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Bollettino U. M. 1.
(8) 10-B (2007), 405-431

Irreducibility of Hurwitz Spaces of Coverings with Monodromy
Groups Weyl Groups of Type W (B,)

FRANCESCA VETRO
Dedicated to my father on his 60th

Sunto. — Rivestimenti di P* con gruppo di monodromia un gruppo di Weyl di tipo W(Dy)
sono stati studiati da Biggers e Fried che hanno provato Uirriducibilita dei corri-
spondenti spazi di Hurwitz. In questo articolo viene dimostrata Uirriducibilita degli
spazi di Hurwitz che parametrizzano rivestimenti di una curva proiettiva complessa,
connessa, non singolare di genere > 0, il cui gruppo di monodromia ¢ un gruppo di
Weyl di tipo W(By).

Summary. - Let Y be a smooth, connected, projective complex curve of genus > 0. Biggers
and Fried proved the irreducibility of the Hurwitz spaces which parametrize cover-
ings of Pt whose monodromy group is a Weyl of type W(D,). Here we prove the ir-
reducibility of Hurwitz spaces that parametrize coverings of Y with monodromy
group a Weyl group of type W(By).

Introduction.

Let X, X’ and Y be smooth, connected, projective complex curves of genus
> 0. Let Hy,(Y) be the Hurwitz space which parametrizes degree d coverings of
Y simply branched in » points. The irreducibility of the spaces H, d?n(Pl) is proved
by Hurwitz in [9]. Coverings of P! simply branched in all but one point of the
discriminant were studied by Natanzon [13], Kluitmann [11] and Mochizuchi [12],
who proved the irreducibility of the corresponding Hurwitz spaces. More gen-
erally one can consider sequences of coverings of type X L X’ = P'. This is
what Biggers and Fried did in [2]. They proved the irreducibility of Hurwitz
spaces which parametrize equivalence classes of sequences of coverings f o 7,
where 7 is an unramified cyclic covering of degree [ and f is a covering simply
branched of P! of degree m. Only recently Graber, Harris and Starr considered
the Hurwitz spaces Hj, (Y) parametrizing coverings with full monodromy group
S, of curves of genus > 1. They proved in [8] the irreducibility of these spaces for
n > 2d. Kanev sharpened this result proving in [10] the irreducibility of Hj ,(Y)
in the case n > max{2,2d —4} if g >1 and n > max{2,2d — 6} if g=1.
Moreover Kanev extended the result to coverings which are simply branched in
all but one point of the discriminant. Fixing the branching data of special point,
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i.e., a partition e = (ey, ..., e,) of d where e; > --- > e,, he obtained the Hurwitz
spaces HY, (Y) parametrizing coverings with monodromy group S;, simply
branched in 7 points and ramified with multiplicities ey, ..., e, over one addi-
tional point. Kanev proved they are irreducible if n > 2d — 2. We sharpened the
latter result proving in [15] the irreducibility of HY , ,(Y) for n + |e| > 2d, where
le] = 31y (e — 1. o

Here we consider sequences of coverings X — X’ — Y where 7 is a branched
covering of degree 2 and f of degree d > 3. Denote by D, Dy, D respectively
the branch locus of z, f and fon. Let bjp € Y —D and let ¢: (f o n)*l(bo) —
—{=d,...,—1,1,...,d} be a bijection. In this paper we are interested in
Hurwitz spaces that parametrize equivalence classes of pairs [f o 7, @] of se-
quences of coverings f oz and bijections ¢ satisfying the following: = is a cov-
ering as above and either f is a covering simply branched of degree d of Y with
ng > 0 branch points and monodromy group Sg, or f is a covering of degree d of Y
with ng > 0 points of simple branching and one special points ¢, whose local
monodromy has cyclic type given by the partition e of d and furthermore f has
full monodromy group S;. Denote these spaces respectively by
Hyw @) )Y, 00) and Hywi,) 0y:n0,0(Y , 00), Hw By, 051,50 (Y s bo). We prove
their irreducibility when Y = P! and then we extend the result to smooth, con-
nected, projective complex curves of genus > 1. Here we follow the standard
approach. Let g be the genus of Y, associate to [f o 7, ¢] an ordered (n + 2¢g)-tuple
of elements of Sag, (t1,. .., tu; 41, iy, - - - ; Ags 14y), satisfying the following: for each
t=1,...,m b #d, t1-- -ty = [A1, 4] - - [4g, 14y], m1 among the ¢; are transposi-
tions of type (j —j) and ne are permutations of type either (j h)(—j — k) or
(j — h)(—j h). Moreover the group generated by ¢;, /, 1, is the Weyl group of
type Bg. Observe that when g = 0 the (n + 2g)-tuples (t1, .. ., tu; 21, 14y, - - - Ag> 1y)
are of the form (t,...,t,) and t; - - - t,, = id. So we prove the irreducibility of our
Hurwitz spaces by proving the transitivity of the action of the braid group
(Y — bp)™ — A,D) on the set of ordered (n + 2¢)-tuple as above. In order to
prove the transitivity of the action of (P — bo)(”) — 4,D), we prove that ap-
plying elementary transformations of the Artin’s braid group it is possible to
bring each (ti,...,t,) as above to a given normal form. Once this is proved, to
extend the result to curve of genus > 1, it is sufficient to prove that applying
braid moves it is possible to replace every (f1,...,tu;41, 44, -, 49, 1y) by
(t1,...,ty;1d,1d, ..., 1d,id). In order to prove this we use the results obtained by
Kanev in [10] and by the author in [15]. So we prove the irreducibility of the
Hurwitz space Hywg,) mm:)(Y, bo) for ma > 2d — 2 and the irreducibility of the
spaces Hwe,),mms.0(Y ; 00) and Hyw,) oo lj1,...j,) (¥ 5 bo) for ng + |e| > 2d.

Moreover here we prove the irreducibility of Hurwitz spaces that para-
metrize equivalence classes [f o 7] where f is a branched covering of degree
d > 3 of P!, with 1y points of simple branching and one special point ¢ and 7 is a
branched covering of degree 2 such that D, C f~1(c).

n.e
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CONVENTIONS. — In this paper we work with sequences of branched coverings
X5Xx ER Y. Two degree d branched coverings h : X7 — Y and hg : Xo — Y
are called equivalent if there exists a biholomorphic map p : X1 — Xz such that
hg o p = hy. Two sequences of coverings X; RN X LY and Xo 2 X, 2 Y are
called equivalent if there exist two biholomorphic maps p:X; — X, and
p' : X] — X} such that p’om; =mop and fo op’ =fi. The equivalence class
containing the covering f o z is denoted by [f o z]. We denote by D the branch
locus of f oz and by by a point in Y — D. We number the fiber (f o 7)1 (by)

through a bijection ¢: (f o ) L(by) — {-d,...,-1,1,...,d} and denote by
m : 1 (Y — D, by) — Saq the monodromy homomorphism associated to [f o 7, ¢].
Moreover here the natural action of Sy on {1,...,d} is on the right and multi-

plication of permutation is by ¢ - 1 = t 0 g, e.g., (12) (13) = (123).

1. — Preliminaries.

Let d > 3 be an integer. In § 1.1 we recall some results on Weyl groups of type
B;. We use the notation of [4].

L.1. Let {e1,...,24} be the standard base of R? and let R be the root system
{Fe&, e+ ¢:1<1,j <d}. Let us denote by W(B;) the Weyl group of type
Bi. W(Bg) is generated by the reflections s, i=1,...,d, and s; .,
1 <i<j<d. The reflection s, ., changes ¢ and ¢, —¢; and —¢;, leaving un-
changed ¢, for each i # +1,+7. The reflection s; changes ¢ and —¢; while un-
changing each ¢, with & # +7. We identify {£e¢:1=1,...,d} with
{-d,...,-1,1,...,d} by the map +¢ — =14. So the action of W(By) over
{te:1=1,...,d} allows us to define an injective homomorphism t from W(B;)
into Sog such that

WSy g) = G~ —J), (se) =G — i)
and
T(S£i+sj) = T(Seisgjsei—‘g/) = (’L _])( - ZJ)

Then, by ignoring the sign-changes, each element w € W(B;) determines a
permutation of the indexes 1,...,d. This permutation can be expressed in the
usual way as a product of disjoint cycles. Let (7113 . . . %,) be such a cycle. Then w
sends &, to e, f¢ to £e,,j=2,...,e—1, and *¢, to £¢;,. The cycle
(21 ...1,) is called positive if w°(e;,) = &;,, and negative if w°(e;,) = —e&;,. A positive
e-cycle of the form (7; ...%,) corresponds in Sy to a product of two disjoint e-
cycles, ss’, which move the indexes {+11,...,+1%} and are such that if s sends ¢;
to i1 (i to —ij;1) then s sends —i; to —i;; (resp. —i; to 4j;1), where
+ 10,1 := +1;. Instead a negative e-cycle of the form (i173 .. .7,) corresponds in
Saq to a 2e-cycle of type (i3 + 4z...+ % — % Fiz... Fi.). The lengths of the
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cycles together with their signs give a set of positive or negative integers called
the signed cycle-type of w. It is easy to see that two elements of W(B;) are
conjugate if and only if they have the same signed cycle-type, [5].

Let us denote by G the subgroup of W(B;) generated by the reflections with
respect to the long roots ¢ — ¢, 1 < ¢ < j < d. The homomorphism 7; : G; — Sy
that corresponds to the action of G; over the set {¢; : ¢ = 1,...,d} is bijective and
it sends s, to (i 7). Let Gz be the subgroup of W(B,;) generated by the re-
flections with respect to the short roots ¢;,7 =1,...,d, and let (Z5)" be the set of
the functions from {1,...,d} into Z,. Throughout this paper we denote by 1; and
by z;; the functions of (Z2)" so defined

1;())=1 and 1;(h) =0 for each h #j
and
2ij(0) = 2;(j) =2 and z;(h) =0 for each h#1i,j and ze€ Z,.

Moreover we denote by L‘,..‘,h the funection of (Zz)d that sends to 1 only the in-
dexes?,...,h. Let o : G2 — (Zz)d be the homomorphism that maps s, into 1;. It
is easy to prove that 75 is an isomorphism. Let @ be the homomorphism from Sy

in Aut ((Zz)d) which assigns to t € S; @(t) € Aut ((Zz)d) where
[@@t) 2] (j) =2 (") for each 2’ € (Zs)".

Let (Z5)? x* S; be the semidirect product of (Z5)" and S through the homo-
morphism @. Given (z';t), (2";t2) € (Zz)d x5 Sq we put

(1) - @"5t2) = @ + D(t)R"); tita).
Let ¥ : (Zz)d x*Sg — W(Bgy) be the map so defined
P((@5t) = 13 (&) (k).

It is easy to check ¥ is an isomorphism which sends (0; (i j)) to s;, ., (1;;4d) to s,
and (Ly; (@ 7)) t0 8,88, = Seitee

Let us denote by 7; the reflection with respect to ¢; + ;. The image via the
injective homomorphism 7 of (15 - - - 7,) is a product of two e-cycles of type ss'.
Since s, Se; = S5;Se;—¢;» si = id and S, = S;,S;S;—; one has

(ro---m) = (- cp)@ ... 7))

where 7"]' is the reflection with respect to the long root ¢;, — &jy Chy- -+, C are
reflections with respect to the short roots ¢;,,...,&, and the indexes
Wy ip € {i1,...,%,} are an even number. Hence ¥ l(rz---7,)=
= (1;,..,; (iriz . . .3,)), where 1;,_; € (Z2)" sends to 1 only an even number of in-
dexes.

Throughout this paper we denote by (a; &) an element in (Z. z)d x5 Sy such that
¢ is a product of » disjoint cycles, &;,...,<&,, with & e;-cycle and a € Z)" a
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function which sends to 1 only an even number of indexes moved by each &;. The
element (a; &) corresponds in Sy to a product of 2 disjoint cycles of the form
18] - - - srs... Note that an element of type c,1s - - - 7, instead, corresponds in Sgq to
a 2e-cycle of type (i1t i2---+ 1% —1i3 Fiz---Fi) and in (Zz)d x5Sg to
i, i,; (1 ... i) where 1;, ;, € (Z2)" sends to 1 only an odd number of indexes
moved by (¢ . . . %,). From now on let us denote by (¢/; &) € (Zz)d x% Sy an element
satisfying the following: £ is product of r disjoint cycles &y, . . . , &, with &; e;-cycle,
and o’ € (Z z)d is a function that sends to 1 an even number of indexes moved by
each &, 1¢{j1,...,50} C {1,...,7}, and an odd number of indexes moved by each

cycle &, 7 € {j1,....Jv}-

OBSERVATION 1.2. — Let (z;5; (1)), (2); (ih)), (1;;id), (a;&) € (Z2)? x* Sq, with
E=(C...hi...)...k...)---. Then

) Gij; ARy ()i () = (g + Zlys @Rz ()

= (zij + 2, + 2 @HERG) = (& + 2)jps (JR)).

(i) (L3 dd) (5 (A5 id) " = A + 2y () A5 id) = @; + 25 + L3 (@)

= (1 +2);; @)).

(i) (2455 @(Ls; i) (zy53 &))" = @y + L ()i (1) = @y + 1 + 2y534d)
= (1;;id).

(iv) @z id)(@; OAzid) " = (1 + a; Oy id) = (1 + @+ 15 6.

W) @i GR)@; O G = G + PR a; GREOzj1; (k)
= (zjr, + D((JR))a + 2y (JR)E(GE))

where @(jk)a is a function which sends to 1 the same number of indexes sent to 1
by a. Therefore zj, + ®((jk))a + zj» sends to 1 only an even number of indexes
moved by each cycles (jk)&;(jk).

1.3. Let X, X" and Y be smooth, connected, projective complex curves of genus
> 0. Let d > 3 be an integer and let ¢ = (ey, ..., e,) be a partition of d where
ey > -+ > e, > 1. We associate to e the following element in S; having cycle type e,

(1) (12...e1)e1+1...e1+e)---((eg+-+e1)+1...d).

We denote by C; and Cy the conjugate classes of W(B,;) containing respec-
tively reflections with respect to short roots, i.e, elements of type (1;;id) and
reflections with respect to long roots, i.e, elements of type (z;;; (j)). Moreover let
C, and C'g be conjugate classes of W(B,;) containing respectively elements of the
form (a; &) and of the form (a’; &), where ¢ is product of » disjoint cycles &; - - - &,
with &; e;-cycle.

DEFINITION 1. — An ordered sequence (t1,. .. tu; A1, 14, - - -, 2g; ) Of PETmuU-
tations of Ssq such that t; #1id for each i=1,....n and tity---t, =
= [A1, 141+ - [g, gl is called a Hurwitz system. The subgroup G C S generated
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byti, Ak, iy withi=1,... ,nmandk =1,...,g1s called the monodromy group of the
Hurwitz system.

Note that if g = 0 the Hurwitz systems (f1, . .., ty; 41, 4y, - - -, Ag, ;) are of the
form (t1,...,t,) and ¢;---¢, = id.

DEFINITION 2. — We call (t1, ..., tu; A1, 1y, - - -, 49, y) @ Hurwitz system with
values in (Zz)d x5 Sq, if i, Ay Ly € (Zz)d X Sd, t; # (0;1d) for each 1 and
t tn - [ﬂvluul] [/Lgnug]‘

Let us denote by A, .,y the set of all Hurwitz systems, (f1,. .., %0 n;
21, s+ -+ 5 2y 14) With values in (Zy)" x* S4, with monodromy group (Zy)" x* Sda,
such that n; among the t; belong to C; and ng to Cs. Moreover we denote by
Awins.e)g (A<n1 o fjrgo)g) the set of all Hurwitz systems, (t1,...,%0 0ot
Ay My Ags fty) With values in (Zs)" x5 Sy, with monodromy group all
(Zz)d X Sd, such that n; among the ¢; belong to Cy, n2 to Cz and one belong to C,
(vesp. C,). Note that when g = 0 we put A0 = Ay ma)s Aty mae0 = Anins.e)
and A(Vbli,%z,[?'l,»»u?'v]),o = A("l?"za[ilw--jv])'

Let g be the genus of Y and let by € Y. By Riemann’s existence theorem there
is a natural one-to-one correspondence between the following sets:

— the set of equivalence classes of pairs [ : X — Y, ¢] where & is a degree 2d
covering unramified in by and with branch locus D and ¢:h (b)) —
—{=d,...,—1,1,...,d} a bijection, and

— the set of homomorphisms m : 71 (Y — D, by) — Sg2¢ whose monodromy
group is transitive.

Let D = {by,...,b,}, we choose loops y; around b; and closed arcs ay,
oriented counterclockwise so that y;,...,7,,a1,p1,...,ay,f, is a standard gen-
erating system of the fundamental group m;(Y — D, by). The images via the
monodromy homomorphisms m of yy, ..., 7,01, By, - - -, 4y, B, determine Hurwitz
systems whose monodromy groups are transitive subgroups of Sgy. Then chosen
a standard generating system of 7;(Y — D, by), to each class [k : X — Y, ¢] cor-
responding a Hurwitz system with transitive monodromy group.

Let us denote by Hws,), () (Y, bo) be the Hurwitz space that parametrizes
equivalence classes of pairs [k : X — Y, ¢] where £ is a degree 2d covering un-
ramified in by, with n; + n2 branch points and Hurwitz system belonging to
Apynng BY Hwsy mimse (Y :00) and Hws,),myms 15,0 (Y ; bo) we denote the
Hurwitz spaces that parametrize equivalence classes of pairs [k : X — Y, ¢] as
above, only this time /% is branched in n; + n2 + 1 points and has Hurwitz system
belonging respectively to A, .0,y and t0 Ay, 1jy,...5,),g- 1N reality in this paper

. . n f .
we work with sequences of coverings X — X' — Y where = is a branched cov-
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ering of degree 2 and f is a degree d branched covering with monodromy group
Sq. We denote by D, the branch locus of 7, by Dy the one of f and by D we denote
the branch locus of f o 7.

DEFINITION 3. — A sequence of coverings X = X' ER Y where 7 is a branched
covering of degree 2 and f is a degree d branched covering with monodromy
group Sg is called:

a) of type (ny;n2) if 7 is branched in ny points, f is a simple covering with ng
branch points and f(D;) N Dy = ©;

b) of type (n1;n2,e) if f is branched in ng + 1 points, ng of which are points of
simple branching and one is a special point c whose local monodromy has cyclic
type e, and again © has ny branch points and f(Dz) N Dy = &;

c) of type (ny;ng,[J1,...,Ju)) i f is a covering as in b), © is a covering with
ny +v > 1 branch points such that D, Nf~1(c) = {c;,, ..., ¢;,} and moreover D,
is not contained in f~1(c).

Note that throughout this paper we will work with sequences such that if
x € D, and f(x) = y with y # ¢ then f~X(y) N D, = {x}.

Let by € Y — D and let [f ox,¢] be the equivalence class of a sequence of
coverings f o 7 and a bijection ¢ : (f o 1) *(by) — {—d,...,—1,1,...,d} such that
it £71(bo) = {y1,-..,yq} and 7 (y;) = {w;,x_;}, ¢(x;) =1 and d(x_;) = —i. We
want to understand what is the Hurwitz system associated to a class of this type.
At first we suppose that f o 7 is a sequence of type (n1;n2). Let [y] € n1(Y — D, by)
and let y be a closed arc that bounds a region containing an unique point b € D. If
b € f(Dy), lifting y through f we obtain d closed arcs, one of which bounds a point
in D,. The lifting of this arc through = is an arc y with 7(0) = x; and 7(1) = x_; for
some ¢ € {1,...,d}. So m(y) € Sy is a transposition that sends 7 to —, i.e., the
local monodromy m(y) is a reflection with respect to the short root ¢;. If instead
b € Dy, lifting y through f we obtain d — 2 closed arcs and one arc y with 5(0) = y;
and (1) = y;. Lifting 7 through = we obtain two distinct ares of X having starting
points in the set {x;,x_;} and ending points in {x;, x_;}. So m(y) is a permutation
of Syq that transforms the set {i, —i} into the set {j, —j}, i.e., the local mono-
dromy m(y) is a reflection with respect to a long root. Then the Hurwitz system
(1, oy tns 20, 14, - - - 5 gy 1) @ssociated to the equivalence class [f o, ¢] is such
that n; among the ; belong to C; and ng to Ce. Moreover since the monodromy
group of f is all Sy and at least one among the #; is of the form (1;;id), the
monodromy group of f o zis all (Zs)® x* Sy. This implies that the Hurwitz system
of a pair [f o 7, ¢] where f o 7 is a sequence of type (n1;72) belong to A, ..,) -

Now we suppose that forn is a sequence of type (ni;ng,e). Again let
[y] € (Y — D, by) with y closed arc that bounds a region containing an unique
point b € D. Let b = ¢ and let f~!(c) = {c1,...,c,} where ¢; has multiplicity e;,
1=1,...,r. Since ¢; has multiplicity e;, there are e; lifting of y in X',
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P15 V20 -+ > Viens Such that  p1.(0) =1, 7;,(1) =y, = vs1),(0), for each
J=1,...,(e; — 1) and y, (1) = y;,. Lifting each y; by = we obtain two distinct
ares Wlth starting points in {x;,x_;} and ending points in the set
{®(j+1),, ®—j+1),} where (e; +1); :==1;. So m(y) € Sgq transforms {j;, —j;} into
{G+ 1D, —(+1);}foreachj=1,... ¢;and ¢ =1,...,r. Hence m(y) is product
of 2r disjoint cycles, s;s] - - - 5., with s;, s/ e;-cycles such that if s; sends & to & (k
to —h) then s; sends —k to —h (resp. —k to h), ie., m(y) is an element of
Zz 2)d x5 84 of the form (a; £). This assure, with what we observed about sequence
of type (n1;m2), that the Hurwitz system associated to the equivalence class
[f o m,¢] where f o 7 is a sequence of type (n1; 712, e) belong to A, ., .)¢-

In the end let [f o 7, ¢] be a sequence of type (n1;ng,[j1,...,7y]). Again we
choose [y] € m (Y — D, by) so that y is a closed arc that bounds a region containing
a unique point b € D. Let b = ¢ and let f~(c) = {ci, ..., ¢, } where ¢; has multi-
plicity e;, ¢ =1,...,r. Lifting y thought /' we obtain ares 7y,7s,-; V()
1=1,...,r as above If ¢;ef™ Y(¢) N D,, lifting by = the ares y;. o Ve We
obtam one arc with starting point x;, and ending point x_,. Then m(y) € Saq 18
such that (1;)” = —1;, where w = (m(y))e7 and m(y) transforms the set {&;, —h;}
into the set {(h + 1);, —(h + 1);} foreach h =1,... ¢; andj € {j1,...,Ju}. Hence
m(y) is product of 2(» — v) 4 v disjoint cycles 313/1 “Sr—vSh_ Qs+ s satisfying
the following: ¢;,, for each k=1,...,v, is a 2¢-cycle of type (h1...h, —
—hy...—h ) where the indexes hg, .. ’h‘%u- can be either pos1t1ve or negatlve
and the cycles s;,8) are as above. Then m(y) corresponds in (Zz) x5Sy to an
element of the form (a'; £). So we can assert that the Hurwitz system associated
to the class [f o 7, ¢] where f o 7is a sequence of type (n1; 12, [j1, . - - ,J»]) belong to
Al fjr.iiD g

From what we said above and by Riemann’s existence theorem we can
identify the space of the pairs [f o x, ] where f o 7 is a sequence of type (11; 1)
by Hw,).mm2) (Y, bo), the space of the pairs [f o 7, ] where f o 7 is a sequence of
type (n1; 12, €) by Hw(B,),00:m2.0)(Y , bo) and the space of the pairs [f o 7, ¢] where
fomis asequence of type (n1;n2,[j1,...,J50]) by Hw®,),0ums.01....5.0 Y s bo)-

Let Hwaoum)(Y), Hws)ommoY) and  Hyg,),om ji...j0Y) be the
Hurwitz spaces that parametrize equivalence classes [f o 7] where f o 7 is a se-
quence of branched coverings of type respectively (ni;mg), (n1;7m2,e) and
(na;me,[j1, - - -, Jul)-

Let Y™ be the n-fold symmetric product of Y and let 4 be the codimension 1
locus of Y™ consisting of non simple divisors. Let 1 : Hw,) m,:n)(Y, bo) —
— (Y =b0)"™™ — 4, S5t Hwsomme0(Y,00) = ¥ = b)) — 4 and
9 - Hw@y) o anlis.... i ¥ 00) — (¥ — b)Y — 4 be the maps which assign to
each [f o 7, §] the branch locus D of f o z. By Riemann’s existence theorem we
can identify the fiber of d1,dz,d3 over D respectively with A, ..., Auins.egs
Ams fjr..j)g- There is an unique topology on Hw,) o m) (Y, bo),
HW(Bd).,(M-VLz-Q)(Y bo) and HW(Bd)a(ﬂl?”27[717---J7:])(Y7 b()) such that 51, 52, 53 are tOpOlO-
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gical covering maps (see [7]). Therefore the braid group 7; (Y — b)™ ™) — A D)
acts on A, and the braid group ; (Y — bo)™ 2™ — 4, D) acts on Agyymy0g
and on A, 1. ju )

If these actions are transitive then the Hurwitz spaces Hwg,) m,m) (Y, bo),
Hyw i) 01:m0,0(Y , b0) and Hyw ) (01:0,151,..5.0 (Y 5 bo) are connected.

1.4. Shortly we recall some notion on braid groups. The generators of
(Y — bo)(") — 4,D) are the elementary braids g; with? =1,...,% — 1 and the
braids Piks Tk with 1 <j<mnand 1 <k <g (see [3], [6], [14]). The calculation
of the action of the elementary braids o; on Hurwitz systems is due to
Hurwitz [9].

The elementary moves o), relative to the elementary braids o;, bring
(tl, .. 1 17t27t1+17 e ,tn;il,,ul, oo ,)ug,,ug) to

(t17 . Z 1>t tH—ltz 7t1a s atn; )“17,ul7 s 7)“ga:ug)'
Therefore their inverses bring (t1, ..., ¢ 1,8, vty - - tu A1y lys -+ o5 Ags 1) tO
(tla .. 7ti713 ti+17t';-§-11titi+la o ;th /117/117 cee ,/197/"!])'

The braid moves that correspond to the generators p;,, T were studied by
Graber, Harris, Starr in [8] and by Kanev in [10]. We make use of some results
proved in [10]. In this paper to each generator sz or 7y, is associated a pair of
braid moves pf,, pf, = (p},) " and 7, 7, = (7)) ! respectively.

Let (t1,. .. tu; A1, 1y, -, Ag, 1) be a Hurwitz system. The braid move P
leaves unchanged /; for each [, t; for each j # i and g, for each [ # k, while
changing ¢; and y;,. Analogously the braid move 7, changes t; and 4, leaving
unchanged g for each [, 4; for each | # k and ¢; for each J #1.

We use the following result.

ProposITION 1 ([10] Corollary 1.9). — Let (t1,...,tn; 41,04, -+, A, 14,) be @
Hurwitz system. Let uy, = [A, 4] - [, iyl for k=1,..., g and let uy = id. The
following formulae hold:

i) For p:
Pt g — 1, = 07t by,

where by = wp_1
ii) For 1y,

" n -1 4-1 1
Tik - ik — }vk = (uk71t1 ukfl)/bk.
In particular

Ty =t
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2. — Irreducibility of HW<Bd)~,<n11,”2)(Y’ bg), HW(Bd).,(nl;%z,g)(Y, b()) and
Hyw®,) 0m0,11,-5.) Y 5 bo)-

In this section we will prove the irreducibility of the Hurwitz spaces
Hw,) 11 5 00)y Hwsy) (0.0 (Y s b0) and Hw s, (g s 115D (Y s bo)- Since these
spaces are smooth in order to prove their irreducibility it suffices to prove they
are connected. We observed that if 7; (Y — bo)("ﬁ"” — 4, D) acts transitively on
Ay gy Hwy)myms) (Y, bo) is connected. Analogously if 7 (Y — b))
—4,D) acts transitively on A,09 Aonmal..s)g) the Hurwitz space
Hw®,) 00m0.0(Y , 00) (vesp. Hwwy) ums fji,...5.0 (Y s b0)) is connected. In order to
prove the transitivity of these actions we will prove that, acting by braid moves, it
is possible to bring each Hurwitz system respectively in Ag, )9 Awuing.o)gs
A 15D t0 a given normal form.

DEFINITION 4. — We call two Hurwitz systems with values in (Zz)d x5Sy
braid equivalent if one is obtained from the other by a finite sequence of braid
moves a;,pj’-k,r]’-k, (a’i)_l,pj’-’k,rj’-ﬁc wherel <i<n—-1L,1<j<nandl <k<g We
denote the braid equivalence by ~.

DEFINITION 5. — Two ordered mn-tuples (or sequences) of elements in
(Zo)" x5 Sy, (th, ..., tw) and (r, . .., t,), are called braid equivalent if (41, . . . , ,) is
obtained from (t1,...,t,) by a finite sequence of braid moves of type d, (ag)fl.
Note that ift;---t, = s thenﬂ .- -fn =s.

We use the following result.

LEmMMA 1 ([12] Lemma 2.4). — Let (t;, . . . , t}) be a sequence of transpositions of

Sq such that G = (ty,...,t,) is transitive. Then (1}, ..., 1)) is braid equivalent to

(..., @%)) where (i) is an arbitrary transposition of G.
THEOREM 1. — The Hurwitz space Hy g, i, (P', bo) is irreducible.

ProOF. - The theorem follows if we prove that each Hurwitz system in A, .,,,)
is braid equivalent to the normal form

((0; (12)), (05 (12)), (0; (13)), (0; (13)), . . ., (0; (1d — 1)), (0; (1d — 1)), (0; (1)), . . .,
0; (Ad)), Aysid), . . ., (113 id))

where each (0;(17)), 2<i<d-—1, appears twice, (0;(1d)) appears
(ng — 2(d — 2))-times and (1y;id) appears n,-times.

Step 1. — We claim that each Hurwitz system (41, . . ., b, +n,) € Aymy) 18 braid
equivalent to a Hurwitz system of type (t1, . . ., tq,, (11;4d), . . ., (11; id)). If among
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the ¢; there are elements of type (1y;id), acting by elerqentary moves a_;-, we move
them to the right, obtaining the sequence (t1,...,t,, (11;1d), ..., (11;1d)). Acting
again by appropriate braid moves ‘7;'" we moves to the right the other elements of
our Hurwitz system of type (1,;id), obtaining the new system

(ry sy, s id), - ., (g id), (L3 id), . . ., (133 4d)).

Let t, = @yt), j=1,...,m2. (&,...,1,,) is the Hurwitz system of a covering of
degreed > 3 of P! w1th N pomts of s1mple branching and monodromy group Sg. So
by Lemma 1 we can replace (¢, .. th) by a new braid equivalent sequence which

has at the place ng (z1;; (1h)). Applylng o/ twice time, by (iii) and (ii), one has

Mg

(oo s (), A3 ad), .. ) ~ (oo, (L dd), (g AR)), ) ~

(s Ry AR)), (158, - ).

Now we move the new element of type (11; id) so obtained near by the others.
Proceeding in this way for each (1,;id) # (1;;%d) we obtain the claim.

Step 2. — Starting by (¢4, . . nﬁnz) and applying Step 1 we obtain (¢, . . g s
(1y;4d), ..., (1;;id)). Because Hd,nZ(P ) is irreducible (see [9]), applying appro—
priate braid moves a]’» and their inverses, we can bring the sequence (¢, . . . ,Elz) to
the form

((a2,; (12)), (b2,; (12)), . . ., (@d; (1d — 1)), (0¥ 115 Ad — 1)), (el 5 (1)),
(@ (Ad)), . .., (chy; Ad))),
where h = (ng —2(d — 2)) and o/, ¥/, ¢ € Z,. Seeing that
(aFy; (12)(0F5; (12)) - - - (ad7 115 Ad — D)L, Ad — D)l ADN(Ey; Ad)) - - -
(el Ad)Ay;id) - - - (11;id) = (0;id),
one has
(@ + b2+ +af + b0 el + e+ T+ 1) =0
That implies

@+ = 0(mod2 for each j=2,....d—1 and so o =¥, and
¢t +---+c" = 0 (mod 2), then the ¢* = 1 are an even number.

If in our Hurwitz system there are elements of type (0; (1d)), applying braid
moves of type 07 we moves them near by the elements (1;;id). Since the number
of (0; (1d)) is even, by elementary moves o; we can move to the left one element of
type (1;;id) obtaining the Hurwitz system

((025;(12)), (a25; (12)), . . ., (afgy: Ad — 1)), (@715 Ad — 1)), 11q; Ad)), . . .,
(L1g; Ad)), (A3 4d), (0; Ad)), .. ., (0; (1)), (1y;4d), . . .),
where the elements (1;4; (1d)) occupy the places 2(d — 2) + 1, 2(d —2) +2,... k.
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Applying successively the braid moves (a}c)_l, (a}cfl)_l, e (J/Z(diz) +1)_1 by (ii)
we obtain
(Lig; Ad)), . .., Ayg; Ad)), (A1;4d) ~ ((L1g; Ad)), . . ., (1g; (1)), (11 4d),
0;Ad)) ~ - -+ ~ ((A1;1d), (0; 1)), . . ., (0; (1d))).

Now if af;!; = 1, acting by (¢hy_) ", (0hy_5_1) ', one has
(Lig-1; (1d = 1)), (Lyg1; (1d = 1)), (115id) ~ ((1y;id), (0; (1d — 1)), (0; (1d — 1))).
If instead af;'; = 0, we use oh; 5, 0hy 5 _, SO We replace
((0;(1d — 1)), (0; 1d — 1)), (1134d)) by ((113id), (0; (1d — 1)), (0;(1d — 1)).

Proceeding in this way for each o/, j =2,...,d — 2, after (d — 2)-steps we
obtain the system
((1y; id), (0; (12)), (0; (12)), (0; (13)), (0; (13)), . . ., (0; (1d — 1)), (0; (1d — 1)), (0;
aay),...,0;d), Ay;id), . . ., A1 id)).
Now the proof follows by applying in the order the sequence of elementary
moves (a}) !, (ap) ..., (@) "

REMARK 2.1. — The irreducibility of Hy g d)v(mmz)(Pl,bo) also follows by ob-
serving the map Hyy,) ) (P") — Hyuy(PY) which sends [X 5 X' EN P to

X’ L P'] has fibers given by Hurwitz spaces of type Hs,, (X’). Since the spaces
Hd‘nz(]Pl) and Hs, (X') are irreducible, Hwg d)ﬁ(nl;nz)(]Pl) is irreducible.
Hy,) (n,:n)(P?) parametrizes equivalence classes of coverings of P! with mono-
dromy group G = W(B,). Conjugating by elements of G we leave each braid orbit
invariant (see [1] or [16] Lemma 9.4). This implies that the irreducible compo-
nents of Hyg,mmy(P') are in one-to-one correspondence by ones of
Hywi,) () (PY, bo) and so the Hurwitz space Hyy s, o, (P', bo) is irreducible.

2.2. Let (t},...,t,) be a sequence of transpositions of S; such that ¢{ - - -t/ = s
and (,...,%,) is transitive. Let s = s; - - - s, be a factorization of s into a product
of independent cycles and let Iy, ..., I, be the domains of transitivity of s. If
#I"; = e; for each 1 <17 < r and 1; is the minimal number in I";, then we write
s; = (1; 2;...(e);). Let us order the I'; so that 1; < 13 < --- < 1, and denote by
Z; the sequence ((1; 2;),(1; 3;),...,(1; (e;);). Let Z be the concatenation
Z1Zs ... Z,. The sequence Z consists of N = Y7, (¢; — 1) transpositions. We use
the following result.

ProPOSITION 2 ([11] or [12] pp. 369-370). — Let (¢},...,t,) be a sequence of
transpositions such that t)---t, =s and (t),...,t) is transitive. Then
@, ...,t) is braid equivalent to

(Ztyigseeosth)

’vn
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where n — N = 0(mod 2) and
@ ifr=11t'=0112) foreachi>N +1
(@) if r > 1 then

tyri1s-- oo ty) = (11 1), (1q 1), (A4 13), (11 13),...,(11 1,),..., (11 1))
where each (11 1;) appears twice if 2 <1 <r —1 and (11 1,) appears an even

number of times.

From now on let us denote the permutation Eq. (1) by

e=M121.. . (e))1222 .. . (e2)2) .. . (1,2, ... (€1)y).

THEOREM 2. — The Hurwitz space Hyg,) 0P, bo) is irreducible.

Proor. —- To prove the irreducibility of Hywg,) 4,:ns e>(]l ,bp) it is sufficient to

check that each Hurwitz system in A, ., ) is braid equivalent to the normal form
((0; (1121)), (05 (1131)), . . -, (0; (T1(e1)1)), (05 (1222)), . . ., (0; (T2(e2)e)), - - -,

05 (1,20)), . . ., (0; (L)), (05 84D, - - -, (0587, (ll,wl) -, Ay;id), (0;671)
where (1;;id) appears n;-times, N = ZLI e;—7r,ne—N = 0(mod 2) and

Difr =1, (O;tj’-’ =(0;(112y)) foreachj=N+1,..., 0

i) if r > 1,

(05 ty.1), - -+, (0523,)) = ((0; (1112)), (0 (1112)), (05 (1113)), (0; (1113)), . . .,
(0;(111,)), ..., (0;(111,)))

where each (0;(1:1;)), 2 <1 < » — 1, appears twice and (0; (1;1,)) an even number
of times.

Step 1. — We prove that, applying elementary moves a and their inverses, it is
possible replace (t1, . . ., tu;41,11) € Aynge) DY @ new system which has (0;¢71) at
the place (1 + ng + 1) Using inverses of braid moves aj we bring to the first ng
places of our Hurwitz system the ¢; of type (2;,; (ih)) and to the place (nz + 1) the
element (a; &), obtaining

(1, oy, (@ 8), Ay id), . .., (133 id)).

Let t] = @in; tj’) (ty, ..., 1, <) is the Hurwitz system of a covering of degree
d > 3 of P!, with monodromy group Sy, branched in 72 + 1 points, ns of whose
are points of simple branching and one is a special point which local monodromy
has cycle type e. Since Hd,n%g(l[)l, bo) is irreducible (see [13], [11] or [12]), acting
by appropriate braid moves a7, (o} )71, we can replace the sequence @, .1, 0
by a new sequence of type (t’l’ ..., " &1, In this way our Hurwitz system re-

— AR nz7
sults braid equivalent to (fy, . . ., y,, (b;&71),...), where e} = ¢y - - - g, with the ¢;
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disjoint cycles, and b € (Zg)d is, by (v), a function that sends to 1 only an even
number of indexes moved by each cycle g;. By braid moves a}- we move (b; 1) to
the last place of our Hurwitz system.

Let 4!, ...,i% the indexes moved by ¢;, i =1,...,r, which b sends to 1. We
assume these indexes are place in the order (...¢'...%%...%%...).

Since (t7,...,t,,,e") =Sg and t{ ---t; =, (1], .. .,%) Sq. Note that we
can ever assume that among the elements of type (1.;id) in our Hurwitz system
there is (1;;id), for each 1 < i <, 1 <j < s;. In fact, applying Lemma 1 we can
replace (..., tn,, (Lp;id), ..., (Ap;id), (b;e™ 1)) by

(oo G K)), A id), . . ., Aysid), (b;e™h).

In the end using the elementary move o/
system with (ly, id) at the place ng.

At first we check that our Hurwitz system is braid equivalent to a system
which has (b;¢1) at the last place, where b € (Zz)d sends to 0 all indexes moved
by ¢ and the indexes moved by ¢;, i =2,...,r, distinet by i!,...,%. By ele-
mentary moves 07 we move (155 ;id) to the left of (b;¢ D and after we apply o
obtaining by (iv) the Hurwitz system

y» DY (ii1), we obtain a new Hurwitz

n1+n2

( s (1181 + b + i*;‘(“il); (1181 5 Zd))

where * is the index that precedes 1°! in ¢;.

If « = 1°71 the only indexes moved by ¢; that & =135 4+ b+ 1, sends to 1
are 11, ..., 1972 If instead » # 11, &/ sends to 1 also 1¥1~! and «.

Let I be the number of indexes moved by ¢; included between 15~! and 1%.
Reasoning as above after (I +- 1)-steps we obtain a new system having at the last
place (b ¢~ 1) where b= L+b+ 1151 1, * is the index which follows 11in ¢; and
the only indexes moved by ¢; sent to 1 by b are 1010

In this way we replaced b by a new function of (Z g)d Which sends to 1 the same
indexes sent to 1 by b, except the two indexes 1 e 1%~1. So proceeding also for

(yy23d), Ay -3 4d), . . ., (132; id), after § steps, we obtain a new system having as
required at the (n; +ng + 1) place (b;e™1). ) )
Reasoning so also with the indexes moved by ¢s, . . ., g, that b sends to 1 after

(Yi_5%) steps we obtain the claim.

Step 2. — Starting by the Hurwitz system (1, ..., 1n+1) and applying
Step 1 we have obtained the system (fl, .. ,Ell+n2,(0;e‘1)). Since the group
generated by transpositions corresponding to the elements (z;,; (i) is all Sg,
we can proceed as in Step 1, Theorem 1 and so we can bring our system to the
form

(et (L3dd), . .., (Ly;8d), (0;671)).
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By Proposition 2 this system is braid equivalent to the system
(@, (1120), Bly s (113D, (€ s (Laen)), (@2y; (1222)),
(€2, (2(e2)2)), ..., (@] 5, (1, 2).... €] o (L@ ), @Y
("2t ), (11;1d), . ..)

s Yng
where af, b',..., €', & € Z,.
At first we analyze the case r > 1. Put
N+1 N2\ __ (2 24/ r—1 r—1y/ 7
(Z g 72 ) = (21112, (Z )1112, e 72111"717 (Z )111r7172111r (z 1111,)
Seeing that

(@195 (L120)) - (€] (), Qale)r)) - - (@] 53 (1r20)) - - - (ef ) 5 (Li(er)y)
(31, 1))@ g5 a12) -+ @ g 5 (1 L)) -+ (@] 5 (1) (i) - - -
(11;1d) = (0; ),
one has

(@0, + b33+ €l 1y, T A, T € 1 e T e T
o T F Zengen. T T @ oo, + Lo + -+ L) = 0.

That implies

a=0 foreachiandsobi:ci:. =¢' =0 for each i,

Z+ (@) = 0 (mod 2) for eachj= .7 — 1 and then # = (¢,

ZAE 4 @) = 0 (mod 2) and therefore the (z’")h =1 are an even
number.

If in our Hurwitz system there are elements of type (0;(1;1,)), acting by
suitable elementary moves o}, we move them to the right obtaining
(0 (1120, (0; (La(en), -, (01,2, mxlw&»<ﬁm«hh»
&, Ml ..., G (1111» D), @ (1114« 1), (I3 (111,),
(11,1,; (111,)), 0; 11 1,), - .., (0; (141,)), (A3 4dD), - . )
where the elements (13,1,; (111,)) appear at the places (Xje; +7 —4) +1,... k.
Since the elements (0;(1;1,)) are an even number, we can move using ele-
mentary moves O']/~ one element (1;;id) near by the elements of type (ihl,«; (1:1,)
and then we appl;z the braid movesﬁ(az)_l, (a;_l)jl, A (ag Sooitrd) +1)_1. So by (ii)
we can replace ((11,1,; (111,)), . . ., (11,1,; (111,)), (115 id)) by

((1y;4d), (0; (111,)), . . ., (0; (111,))).

= 1 we act by the braid moves ((y,. ... 4))_ (050 +,_5>)_1, if instead

= O we use G(Ze +r—4)? (Zzezﬂ —4)-1*
The proof follows by proceeding in the same way for each 2/,j =2,...,r — 2

and then applying in order the elementary braid moves

Nowifz"1

zrl

/ -1 / -1 —
(U(Ziei—rﬂ)) ’ (G(E,'eif‘r'JrZ)) 1t (0112) :
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Let now r = 1. This time we have
(@19, + b33+ F oy 1yony T 20ty + o F Ay, T Liey o F Lioy,) = 0.
This implies

al + 2Nt 422 = 0 (mod 2),
a' +b' = 0 (mod 2) and then a! = b,
bl + ¢ = 0 (mod 2) and so b! = ¢!,

(e—1D'+e'= 0 (mod2) andthen (e—1)! = el

Therefore o' =b' =cl =---=¢l. If al =bl =c' =---=¢! =0 the ele-
ments 2/ equal to 1 are an even number. So to obtain the wanted normal form we
act as in the case » > 1.

If instead a! = b! =¢' = ... = ¢! =1, the number of 2 =1 is odd. By ap-
propriate elementary moves we bring our system to the form

(1,25 M120)), - -+, gy Laler), (Liyzy; (1120)), - -+, (Lay2,5 (1421)),
(0;(1121)), - . ., (0; (1121)), (A1;4d), . . ., (11;4d), (0;71))

where the elements of type (0; (112;)), that are an odd number, occupy the places
k+1,...,m9. Now acting in the order by o/ 7.1, Dy the (277), we obtain the
system
Coooy Qayeyy s Aalen), 2.5 (1120), - -+, (L1,2,5 (1121)), (g, 5 i), (0; (1124)),
(0;(1420)), (g3 8d), . . ., (1y;id), (0;671).

ng?

Applying the braid moves (a}c)fl, ce ((’Eel)l)A we can replace the sequence

(L1, (e, 1len)), Qg3 (1121)), - - -, (11,2,5 (1121)), (1,5 id)) by
(11,0, Malen))), Lz, id), (05 (1121)), - . ., (05 (1121))).

Now we move (1y,;4d) to the right of (1;,2,;(1;21)) and then we use o} ob-
taining the system

((11;4d), (11,2,3 (1120)), -« -, Q1o ; LaCe)1)), (05 (1121)), - . ).
The theorem follows by applying the elementary moves
TN A (0;1)71, e, (a;lz)fl.

THEOREM 3. — The Hurwitz space HW(Bd),@h;nz,[i1,4..-jv])(Pl7 bo) 1s wrreducible.

PRrOOF. — The theorem follows if we prove that, acting by elementary moves o
and their inverses, it is possible to bring any Hurwitz system of A, .u, j,...j.» to
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the normal form
((0;(1121)), . . ., (0; (X1(e1)1)), (05 (1222)), . . ., (0; (12(e2)2)), - - -, (0; (1,:2;)), . . -,
(0; (1,(er))), (ZN+1 Brin)s - @25ty), Ay ad), .., (L id), Ay, 1, 567D),
where (11;d) appears n;-times, N = >/ e; — 7, ne — N = 0 (mod 2) and

i)ifr = 1thenv =1,7; = 1 and (¢/; t”)—(0;(1121))f0reachj:N+1,...,nz
i) if » > 1,

(@t )0, @8) = (B, (1), <(z2>}112,<1112)),
@ 1 (W), (@)Y 1 (Lly)), . @y s (L), (@] (L)),

where if j € {j1,...,Jv}

2) (@], 1)), (@] 15 W1 = (13 (1), 0 (141,)
ifinSteadj ¢ {jla Tt 7j1)}1 2 SJ S T,
(3) (@], ML), (@) M1 = (©; A11), 05 (L 1))).

Moreover ((z")" ;(111,)) = (0;(1,1,)) for each m =2, ..., L.

Step 1. — We claim that, acting by elementary moves and their inverses, it is
possible to replace (t1,...,¢n1n+1) € Awimafjs..jo) Y @ new Hurwitz system
having (L‘h,,,ljv :&1) at the last place.

Proceeding as in Step 1 of Theorem 2, we can replace our Hurwitz system by
one braid equivalent which has at the last place (lh 3 € -1), where

=q1---qy, with g, e;-cycle, h;,,1=1,. ,is an index moved by the cycle g;,
and lh y, € (Zz) sends to 1 only the mdexes hj,, ..., h;,. The claim follows if
hj, = 1 for each 1 =1,...,v. So we suppose hj, # 1]-1. Applying suitable ele-
mentary moves and then Lemma 1, we obtain a new system in which there is
(ih ;id). By braid moves of type o we move (ihj1 :4d) to the left of (L%_Nhju )

and then we apply the braid move o7, ,, . So we have

Gy (530, gy, 58 e~ (.. o @iy, + Ly g, + Loy 67, Ay 5 4d)

where (h—1); is the index that comes first of h; in g and a=1, +
+ 1;,{7.1_';77.” + 1(h71>jl is a function that sends to 1 only the indexes
(h = 1)j, hj,, . ..., bj,. Let w be the indexes of g, between /;, and 171 Reasoning as
above after (w + 1)-steps we obtain a new system with (11 T, ¢~ 1) at the last
place. Proceeding in this way for each k;, # 1;, after a flmte number of steps, we
have the claim.

Step 2. — Starting by a Hurwitz system (tl, <« -y by +ny+1) and applying Step 1
we obtain the system (tl, .. tn1+n2a (11 1,5, ¢ 1). Now acting by suitable ele-
mentary moves and applymg Lemma 1 (see Theorem 1, Step 1) we can replace
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our Hurwitz system with one braid equivalent of the form

(1, by 1, (y3id), . .., (;id), (g, 1, 1

1 e ]U’

e h).
By Proposition 2 this Hurwitz system is braid equivalent to
(@l g5 (1120), (L (LiBD), ..., (e s (L)), (@i (1520)), .
(€200, (L2(@2)2)), o (@5 s (1,2)), -, (€] (o) 3 (Len),), Gt ),
@), i34, . .., ysid), Ly 1,1, 5670),

) "Ny v 7

where a, b',..., e\, ¥ € Z,.
At first we suppose r > 1. Put

N+1 : 2 21 -1 BN !
@2 = @y @1y 0210, @ 1, 20, @)

Since
(@l g5 (L20) - (@ s Lae)) - (@] 5 5 (1L,2) - (€&, s (Li(en),)
@2 1 )L s (L) -+ @y s (L) - (@ (L) id) -
(1y;d) = ((Ay, 1]~2..‘1ﬁ,;871))71 = (€05, @iy )jo €
one has
(@15, + B35, + 7 F €1y, T Oz, T 035, + o €yt T
075, 1y e, F Zonntenn T @ enten, T Zenntens T Eepytenst
ot z’("el)1<er>r +o Tt (z?“)ﬁﬁ)l(er)r + 1<el)1 +ot 1<el)1) = l(ejl RO O

This implies

a'=0 foreachiandsobi=c =...=¢ =0 for each 7,

2+ @) =0 (mod 2) for j ¢ {j1,...,ju}, 2 <j <r—1, and then #/ = (&),

d+ @) =1 (mod 2) for j € {ji,....ju}, 2<j<r—1, so either 2 =1 and
@' =0or (zf) =1land# =0,

A (@ )l_O(mod 2) if r¢{j1,...,j»} and so the number of
" =1is even, while if 7 € {j1,... jo}, 2" + @) +---+ @) = 1 (mod 2) and
then the (z")" = 1 are an odd number.

Note that, applying the braid move o), it is possible to replace
(tn = (0;(111))), fpyr = (L1, A1) by (11,15 (111y), (0;(111)))), so we can sup-
pose 2/ = 1, ()" fOforeachj €{j,.- v} 2<j <r-1

By braid move a we move the elements of type (0; (111,)) near by ones of type
(1;;id). So we obtaln a new system in which the elements (11117 ;(111,)) are at the
places (Xie; +r—4)+1,... k.

Applying the moves anz,...,aﬁc ,1» We bring to the (k + 1)-place (1y;1d) if
r¢{,....gv} Qy,;id) if r € {1, . .. ,jv}

If »¢{j1,...,J»}, We act by (ok)* (‘7@@ o 4)+1) to replace the se-
quence ((1y,1,; 111,),. .., (11,1,; (111,), (11, zd)) by

((11;id), (0; (111,)), - .., (05 (11 1,)).
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If instead re€ {j1,...,5»} we apply the sequence of braid moves
-1 -i
(o';c) Yt (O-Eziei+7‘—4>+2) 7O-éziei+7“—4>+1’ so we have

((14,1,; (M4 1,)), ..o, (g1, (11 1), (5 d) ~ ((Lg;id), (13,1,; (11 1),
0;(111,)),...,(0;(A11)).
Now if 2! = (27‘71)1 = iv applylng (0225€i+7‘74))71’ (0221'61#7‘74)*1)71 one has

(11, 5 A11,-0)), Q1,145 A11e9)), (g, 8d)) ~

((113id), (0; (111,-1)), (0; (111,-1))).

If instead either 2! = (z"H! =0 orz"!=1and (zH! = 0 we use the moves
O-Eziei+7“_4)’ O‘Ezieﬁ_,ﬂ_zl)_l tO I'eplace ((ZJhL;l 3 (1117‘71))7 ((z])1117_1; (1117‘71))7 (117 Zd)) by
the sequence

r—1

((y;id), @y 5 1ado)), @, QL))

r-17

Proceeding in the same way for each j = 2,...,r — 2 and then applying suc-
cessively the braid moves (o, , H))’l, (056, r +2))’1, ..., (a},)"! we obtain the
theorem.

Now let = 1. This time one has

1 1 1 N-+1 1 1 _ 1
(@19, + 02,3, + €y 10 T F0leyy, T Pseny, + Lenn + 7+ Leny) =iy,

Thereforea! = b =c¢l =--- =elande! + 2Vt + ... 42" = 0 (mod 2) (see
Theorem 2, Step 2, case » = 1). Moreover ¢! + 2Vl ... 422 414 ... 4+ 1=
= 1 (mod 2) and then the number of elements (1;id) in our system is odd.

Observe that if a! = b =c¢l =-.- = ¢! =0, the ¥ =1 are even, if instead
ad=b=cl=...=¢! =1the# =1 are odd.

By suitable braid moves we bring our Hurwitz system to the form

(@], (1120)), (b1 3,3 (1181), - - -, (e ), s (LaCe)1)), (T1,2,; (1120), - -
(11,2,; 1120), (05 (142)), . . ., (05 (1421)), (113 %dD), . .- ,(11; id), (1y;671)

where the elements (0; (1;2;)) occupy the places k + 1, .

Using in order the elementary moves a,,...,0; 41 we brmg to the place
(lc—|—1) (ll,zd) if al=-.=e'=0, (121,@(1) 1f al=--.=el=1. Now if
al=...=e' =0 we obtaln the desired form applylng the sequence of inverse
brald moves (ok) (0(e1> )’ (a(el)l)* (%) . When 1nstead al=... =

=e¢l =1 the proof follows by applylng the moves (ak) (0(61)1)71,

Eel—l)l 07, O, J(el—l)l (a(el)l)_ (0,7/2) (see TheoremZ Step2 case
r=1).

The next result follows from Theorem 2 and Theorem 3.

THEOREM 4. — The Hurwitz SpCLC@SHW(Bd),(nl M ,g)(pl) (deW@d)’(nl ;7l21[7'1"_'17'1,])(P1)
are irreducible.



424 FRANCESCA VETRO

PRrOOF. — The map forgetful HW(B,]),(nl ;nz‘g)(pl, by) — HW(Bd).,(m:nz,g)(]pl) given
by [f om,¢] — [f on]isamorfism and it has image given by a dense subset H of
Hyx d),(nlmz_g)(lPl). Since, by Theorem 2, Hyy (g, (n, ;%Zﬁg)(Pl, bo) is irreducible also H
is irreducible and then Hyg,) 1m0 (P") is irreducible.

Analogously, using Theorem 3, one prove that also the Hurwitz space
HW(Bd)v(nl:nZ-Ul----Jr,'])(Pl) is irreducible.

2.3. Let Y be a smooth, connected, projective, complex curve of genus g > 1.
Let by € Y and let |e| = >;_; (e; — 1).

THEOREM 5. — If ma > 2d — 2 the Hurwitz space Hyp,) nymy) (Y, bo) is irre-
ducible.

Proor. - To prove the irreducibility of Hws,) ;) (Y, bo) it is sufficient to
check that each Hurwitz system (ti,.. tnﬁnz, 25 s -5 Ags 1) € Aymg)g 18
braid equlvalent to a system of the form (tl, .. tnl+n2, (0;1d), ..., (0;id)). In fact
(tl, . ,tnﬁm) is the Hurwitz system of a covering in Hyg d)y(wnz)(]Pl, by), so the
proof follows by Theorem 1.

With inverses of elementary moves o} we move to the left the ¢; of type
(zi; (2h)), obtaining the system

(oo by, sid), . (L Gd); A1, g, Ag ).

Let )k = (a; /lk) ,uk = (bi; 1p,) and i = Zin; t) where t’ = (th). Note that
(PPN A AL g, tg) is the Hurwitz system of a coverlng of degree d > 3
of Y with ng points of simple branching and with monodromy group S,. Since for
ng > 2d — 2 the Hurwitz space H? oy (Y, by) is irreducible (see [10]), acting by
suitable braid moves al,pjk, ]k, 1<i<ng—1,1<j<mng 1<k<gand their
inverses, we can bring (f},...,t); T/ g,,ug) to the form
..., t;; ;1d, . .., 2d). Therefore our Hurwitz system is braid equivalent to the
system (t1, .. ., bu,, (1y;0d), . .., (A id); () ; id), (by; 4d), . . ., (ay; id), (b, id)) where
al, bl € Zy)".

The theorem follows if a;, = 0 and bj, = 0 for each k =1,...,g. Solet a; # 0
and let  be the indexes sent to 1 by a}. Let i be one of these indexes. As we saw in
Theorem 2, Step 1, it is not restrictive to suppose that in our system there is
(1;;id). By inverse braid moves a]’ We bring to the first place the element (1;;id)
and after we apply the braid move 7}; which transforms (a}; id) into (af’; id) where
(@f;id) = (1;;id)(a};id) and af is a functlon that sends 7 to 0. So reasoning after
(I — 1)-steps we obtain a new Hurwitz system in which there is (0; d) at the place
(ns +mny +1). If @} = 0, b} # 0 and b} sends i to 1, we move to the first place of
our system (1;;id) and after we apply the braid move p}, that transforms (b}; id)
into (b/;id) = (1;;id)(by;id) where b} sends i to 0. Proceeding as above for all
indexes sent to 1 by bY we can replace (bY; id) by (0; id). Observe that if a;, # 0 and
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a; =b; =0, for each [ < k — 1, we reason in the same way this time applying the
braid move 7. Analogously if b} # 0 and a; = b; =0, for each [ <k —1 and
a;, = 0 we apply the braid move p};. to transform (b 1d) into (0; id).

THEOREM 6. — If nz + |e| > 2d the Hurwitz spaces Hw g, m im0 (Y s bo) and
HW<Bd)-,(77/11,7LZ-[7'1‘--»;7'1;])(Y’ bo) are 1rreducible.

Proor. — To prove the irreducibility of Hwg,) mms.e)(Y,bo) (respectively
Hwi,) mums iin...j.n(Y: b)) it is sufficient to test that, acting by braid moves
i, Pip» Tjp and their inverses, it is possible to bring each Hurwitz system in
Aing.e).g @€SP. Ay fj1,...j. D) Y0 a given normal form. If we check it is possible to
replace (tl, .. t111+n2+1a il,,ul, . ,/lg,,ug) S A(m;ﬂz,g),g (resp. A(m;nz,[h,m.jr]),y) by
(tl, .. tm+nz+1, (0;1d), . .., (0;id)), the proof follows by Theorem 2 (resp. Theorem
3). Actlng by approprlate elementary moves a_;. we can bring our Hurwitz system
to the form

(’Zl, cee ;FtvngJﬁla (ih; ld); ey (ik; ld), Alv:ulv ey ;“gwug)v

where A, = (ag; »}C) W = (by; 14,), for some lfl = (a;t) = &) (resp. (@/;t, = &) and
f_,»:(* ) for each j#1. (¢,..., nz+1,/q,...,/lé) is the Hurwitz system of a
branched covering of degree d > 3 of Y, with monodromy group S; and with ng
points of simple branching and one special point whose local monodromy has cycle
type e. Since ng + |e| > 2d the Hurwitz space HY iy e(Y, by)is irreducible (see [15]).
Therefore it is possible acting by braid move, to replace (TN 2y ,u;)
by @1, ty, 151, ... ,id)L So our Hl{rwitz system results braid equivalent to
the system (ti,... tn2+1,(1h,id) - (g3 id); (s id), (By;d), - . ., (ay; d), (bys id)),
where a;,, b}, € (Zz) Now to obtaln the desired normal form it is sufflclent to
proceed as in Theorem 4.

THEOREM 7. — In the same hypothesis of Theorem 5 the Hurwitz space
Hyw g, mymn)(Y) ts trreducible. In the same hypothesis of Theovem 6 the Hurwitz
spaces Hw g, mums.0)(Y) and Hyw g, mms ..., ) (Y) are irreducible.

Proor. — To obtain the thesis it is sufficient to proceed as in Theorem 4 by
using respectively Theorem 5 and Theorem 6.

3. — The case D, C f1(c).

Let X and X’ be smooth, connected, projective, complex curves of genus > 0.
Let X 5 X' 5 P! be a sequence of coverings satisfying the following: 7 is a
branched covering of degree 2 with #; > 0 branch points and f is a branched
covering of degree d > 3, with ng points of simple branching and one special
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point whose local monodromy has cycle type e. Let us denote by c the special
point of f. In this section we are interested in coverings such that
D, Cc f~X¢) = {c1,...,c}. Note that n; is even follows by Hurwitz formula,
therefore r > 2. Let Dy be the branch locus of f. Then f o is a covering of
degree 2d of P!, with ms +1 branch points and branch locus D = Dy.
Let D.={c,...,¢, } where ¢ has multiplicity e, 1<i<m and
g1 <J2 < ... <Jnm- Let us denote by Hw,) m,; I P 1) the Hurwitz space that
parametrlzes equivalence classes [f o 7] where f o 7 is a covering as above. Let
0 HW(BM)MZ,UMM])(Pl) — (PH™*Y _ 4 the map that sends each class [f o 7]
to the branch locus of f o 7.

DEFINITION 6. — Two Hurwitz systems, (ty,. .., t,) and (ty, . .., t,) with values
m (Zz)d x*Sq, are called equivalent if there exists s € (Zz)d x5Sy such that
t; = s 1 t; s for each j. The equivalence class containing (ty, ... ,t,) is denoted by
[t1, ..., tul

Let Ag, [jy...;,, 1 be the set of all equivalence classes [ty ..., ¢y, +1] of Hurwitz

systems with Values in (Z)? x* sS4, with transitive monodromy group, such that
np among the ¢; are of type (z;; (¢h)) and one of type (¢'; £). By Riemann existence
theorem we can identify the fiber of o over D by A, (j, ..., )- There is a unique
topology on Hwz,) (n,. [71,--- .p(P1) such that 6 is a topological covering map, [7]. So
the braid group m; ((ll’l) 2D _ 4 D) acts on A(nz‘mwﬂnl]) If this action is transi-
tive then Hws,) o, ljy,.. Janl])(Pl) is connected.

THEOREM 8. — The Hurwitz space Hw®,) (s [j... Jnl])(ll)l) 18 irreductble.

PROOF. — Since Hyw,) (ns,[js.... gy ] )(lPI) is smooth in order to prove its irredu-
cibility it suffices to prove it is connected. Therefore the theorem follows if we
prove that, acting by elementary moves o} and their inverses, it is possible to
bring each [¢1,...,ty,41] € A(m [jt,--du, D 1O the normal form

.....

[(0; (112y)), (0 1131)), ..., (0; (11(61)1)) (0; (1922)), . . ., (0;(12(e2)2)), - - -,
O:L2)..... 05(Le)), (22 (1), (D)} (111, @ 5 (L),
(@)1, ML), @y L), (@ (1), Ay 267
where the pairs ((2'71 i ;(111), ((z7)111 1 (111))), 2 < j < 7, satisfy either (2) or (3)

depending on Whether j belongs to {j1,....Jn; or mnot. Moreover
((z" 71’:1 :(111,)) = (0; 1411,)) for each m = 2,.. ., .

Step 1. — We check that, acting by elementary moves and their inverses, it is
possible to bring each [t1,...,t,+1] € Aw,j,.. ) to [tl, ooy bugs (11 A ¢ D]
By elementary moves o; we move to the last place of our system the element of
type (¢'; &). Because £ is in the same conjugate class of ¢, there is s € S; such that
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el = s71 & 5. Soif we conjugate each element of our system by (0; s), we obtain a

new system of the class having to the last place (0';¢71). Lete ! = ¢; - - - ¢, where ¢;
is an e;-cycle and let i1, 42, . . . , %% be the indexes moved by q; which b’ sends to 1. Let

gi=C.. @ +D.. @E-DE. EE D@ =1 ).
[ N ,(i(ixi—l+1)m(isi_l)isi + b/ + 1187—1(157_1), 871)]
where 0" = 1 1.3y + 0 + Lyt _gn_1) € (Z2)" is a function that sends to 1
only the indexes ', %%, ..., 152 If i ¢ {j1,..., Ju, }, Si is even. So if we conjugate by

(1(isi—3+1)"_<isi—271)isi—2; id)(l(isiferl)m(isrz;71>isf4; Id) s

g4y, (2125 i)

we obtain a new system of the class with (b;e 1) at the place (ng + 1), where bisa
function which sends to 0 all indexes of ¢;. If i € {j1,...,Jn, }, $i is odd and then
conjugating by

(1(isi—3+1)‘AA(isi—2_1)7:37-—2; id)(l(isi—5+1)m(is7~—4_l)isi—4; id) e

L. @-pp; id)

we obtain another system of the class having (b ¢71) at the last place where
the only index of ¢; mapped in 1 by b is 4. So if il #1; and

=(1; (el)L (@' —=1)¢'...), we conjugate by (l(el) -1t :1d) to obtain
[th .. nz,(b e 1)] where b € (Zz) sends 1; to 1 and to 0 each other indexes
moved by the cycle g;. We obtain the claim reasoning in this way for each

i=1,...,r

Step 2. — Startlng by [t1,. . tnp1] € Agry o, ) and applying Step 1 we
obtain [¢y, ... tnz,(ll e )] Let ¢ = (zm,ti) Since <t’1,..., ng) Sda,
th- t;mz =¢ and 7’22 by Proposition 2 [{y,..., ,12,(11 i ;e D] is braid
equivalent to

[(a,2,; (1120), (] 5;(1131)),. .., (ei(el)l;(h(mh)), (@3 5,; (1222)), . . .,

(€ op,; (2(e2)2)), ., (0] 55 (1,2,)),. .., (€] ) s (Lile)n), (B ,5 (1112)),

((22)%112;(1112)),...,(2’{111,;(111;»)), N(Ca 1)),y 1, ;e )]
where ', b,..., €, # (&) € Z,. Seeing that

(@l 55 (1320) -+ () s Lae)) - (@5 s (1,2) -+ (€] . 5 (L))

777

@ 1, Q@) g, (a12) - @y s A1) -+ (@D, (111,) =

= (g ) 61, Oy Dy &)
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we have

1 1 1
(@2, + 03+ F € 1y, T T 012, Tb23 - €, 10,
220 o+ o+ F Zen, o+ @) =
(e1)1(e2)2 (e1)1(e2)2 (e1)1(ep), (e1)1(er),

= 1(% )jl (ejz )jz ~~~(ejnl ).I"/zl '

Therefore (see Theorem 3, Step 2, caser > 1) a’ = b = ¢! = ... = ¢' = 0 for each
i, 1 =@)' for each j¢{ji,...,jn}, while 27 =1 and (/)' =0 for each
j € {ji,- .. jn}- Moreover the number of (z")" = 1is evenif r ¢ {j1, ... ,ju, }, odd
otherwise.

Acting by braid moves d; we move to the left of (11_7.14__1_7.”,1 :&1) the elements of
type (0; (1;1,)), obtaining so a new braid equivalent system in which the elements
(1111,,;(1117.)) are at the places (Xe; +r—4)+1,... k. Since n; > 0 and n, is
even, n; > 2 and so |{j1,...,Jn, }| > 2. At first we analyze the case in which there
exists at least one je€ {j1,...,jn,} such that j#1,r. Since for each
Jj€ {1, i} J# 1, we obtain pairs of type (11,15 (1115)), (05 (1115))), in our
Hurwitz system there is one pair of this type with j # ». Let & and & + 1 be the
places occupy by (illlj; (1;1;)) and (0;(111;)). With elementary moves we bring
the pair ((11,1;; (111))), (0; (111))) to the left of the element (1;,1,;(111,)) of place
(Ziei+r—4)+1). Now, if r¢{j,...,jn}, We apply the moves

“Eziw_w 022[,@-&-7‘—4)—1’ "Eziw_@w aéziei+r—4)""’0;cfl’ T}z SO We can
replace the sequence
(11,15 (111)), (05 (1117), Ayy1,; A1 L)), - .., (Agy1,3 (111,))
by
((0;(111,)), ..., (0; (11 1,)), (11,1, (11 17)), (0; (11 1)).

If instead » € {j1,...,Jn, }, We use in the order the moves (gzZ HM}))A’
/ -1 / / / L o
(J<Ziei+’”‘4)‘1) , J(Z,-, oir41° 7 DI TEAVIEEEE 0},_1, 0o Obtaining

((11,1,; A113), (05 (111)), (Ty,1,; A1 L), - .o, (L1, (111,) ~

(11,5 M1, (05 (141), - ., (05 (1411,)), (05 (A1), (a5 (A1)

3 / / / / /
Acting by o)_5, 0.1, O}_g, Ofgr---» O-(Z_e[+1‘f4)fl’
K

g , we replace if
(> eitr—4)
r ¢ {j1,-.-,Jun } the sequence ((0;(111,)),...,(0; (111,)), (11,1;; (111)), (0; (111;))) by

(11,15 (1117)), (05 (1117)), (05 (111,)), - . ., (0; (11 1,.))),
if instead 7 € {J1,...,j,, } the sequence ((11,1,;(111,)),(0;(111,)),...,(0;(111,)),
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(0; (1,1,)), (11_,-11.; (1;1,))) by

((1111_7-; (1317)), (05 (111))), (11,1,; (111,)), (05 (111,), ..., (05 (111,))).
Now if zjl_l = (Zm_l)l = i’,l applylng (O-E)Tiei+1“f4)*2)_1’ (Uzziei+r74>—1)_lv
(Olseir-0-3) > O(s,1r-4)-2) We have

(1,5 1)), A,y ), (s (1)), (0; (111)) ~

(T35 (1)), (05 (111)), (0; (11 1,-1)), (05 (11 1,-1))).

If either 27 1=@E)'=0 or 27'=1 and (" )'=0, we act by

Osiorir1)-2> O(Sieir— )10 O(Siertr—)-3 O(500r—a)—2» ODtAINING either
((0; (111,1)), (0; (111,1)), (11,1, (1115)), (05 (11 1;)) ~

(11,15 (1)), (05 (111)), (0; (11 1,-1)), (05 (11 1,-1)))
or

(11,43 11121)), (05 (111,21)), (1,15 (111))), (05 (111)))) ~

((0; (111y)), (L@,& (111)), 1,1, 15 A11,-10), (0; (111,-1))).

The proof follows by proceeding in this way for each j=2,...,» —2 and
. / -1 / -1 / -1 / -1
applying (U(Eiei*T)JrZ) ’ (U(Eiei*T)Jrl) ’ (O-(Eiei*THS) ’ (U(Ziei*T)JrZ) L
@), (@, D"

Now we analyze the case in which there is not any j € {j1,...,J», } such that
j#1, r, this implies n; = 2 and {j1,72} = {1,r}. Note that since r € {j1, j2},
the (z")'=1 are an odd number and so among the elements of type
((zy)ilﬁ (111,)) in our Hurwitz system there is at least one (0;(1;1,)). Recall
that the elements (1y,1,;(111,)) occupy the places (X;e; +7—4)+1,...,k, so
acting by the braid move (azz_eiﬂ_ 4>)_1 we replace the sequence

(@1 ;ML ), (11,1, 111, . .., (g1, (111,)), (0; (111,))) by
(11,1, 111, (1, 41,5 Apm11)), g1, (L), -, (yn,5 (141,)), (05 (11 1,)))

where z is either 0 or 1 depending on whether z"~! is equal to 1 or 0. Applying
the elementary moves o S e a,_y, (@)"" we can replace this se-
quence by '
((14,1,5 (141,)), (4,1, Milea)), ey Ry, s (a1m1),
0; 111)), (21,1, 5 L11,-1)))
where 2’ is either 0 or 1 depending on whether z is equal to 1 or 0. Now using the

braid moves ”Ez.e-w_ PEEEE Ny (a}c)’l, ((;';671)*1 we obtain that the sequence
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above is braid equivalent to
((zlllr,llﬁ (GPD 1) R (2/1/74711,’,3 1,41,)), (zlll,.,l ;(111,21)),
(1, 41,3111, (0;(1,-11,))
where 2" is either 0 or 1 depending on whether 2’ is equal to 1 or 0. Acting by
1 -1 1 -1 .
(/R I (02 5 ei+y_4)) , (“inw—@) v (09) we bring our se-

quence to the form
((0;(111,)), ..., (0; (111,)), (21,1, 15 (11 1-1)), (15 (L1 1,)), (05 (1,-11,))).
Now if z = 0 we act by g),_,, 0}, if instead z = 1 we use 0> 015 O, t0 obtain

(21,13 M111)), (15 (L1 1,)), (0; (1r110)) ~
((1; (111,)), (0; (11 1,), 1,1,y (L1 1))

Then applying the elementary moves (a}cfz)’l,..., (azZ et 4))*1,
Tlor -+ s "Ezzew—@ we can replace the sequence ((0; (111,)), ...,1(0;(111T))7
(1; 111,)), (0;(111,)), (#1515 11121)))) by

(@ 5 L), (3 (1)), 05 (LL)), .. ., (05 (1 1,)).

Now to obtain the required normal form it is sufficient to proceed as in the case in
which there exists at least one j belonging to {ji,...,jn, } such thatj # 1, r.
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