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On the Information Dimensions.

JOZEF MYJAK - RYSZARD RUDNICKI (*)

Sunto. — Si studiano 1 legami fra la dimensione informatica (information dimension) e
la. dimensione media (average dimension) della misura. Inoltre si dimostra che la
dimensione media ¢ positivamente lineare e continua rispetto della norma supre-
mum nello spazio delle misure.

Summary. — A relationship between the information dimension and the average di-
mension of a measure is given. Properties of the average dimension are studied.

1. - Introduction.

Let i be a probability Borel measure on R™. The upper information di-
mension, the upper local dimension at the point x € supp u (see [14]) and the
upper average dimension (see [2]) of 1 are respectively defined by

L =limsup [ f(0)du@), @ =limsup f(),  dy = [ d@) duto),

r—0t r—0+

where
log 1(B(x, 7))

fr@) = log r

and B(x, r) is the open ball centred at « with radius » > 0. The lower information
dimensions 1 w0 the lower local dimension d ﬂ(x) and the lower average dimez@-
sion d , are defined in the same way but replacing limsup by liminf. If I, =1,
then this common value is denoted by I, and it is called the information di-
menston of y. Analogously we define the local dimension d,(x) and the average

dimension d.

(*) This research was partially supported by the State Committee for Scientific
Research (Poland) Grant No. 2 P03A 031 25 (RR). This work was written while R.R.
was a visitor to the University of I’Aquila. The authors thank the group GNAFA (CNR)
for financial support of this visit.
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Note that the information dimension defined above is slightly different from
the traditional one that uses the Renyi entropy. The information dimensions are
special cases of generalized (Rényi) dimensions introduced by Hentschel and
Procaccia (see [6]) and were intensively studied among others in [1, 2, 5, 8, 9, 10,
13].

Pointwise dimensions satisfies the following inequalities d ,(x) < dim supp x
and d,(x) < Dimsupp x for p-a.e. x, where dim and Dim denote the Hausdorff
and the packing dimensions. Consequently d , < Eﬂ < m. Numbers d , and 314 are
also called the average Hausdorff and packing dimensions of u (see [2] for the
justification of these names).

The relation between the numbers I ,, d r 1 1w d « Was studied by Cu_tler [g].
She proved that if the measure w has a compact support thend , <1, <1, <d,,.
In this note we show that these inequalities hold also when the measure u has
some finite positive moment. Our proof is quite different from that of Cutler
which strongly based on some compactness arguments. We also show that the
lower average dimension is a linear function of . From this result it follows that
the lower average dimension is continuous with respect to the strong con-
vergence in the space of measures.

2. - Information and average dimensions.
In this section we prove the following

THEOREM 1. — Let u be a probability Borel measure on R™. Assume that there
exist positive constants M and y such that

& [ (tog(u+ 1)) o < 1.

Thend, <1,<I,<d,

L, <
LEMMA 1. — Let r and f be positive constants and
Ac{wer™: u(Ban) <p}.

Let
A" = {ac € R™: px,A) < r} and C = /I(B(O, 1/2)),

where A is the Lebesgue measure. Then

MATY > CuAn™pL. O
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Proor. — Let N be the greatest possible numbers of disjoint balls of radius
r/2 that can be found with centres in A. If N = oo then /(A") = co. If N < 0o we
assume that balls B(x1,7/2),...,B(xy,r/2) have the above property. Then the
balls B(x1,7),...,B(xy,r) cover the set A. Since u(B(x;,7)) < ffori=1,...,N

N
we get N > u(A)p1. As | Blx;,r/2) C A" we have

i=1
MA") > NA(B(,r/2)) > Cu(An™ .

LEMMA 2. — Assume_ that the measure u satisfies the condition (1). Then
there exists a constant C which depends only on M, y and m such that

@) ﬂ({x € R™ : u(B(x,7) < M}) < Clk —m) " 7|logr| ™

for every k > m and r € (0,1/e).

Proor. — From (1) and the Markov inequality it follows that

u({we R 108 (14 [lal]) 2 5}) < Ms™?

for every s > 0. This implies that

ﬂ({x eR™: ||| > R}) < M(log a _’_R))flf),
for R > 0 and, consequently,

®) u({wer": o > R}) < M(og B

for every R > 1.
Fixr €(0,1/2). For k € N and R > 1 we define

Ay ={w e R": u(B@m) <}, A ={weA: ol <R},
Then from Lemma 1 we obtain
@ AL R) > O Ay p).

Since A} p C B(0,R + r) we have
5) MALp) < C@R +21)".

From inequalities (4) and (5) it follows that

®) WALR) < @R + 2" < 3R,
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Using (3) and (6) we get
1A < uAp) + p({x € R™ - ||of| > RY)
< BR)"r*" + M(log R) ™.
Let R = »=k/@m_ Then R > 1 and from the last inequality we obtain
(Ag) < 8" =2 L M@m) (ke — m) T log v .

Since there exists a constant C; such that /2 < Cis~'7[log »|* for all
r € (0,1/e) and s > 0, we have

wAy) < Clke —m) Y |log |t for re (0, 1/e) and k > m,
where C = 3"C; + M@2m)'. O

PROOF OF THEOREM 1. — Let f,(x) = log u(B(x,r))/log r. Then

L@ pde) < S e+ Du({o: k <fiw) <k+1})

{f, >m+1} k=m+1

o0

— Z (ke + 1) (u(Ap) — p(Ags1))
k=m+1

= (m+2pAp) + Y pAp),
k=m-+2
where the sets Aj, are defined in the proof of Lemma 2. From (2) it follows that
™ [ r@ud) < Cllog |,
{fr > m+1}

where C = C<m +2+ Y nl}’>. Inequality (7) implies that
n=2

I, =limsup | fi(x)u(dw) < oo.

7)*)04»

From (7) and from the Fatou lemma applied to m +1 — f,1;£ 11y We obtain
Tim sup f () u(dee) < f limsup f,(x) u(de)
r—0*t r—0*

which implies that 7, < d,. The inequality d, < I, follows directly from the
Fatou’s lemma. The inequality I, < I, is trivial. O
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3. - Remark.

REMARK 1. — Observe that if for some a > 0 ameasure x has a finite a-moment
then it satisfies inequality (1). But generaly we cannot omit this assumption in the
formulation of Theorem 1. Indeed, there exist probability measures with infinite
information dimension and with zero average dimension. That is the case of

1= 3" c,0n, Where c, = c/(nlog 2n) and J, denotes the Dirac measure supported

n=2
at the point x.

REMARK 2. — The existence of the information dimension and condition (1)
does not imply the existence of average dimension. We construct a Cantor-like
measure x on R such that I, =1/2 and d,(x) =1, dﬂ(x) = 0 for p-a.e. x € R.

Let (k,) be a strictly increasing sequence of positive integers. We start with
the definition of a Cantor-like measure corresponding to the sequence (k,). Let
ko = 0 and h, = 2% for non-negative integer n. We define a sequence of mea-
sures (1,,) by induction. Let a = 0. For n > 0 and i = 1,...,2" we put

n+1 n n+l (l? + h

Ugi 1 = Gy Oy n = i1

on

Let u, =27" Z Jdqr and let x be the weak limit of the sequence (x,). Then we say

that the measure u corresponds to the sequence (k,). Let X be the support of s.
Fixx € X and » € [h,,1, Iy ). Since & € X, for each s € I\ there exists i such that
@i <x <af +hs. This implies that (a”*l, ;”11 + hyt1) C B(x, 7). From this it
follows that for m > n + 1 we have

gm-n-1_ 1 < #{Z : a;" c B(.’)C,'l")}a

where #A denotes the number of the elements of the set A. Moreover since
2r < h,_1 there exists a constant 1 such that B(x,r) C (4,4 + hy_1). In the in-
terval (A, + h,_1) we have at most 2 "*1 different points a;*. Thus for each
m > n + 1 we have

gm-n-l _ 1 < #{i: a]' € Bx,1} < gm—ntl,
From these inequalities and from the definition of the measure u we obtain
271" < u(Bw, ) <28

This implies that

(n—1Dlog 2 _log u(B@, 1) _ (n+1)log 2

® [log | — log r ~—  J|log 7|
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for v € [hy.1,h,] and x € X. Let

B() = — [ 5~ 'og 2 og (B, 2™) ude)

for s > 0 and define a function 7 : (0, 00) — N by n(s) = n if s € [ky, ky11). Then

I, =limsup f,(s), I,= lim inf 8, (s)

S§—00

and from (8) we receive

n(s)—1< s <n(s)+1
s

©)

for s > 0. From (8) also follows that 3,,(90) = 7,1, d #(x) =1 u for u-a.e. x. Now let
(k},) and (k])) be two strictly increasing sequences of positive integers such that

k/ /!
10 i o li n
@ i = limap =
and
!/ "
11) lim n(s) +n'(s) _ 1,
S§—00

where 7/(s) and n”(s) are functions which corresponds to the sequences (k;)
and (k])), respectively, and defined as above. Let 1/ and ;" be the measures
corresponding to the sequences (k) and (k]), respectively. Let u(A)=

1

3 [1/(A) + 1"(A - 2)], where A —2 = {x —2: & € A}. Let B,.(8), By(3), Bu(s) be
the functions which corresponds to the measures u, 1/, and u”, respectively,
and defined as above. Since

Bu(8) = Bu($)/2+ Bu(s)/2+s

from (9) and (11_) it follows that I, = 1/2. On the other_hand, from (10) and (11)
it follows that d,(x) = 1,_@ u’(@ =0 _for w-a.e. x and d(x) =1, d () = 0 for
w'-a.e. x. Consequently d, = (d,; +d,)/2=1and d, =d, +d,)/2=0.

THEOREM 2. — Let u; and s be a probability measure on R™ and a and B be
positive numbers such that a + f = 1. Then

d“ﬂ1+ﬁﬂz = adﬂl +ﬁd%‘2'

Proor. — Let u = ayy + fuy. From the definition of the lower average di-
mension it follows that

12) d, (@) =min {d, (), d,, @}
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for & € supp 14 N supp p,. For simplicity we set d () = oo if & ¢ supp w. Then still
d, = [ d, @ ua)

X

but (12) holds for every x € R™. Let
={reR™d, () <d @}, Ap={reR™ d, (@) > dﬂz(x)},

=y
and Ao =R™\ (A; UAy). Observe that

) us(B(w, 7))
lim Inf B, )

for x € A;. From the well known results concerning the derivative of Radon
measures on R™ (see [3, Ch. 1.6]) it follows that uy(A;) = 0. Analogously
11(A2) = 0. Finally, from (12) we obtain

f d,,@) (agn + ppo)d) = [ ad, @) (de)

Ay

4 f B, @ 1) + [ ad, @) ) + [, @) )
Ay Ay
= ad/ﬁ +ﬁd/‘2' .
An interesting application of Theorem 2 concerns the strong convergence of
measures. This convergence is given by the supremum norm ||u|| = ut(R™)+
1~ (R™) for any signed finite measure .

COROLLARY 1. — Let (u,) be a sequence of probability measures on R™
convergent strongly to i Then
limd, = d,

N—00 =t

REMARK 3. — As far as we know the lower average dimension is the only
measure dimension which is linear and is continuous with respect to the strong
convergence of measures. For example, the measures ;/ and x” defined in
Remark 2 are such that I, =Iy=dy=dy=1 and I, =1, =0 but
I, =d, =0 for =@ +ﬂ”)/2 and I, = 1/2 for pA) = [/ (A) +u”(A 2)]/2.
Using the measure 4, defined on the interval [0, 1] by u, = cdp + (1 — ¢)4, where
0 < ¢ < 1and Z1is the Lebesgue measure on R, one can check that the Hausdorff,
the packing, the box, the generalized dimensions and their lower and upper
versions are neither linear nor continuous.

REMARK 4. — The properties of linearity and continuity of the lower average
dimension is useful in studying stochastically perturbed dynamical systems.
Measures describing the state of such a system often strongly converges to
some invariant measure x, when time goes to infinity. More precisely, con-
sider a dynamical system on X C R"” with random jumps or a randomly control
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dynamical system. Then their evolution is described by a semigroup {P®)},,
defined on the space of probabilistic measures (see [7, 11]). Such a semigroup
is of the form P(t)=K()+ S(t), where K(t) are kernels operators:
Kt)u) :j" jk(t,x,y) w(dy)de and S(t) are “singular” operators such that

SEuX) — ?) aXs t — oo. Under mild assumptions on {P(?)},., (for example: that
there exists only one invariant measure x, with support X) P(t)u is strongly
convergent to p, for any probability measure u. By Corollary 1 the lower
average dimension also converges to d, as ¢ — oo.
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