there
exists a compact subset K of X such that f(K) =S U {y}(also see [7]). In this
paper, we deal with sequence-covering mapping in the sense of Siwiec.

(2) Every sequence-covering, compact mapping from a metric space is 1-se-
quence-covering [8].
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DEFINITION 2.7. — Let X be a space and x € X. A subset P of X s called a
sequential neighborhood of x if every sequence converging to x in X is eventually
m P.

DEFINITION 2.8. — Let P be a cover of a space X.

(1) P is called a cs-network of X [4] if whenever {x,} is a sequence con-
verging to a point x € U with U open in X, then {x, : n > m} U {x} C P C U for
some m € N and some P € P.

(2) Piscalled a csf-network of X [2] if whenever S is a sequence converging
to a point x in X, there exists a countable subfamily Ps of P such that Ps is a
network at x in X and S is eventually in P for every P € Pg, where Ps is called a
csf-network for S in X.

(3) P is called an sn-network of X [8] if P = |J P., and P, satisfies the
reX
Sfollowing conditions (a), (b) and (¢) for every x € X, where P, is called an sn-

network at x i X.
(a) P, s a network at x m X.
(b) If P1,Ps € Py, then P C Py N Py for some P € P,.
(c) Every element of P, is a sequential neighborhood of .

If P, 1s also countable for every x € X, then X is called sn-first countable [5, 1].

4) P 1s called an snf-network of X, if for every x € X, there exists a
countable subfamily P, of P satisfying the above conditions (a) and (c), where
P, is called an snf-network at x in X.

REMARK 2.9. — The following are clear.

(1) sn-networks=-cs-networks.
(2) snf-networks=-csf-networks=-cs-networks.
(3) point-countable cs-networks=-csf-networks.

LemmA 2.10. — Let (f,M,X,P) be a Ponomarev-system and let U =
UTyexI ') M, where I',, C A, for every m € N. Then f(U) C\U{Pps : fc I} for
every k € N.

PROOF. — Let b = (f,) € U and let k € N. Then {Py } forms a network at f(b)
in X and f,erl So f(b)ePp CU{Pp:p<c'k}. This proves that
f(U)CU{P/;:ﬁEFk}. O

ProposITION 2.11. — Let ( f, M, X,P) be a Ponomarev-system. Then f is a
compact mapping (resp. s-mapping) iff P is point-finite (point-countable)
network of X.
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Proor. — By Theorem 1.1(1), we only need to prove necessities.

We only give a proof for the parenthetic part. If P is not point-countable,
then, for some x € X, there exists an uncountable subset I” of 4 such that
I'={pe€A:xcPg}. Let {Py } forms a network at x in X. For every f € I',
put ¢z = (y,,), where y; = f, and y,, = ,_; for n > 1, then {P, } forms a network
at x in X, so ¢p € f1(x). Put Ug = ({f} x (UT>14,) (M for every f € I', then
{Ug : p € I'} covers f1(x). If not, there exists ¢ = (a,) € f~}(x) and ¢ ¢ Uy for
every f € I',so ay ¢ I'. Thus x & P,, from construction of I". But x = f(c) € P,,
from Lemma 2.10. This is a contradiction. Thus {Uy : f € I'} is an uncountable
open cover of f~1(x), but it has not any proper subcover. So f~1(x) is not se-
parable, hence f is not an s-mapping. O

Now we investigate reversibility of Theorem 1.1(2),(3). At first, we give suf-
ficient and necessary conditions such that f is sequence-covering and 1-se-
quence-covering respectively for a Ponomarev-system (f, M, X, P).

LEMMA 2.12. — Let f : X — Y be a mapping, and {y,} be a sequence con-
verging to y in Y. If {B,,} is a decreasing network at some x € f1(y) in X, and
{yn} is eventually in f(B,,) for every n € N, then there is a sequence {x,} con-
verging to x such that every x, € f~1(y,).

Proor. — Let {B,,} be a decreasing network at some x € f “1(y) in X, and let
{yn} be eventually in f(B},) for every k € N. Then, for every k € IN, there exists
ni € N such that y, € f(By) for n > ny, so f~1(y,) By # 0 for every n > ny.
Without loss of generality, we can assume 1 < 5y, < ny,1. For every n € N, pick
x, € f Ny, if n<mn, and pick x, € f'(y,) NBy if n, <n <my.q, then
x, € f1(yy) for every n € N. It is not difficult to prove that {x,} converges to x.

O

THEOREM 2.13. — The following hold for a Ponomarev-system (f,M,X, P).

1) f is a sequence-covering mapping iff P is a csf-network of X.
) f is a 1-sequence-covering mapping iff P is an snf-network of X.

Proor. — (1) Sufficiency. Let P be a csf-network of X, and let S = {x,,} be a
sequence converging to a in X. Then there exists a countable subfamily
Pg = {Pg,} of P such that Pg is a csf-network for S in X. It is clear that {x,} is
eventually in () Py, for every n € N. Put b = (8,), then b € f1(x). For every

i<n
nelN, put B, ={(;)eM:y;=p; for i <n}. Then {B,} is a decreasing
neighborhood base at b in Y. It is not difficulty to prove that f(B,) = ) Pg..
i<n

Thus {x,} is eventually in f(B,,) for every n € N. By Lemma 2.12, there exists a



460 YING GE - SHOU LIN

sequence {b,} converging to b in M with every b, € f~1(x,). This proves that f
is sequence-covering.

Necessity. Let f be sequence-covering. Suppose that S = {x,} is a se-
quence converging to x in X. There exists a sequence {b,} converging to b in
M such that f(b,) = x,, for every n € N. Let b = () € (TpenA) (M. Then
{Pp, ke N} CP is a network at x in X. For every ke, Put
B = (T 4;) x {P)} x (;=14:)) (M, then B is an open neighborhood of b in
M. Thus {b,} is eventually in B, and so {x,} is eventually in f(B). Since
f(B) C Pg, from Lemma 210, so {x,} is eventually in P, hence
{Pp, : k€ N} C P is a csf-network for S in X. This proves that P is a csf-
network of X.

(2) Sufficiency. Let P be an snf-network of X. For every « € X, let {Py } be
an snf-network at x in X. Then 8, € 4, and Pj, is a sequential neighborhood of
x for every m € N. Put b=(f,), then b € fHx). For every m €N, put
B, ={()eM:y,=p; for i <n}. Then {B,} is a decreasing neighborhood
base at b in Y. It is not difficulty to prove that f(B,) = () Pp.. Note that the

intersection of finite sequential neighborhoods of x is Zsgélquential neighbor-
hood of x in X, so f(B,,) is a sequential neighborhood of « in X. Let {x;} be a
sequence in X converging to x. Then there exists a sequence {b,} converging
to b in M with every b, € f!(x,) from Lemma 2.12. This proves that f is 1-
sequence-covering.

Necessity. Let f be 1-sequence-covering. If x € X, then there exists
b € f~1(x) such that whenever {x;} is a sequence converging to x in X there
exists a sequence {b;} converging to b in M with every b; € f~1(x;). Let
b=(,) € M C IyexAy. Then {Pg } C P is a network at x in X. It suffices to
prove that Py is a sequential neighborhood of « for every n € N. Whenever {y;}
is a sequence converging to « in X there exists a sequence {c;} converging to b
in M with every ¢; € f~1(y;). Put Uy = (IT;n4;) x {B,,} x (5, 4;)) (M, then
Uy is an open neighborhood of b in M. So sequence {c;} is eventually in Uj,
hence sequence {y;} is eventually in f(U,). f(U) C Py, from Lemma 2.10,
so {y;} is eventually in Py . This proves that P is a sequential neighborhood
of x. O

The following corollary is obtained immediately from Remark 2.9,
Proposition 2.11 and Theorem 2.13.

COROLLARY 2.14. — The following hold for a Ponomarev-system (f, M, X, P).
(1) f is a sequence-covering, s-mapping iff P is a point-countable cs-net-
work of X.
(2) f is a 1-sequence-covering, s-mapping iff P is a point-countable snf-
network of X.
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REMARK 2.15. — Whether P is a cs-network of X iff f is sequence-covering for a
Ponomarev-system (f,M,X,P)? The answer is negative. In fact, let X be the
sequential fan space S,. Put P={U Cc X : U is open in X} | J{{x} : x € X},
then Pis a cs-network of X and (f, M, X, P) is a Ponomarev-system, but P is not a
csf-network of X.

ExAMPLE 2.16. — There exists a Ponomarev-system ( f, M, X, P) such that f
is a 1-sequence-covering, s-mapping, but P is not an sn-network. So the
implication in Theorem 1.1(3) can not be reversed.

PRroOF. — Let X be a non-discrete space with a point-countable sn-network P’
Put P = P U{{x} : ® € X}, then Pis a point-countable snf-network, and is not an
sn-network. Consider Ponomarev-system (f, M, X, P). Then f is a 1-sequence-
covering, s-mapping from Corollary 2.14. O

ProrosITION 2.17. - Let X be an sn-first countable space. If P is point-
countable, then P is a cs-network of X iff it is an sn f-network of X.

Proor. — We only need to prove necessity. Let P be a point-countable cs-
network of X. For every ¥ € X, let {F,, : n € N} be an sn-network at « in X. Let
Py ={P € P:F, CPforsomen € N}. Then every element of P, is a sequential
neighborhood of x, and P, is countable. It suffices to prove that P, is a network at
x in X. To show this, let U be an open neighborhood of & in X. Then there exists
P € P, such that P C U. Otherwise, let {PeP:x ¢ PC U} ={P,, : m € N}.
Then for every n,m € N, F,, ¢ P,,, so choose x,.,, € F,, — P,,. For n > m, let
Lpm = Yi, Where k =m + n(n — 1)/2. Then the sequence {y;} converges to .
Thus, there exist m,? € N such that {y;:k>i}U{x} C P, C U. Take j > 1
with y; = x,,, for some n > m. Then ), € P,,. This is a contradiction. Thus P,
is a network at x in X. O

THEOREM 2.18. — Let (f,M,X,P) be a Ponomarev-system. If X is sn-first
countable, then the following are equivalent.
(1) f s a sequence-covering, s-mapping;
(2) f 1is a 1-sequence-covering, s-mapping.

Proor. — Consider the following conditions.
(3) P is a point-countable cs-network of X;
(4) P is a point-countable snf-network of X.

(1)<=(3) and (2)<(4) from Corollary 2.14. (3)<(4) from Proposition 2.17. Thus
D)@ O
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REMARK 2.19. — S. Lin gave an example to show that a sequence-covering,
s-image of a metric space need not to be a 1-sequence-covering image of a
metric space[6, Example 3.4.7(7)], so sn-first countability of X in Theorem
2.18 can not be omitted.

3. — On Ponomarev-system (f, M, X, {P,}).

DEFINITION 3.1. — Let { P, } be a sequence of covers of a space X. { P, } is called
a point-star network of X[9] if {st(x, Py)} is a network at x in X for every x € X.

DEFINITION 3.2. — Let {P,} is a point-star network of a space X. For every
nelN, put P, ={Pp:feA,} and endow A, a discrete topology. Put M =
{b=(B,) € Hyexdy : {Pp,} forms a network at some point xy in X}, then M,
which is a subspace of the product space Il,-x Ay, is a metric space and xy 1s
unique for every b € M. Definef : M — X by f(b) = xp, then f is a mapping, and
(f,M,X,{Py}) is called a Ponomarev-system [9, 13].

REMARK 33.-f:M — X is a rn-mapping for a Ponomarev-system
(fs M, X, {P, I, 13].

DEFINITION 3.4. — Let P be a cover of a space X.

(1) P 1is called a cs-cover of X[14] if for every convergent sequence S in X,
there exists P € P such that S is eventually in P;

(2) P 1s called an sn-cover of X[8] if every element of P is a sequential
neighborhood of some point in X, and for every x € X, there exists P € P such
that P is a sequential neighborhood of x;

(3) P 1is called a wsn-cover of X if for every x € X, there exists P € P such
that P is a sequential neighborhood of .

REMARK 3.5. — It is clear that “sn-cover”’= “wsn-cover’= ‘“‘cs-cover”.

The proof of the following lemma is as to that of Lemma 2.10, we omit it.

LEmma 3.6. — Let (f,M,X,{P,}) be a Ponomarev-system and let
U=UlwxITy)M, where I'yCA, for every meN. Then f(U)C
U{Ps : p € I'} for every k € N.

THEOREM 3.7. — The following hold for a Ponomarev-system (f, M, X, {P,}).

(1) f1is a compact mapping (resp. s-mapping) iff P, 1S a point-finite (resp.
point-countable) cover of X for every m € I\.
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(2) f is a sequence-covering mapping iff P, 18 a cs-cover of X for every
m € N.

Proor. — By Theorem 1.2, we only need to prove necessities of (1) and (2). Let
m € N.

(1) We only give a proof for the parenthetic part. If 7, is not point-countable,
then, for some x € X, there exists an uncountable subset I, of 4,, such that
Iy ={pe€ Ay, :xecPs}. For every pfel,, put Up=(Ul,cmdy) x {f}x
UTysmd)(YM. Then {Up:pel,} covers f “I(x). If not, there exists
¢ =, €f Yx) and ¢ ¢ Uy for every f € I'y, s0 y,, & I'y,. Thus x ¢ P, from
construction of I",. But x = f(c) € P, from Lemma 3.6. This is a contradiction.
Thus {Up : f € I} is an uncountable open cover of f~1(x), but it has not any
proper subcover. So f~1(x) is not separable, hence f is not an s-mapping.

(2) Let f be sequence-covering and m € N. If {x;} be a sequence converging
to ¢ in X, then there exists a sequence {b;} converging to b in M such that
f(b;) = x; for every ¢ € N. Let b= (f,) € M. We claim that sequence {x;} is
eventually in Py . In fact, put U = ((IT )< 4n) X {f} ¥ U yspAn)) (M, then U
is an open neighborhood of b in M. So sequence {b;} is eventually in U, hence
sequence {x;} is eventually in f(U). f(U) C Py, from Lemma 3.6, so {x;} is
eventually in Py € Py,. This proves that P, is a cs-cover of X. O

The following examples show that “f is 1-sequence-covering”# “every P,, is
an sn-cover” for a Ponomarev-system (f, M, X, {P,}).

ExaMPLE 3.8. — There exists a point-star network {P,} consisting of point-
finite cs-covers of a space X such that every P, is not an sn-cover of X.

Proor. - Let X = {0} U{1/n:n € N} endow usual subspace topology of
real line R. Put A,={1/k:k>n}, and P, = {4, U{0}}U{{1/k} : k=
1,2,---,m}U{{0}} for every n € .

Claim 1: {P,} is a point-star network of X.

If 0 € U with U open in X, then there exists m € I\ such that A,, c U. It is
easy to see that st(0,P,,) = A, U {0}, s0 0 € st(0,P,,) C U. If 1/n € U with U
open in X, where n € N. It is easy to see that st(1/n,P,) = {1/n}, so
1/n € st(1/n,P,) C U. Thus P, is a point-star network of X.

Claim 2: P,, is a point-finite cs-cover of X for every n € N.

Let S = {w;} be a sequence converging to x in X. If x = 0 or x = 1/m with
m > n, then S is eventually in A4, U {0} € P,,. If ¢ = 1/m with m < n, then S is
eventually in {1/m} € P,. So P, is a cs-cover of X. Note that P, is a finite cover
of X. So P, is a point-finite cs-cover of X.

Claim 3: P,, is not an sn-cover of X for every n € IN.

Note that {0} € P,, and {0} is not a sequential neighborhood of « for every
x € X. So P, is not an sn-cover of X. O
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EXaMPLE 3.9. — There exists a Ponomarev-system ( f, M, X, {P,}) such that
f is a 1-sequence-covering mapping, but every P, is not an sn-cover of X.

Proor. — Let {P,} be a point-star network stated in Example 3.8. Then
Ponomarev-system (f, M, X, {P,}) is demanded. In fact, every P, is a point-finite
cs-cover of X from Claim 2 in Example 3.8, so f is a sequence-covering, compact
mapping from Theorem 3.7, hence f is a 1-sequence-covering mapping from
Remark 2.6(2). On the other hand, every P,, is not an sn-cover of X from Claim 3 in
Example 3.8. O

The following question is posed by the above example. What is the sufficient
and necessary condition such that f is a 1-sequence-covering mapping in a
Ponomarev-system (f, M, X, {P,})? We give an answer to this question.

THEOREM 3.10. — Let (f,M,X,{Py}) be a Ponomarev-system. Then f is a 1-
sequence-covering mapping if and only if every Py is a wsn-cover of X.

ProoF. — Sufficiency. Let every P, be a wsn-cover of X, and let x € X. For
every n € N, pick 8, € 4, such that Py is a sequential neighborhood of x. Then
{Pg } forms a network at « in X. Put b = (8,), then b € f(x). Let {x;} be a
sequence in X converging to x. Then {x;} is eventually in Py for every n € N.
Let i € N. For every n € N, if u; € Py , put §;,, = B,; if %; & Py , pick B;,, € 4,
such that x; € Py . Then {Pp }, .\ forms a network at x; in X. Put
b; = (B; . )nen, then b; € f~ ;). We only need to prove that sequence {b;}
converges to b in M. It suffices to prove that for every n € NN, sequence
{Bin}icen converges to f, in A,. Let n € N. {x;} is eventually in Py , so there
exists ¢, € N such that x; € Py, for i > iy, and so f;,, = f, for i > 7,. Thus se-
quence {f; ,};c converges to f, in A,. '

Necessity. Let f be 1l-sequence-covering. If x € X, then there exists
b € f~1(x) such that whenever {x,} is a sequence converging to x in X there
exists a sequence {b,} converging to b in M with every b, € f~!(x,). Let
b= (f,) € IlyexAy. 1t suffices to prove that Py € Py, is a sequential neigh-
borhood of x for every m € IN. Whenever {y, } is a sequence converging to x in X
there exists a sequence {c,} converging to b in M with every ¢, € f~(y,). Put
Uy = (U emAn) X {B,,} X UTy=mAy)) (M, then Uy is an open neighborhood of b
in M. So sequence {c, } is eventually in U,, hence sequence {y, } is eventually in
f(Uy). f(Uy) C Pg, from Lemma 3.6, so {y,} is eventually in Py . This proves
that Py € P, is a sequential neighborhood of x. d

DEFINITION 8.11. — A point-star network {P,} of X is called a point-star sn-
network of X if {st(x, Pn)} is an sn-network at x in X for every x € X.
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REMARK 3.12. — A space X with a point-star network consisting of cs-covers
has a point-star sn-network from [1, Theorem 2.5], and so is sn-first countable
from [1, Remark 1.12].

PRrOPOSITION 3.13. — Let X be an sn-first countable space. If P is point-
countable, then P is a cs-cover of X iff it is a wsn-cover of X.

Proor. — We only need to prove necessity. Let P be a point-countable cs-cover
of X. For every x« € X, put (P), = {P,, : n € N}, and let {F,, : » € N} be an sn-
network at « in X. Then F',, C P,, for some n,m € N by the proof of Proposition
2.17. Hence P is a wsn-cover of X.

THEOREM 3.14. — The following are equivalent for a Ponomarev-system
(fs M, X, {Py}).

(1) f is a sequence-covering, s-mapping;
(2) f 1is a 1-sequence-covering, s-mapping.

Proor. — Consider the following conditions.

(3) P, is a point-countable cs-cover of X for every n € N
(4) P,, is a point-countable wsn-cover of X for every n € N.

(1)<(3) and (2)<(4) from Theorem 3.7 and Theorem 3.10 respectively. If one
of (3) and (4) holds, then X is sn-first countable from Remark 3.12, so (3)<(4)
from Proposition 3.13. Thus (1)<(2). O

Can the condition “s-” in Theorem 3.14 be omitted? We give a negative answer
to this question.

ExaMPLE 3.15. — There exists a space X, which has a point-star network
{P,} consisting of cs-covers of X, but P, is not a wsn-cover of X for every
n € N.

ProoF. — Let X be the closed interval [0,1]. For x € X and » € N, we write
B,x)={yeX:|ly—x <1l/n}, put A,, = {SU{x}:S is a sequence conver-
gingtox € X and S C B,(x)}, and put P, = U Apz-

reX
Claim 1: {P,} is a point-star network of X.
Let x € U with U open in X. Then there exists n € N such that
x € By(x) C U. Put m = 2n, then st(x, P,,) C U. In fact, if y € st(x, P,,), then
there exists z € X such that x,y e SU{z} € Ay,, so |y—zl <1/m and
| — 2| <1/m. Thus |x —y| <2/m =1/n, so y € B,(x) C U. This proves that
st(x, Pp,) C U, so {P,} is a point-star network of X.
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Claim 2: P,, is a cs-cover of X for every n € I\.

Let S ={x;} be a sequence converging to = in X, S is eventually in
(S N B,(x) U {x}. It is easy to see that (SN B, (x)) U{x} € Ay, C Py.So P, isa
cs-cover of X.

Claim 3: P,, is not a wsn-cover of X for every n € .

It is clear.

Thus we complete the proof of this example. O

REMARK 3.16. — Let X and {P,} be given as in Example 3.15. Then, for
Ponomarev-system (f, M, X, {P,}),f is sequence-covering from Theorem 3.7 and
Claim 2 in Example 3.15 (note: f is also a z-mapping from Remark 3.3), and f is not
1-sequence-covering from Theorem 3.10 and Claim 3 in Example 3.15. So “s-” in
Theorem 3.14 can not be omitted.

REMARK 3.17. — Every sequence-covering, compact mapping from a metric
space is 1-sequence-covering. The following question was posed by S. Lin in [6,
Question 3.4.3]: Is every sequence-covering, 7-mapping from a metric space 1-
sequence-covering? The answer is negative. In fact, let f be a mapping in Remark
3.16. Then f is a sequence-covering, 7-mapping from a metric space M, but it is not
1-sequence-covering.
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