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Bollettino U. M. 1.
(8) 10-B (2007), 317-340

Interior C“-Regularity of Weak Solutions to the
Equations of Stationary Motions of Certain
Non-Newtonian Fluids in Two Dimensions.

J. WoLF

Sunto. - St dimostra Uholderianita del gradiente di ogni soluzione debole di un sistema
di equazioni degenerate, che descrivono il moto di un fluido incomprimibile non-
newtoniano in due dimensioni, sotto condiziont usuali di monotonia e di andamento
allinfinito di ordine g — 1 (1 < q < 2).

Summary. — In the present work we prove the interior Holder continuity of the gradient
matrie of any weak solution of equations, which describes the motion of non-
Newtonian fluid in two dimensions, restricting ourself to the shear thinning case
l<g<

1. — Introduction. Statement of the main result.

Let 2 c R?be a bounded domain. The stationary motion of an incompressible
fluid through Q is governed by the following two equations

(1.1) —divS + u-Vu = -Vp +f in &,
(1.2) dive =0 in Q
where

S = {S;} = deviatoric stress tensor (1),
p = pressure,

u = {u,u2} = velocity,

f = {fi,.fo} = external force.

(") Throughout Latin subscripts take the values 1, 2. Repeated subscripts imply
summation over 1, 2.
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Assuming the condition of adherence on the boundary of Q we have
(1.3) =0 on 0Q.

In addition S may depend on the «rate of strain tensor» D = {D;;}, which is
defined by

1/0u; Ou; ..
Di' = DZ =z | = — =1,2.
i = D) =3 (axj M axi)’ ni=14

(ct. [2], [3], [10D).
In the present paper we consider constitutive laws of the following both types

S = vD 22D, 1<q<?2
S =v1+Dp)?%D, 1<qg<2 (v=-const>0)

as special cases, where
1 . .
D = éDijDij = second invariant of D

(cf. [2], [4], [14]) . A fluid which is determined by the first of these constitutive
laws is said «pseudoplastic» or «shear thinning». This motivates us to impose the
following conditions on S:

Sy € C(ML,) N CUL,, \ {0D) (),

C{)Sij
Ol

2
(1.4) 3 @‘ < alut D vE e My, \ {0):
i,k 1=1

oS ij
0l

(co > 0,09 > 0). Here 1 < ¢ < 2 and u > 0 are fixed numbers.
Clearly, (1.4) implies

(1.5) ey = volue+ N2 nl* V& n € My, \ {0,

C _
(1.6) IS < 7= &+ IEDT + SO V¢ € My,

Weak solution to (1.1), (1.2). By Wh?(Q) and Wé"’(.Q) (1 <0 < +00) we de-
note the usual Sololev spaces.

DEFINITION 1.1. — Assume (1.6). Let f € [LA(Q). A vector-valued SJunction
u € [WL9Q)P with divu = 0 is called a weak solution to (1.1), (1.2) if the fol-

@) M;lym = vector space of all symmetric 2 x 2 matrices & = {&;}; [|€]] == (& éij)l/ % By
la| we denote the Euclidean norm of a € RZ.
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lowing integral identity s fulfilled for all ¢ € [C (QF with dive = 0:
ou;
(1.7) fS@;(D(u))D@j({ﬂ) dw +fui8—x:% de = ff;'(ﬂj de.
Q Q Q
Our main result is the following

THEOREM. Assume (1.4), (1.5). Let u € [WL9(Q) T be a weak solution to (1.1),
(1.2). Suppose

(1.8) there exists 0 >2: f = f — u-Vu € [L{ (Q)F.
Then there exists a number 0 < a < 1 such that

(1.9) u € [CY(Q)T.
O

In the case g < q < 2 the existence of the second weak derivatives in

Li .(Q)(q < s <2) of any weak solution u € W47 to (1. 1), (1.2) has been

proved in [13]. Thus, by means of Sobolev’s imbedding theorem it is readily seen

that the assumption (1.8) in the Theorem is always fulfilled in this particular case.
Therefore replacing this condition by

(1.8) g <q<2, fellf.QF (>2)

implies the

COROLLARY 1. Assume (1.4), (1.5) and (1.8). Let u € [WL9(Q)TF be a weak

. ou; . . .
solution to (1.1), (1.2). Then & (1,7 =1,2) are (locally) Hélder continuous

functions. Oxi
O

In addition neglecting the convective term and making use of [11], where the
author has proved the existence of the second derivatives for those weak solu-
tions we also have

COROLLARY I1. Assume (1.4), (1.5) and f €[L? ()] (6>2). Let u € [W:4(Q)I?
satisfy the identity

loc

(17) [ sy ae = [ fio;ax
Q Q

for all ¢ € [COO(.Q]2 with dive =0. Then —] (z 7 =1,2) are (locally) Hélder
continuous functions. O
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REMARK 1. — The existence of a strong solution « € [C1*(Q)]? (q > g) resp.
— 3
u € [CH(Q)? (q > é) to the system (1.1)-(1.3) has been proved by Kaplicky,

Malek, Stara in [9] imposing conditions on the constitutive law which are slightly
more restrictive then ours. In contrast to [9] here the boundary condition (1.3)
does not play an essential role for the proof of the Hélder continuity of Vu.
Therefore our result is applicable to weak solutions to (1.1), (1.2) fulfilling, instead
of (1.3), any boundary condition.

2. The Holder continuity of Vu, where u is any weak solution of an elliptic
system with coefficients satisfying conditions similar to (1.4), (1.5) has been
proved in [12] via higher integrability of the function (1 + |Vu\)(q’2)/ 2v2y, (). In
order to achieve the necessary reverse Holder inequality in the appendix of this
paper, based on the well known Poincaré inequality, the authors show that there
exists 4 € R* such that

f(1 [Vl + [V — AV — AR de < C'rzf(l + (Va2 V2l de,
B, B,

where ¢ = const > 0 depends only on q.

Unfortunately such an argument seems not to work equally if one replaces
the gradient Vu by the symmetric gradient D(u). However in the present
paper by an entirely different method we are able to establish an appro-
priate reverse Holder inequality which will imply the higher integrability of
(u+ |D(u)|)(q72>/ 2V D(u) (1 > 0) (cf. section 4) based on two different Caccioppoli
inequalities (cf. Theorem 3.1 resp. Theorem 3.2) and the Poincaré inequality.

In the appendix of our paper, dealing with the special case x = 0, we prove
that ||D(w)||9" 22V D) € [LAB,)I for each B, cC Q. In addition we derive an
appropriate estimate of the L?(B,)- norm of ||D(u)\|(q_2)/ 2V D(u) which is needed
in section 3.

2. — Preliminaries.

This section is devoted to some preliminary lemmas which will be used in the
following sections.

LeEMMA 2.1. — Let N be an integer > 1. Let 0 < a < 1. Then the following
inequality holds for all & n e RN \ {0}

a

l1—a

1
1) Gl < [ G e DT A < G e+ D
0

(3) Here V2u denotes the matrix of second derivatives of u.



INTERIOR CY*-REGULARITY OF WEAK SOLUTIONS ETC. 321

ProoF. — The first inequality of (2.1) is trivially fulfilled. It only remains to
prove the second.

First let us consider the case max{||, |#|} < u. Here we easily see that
1
f (A E+tg) " dt < 3%u+pu+w™ < 3"+ &+ n) "
0

Next, assume that |£] < |y| and |5 > u. Set 7:= ||é|| Then 0 < 7 <1 and we es-
timate U

1 T 1
[wriertpeat < [t @i dt + [ e+ ol dt
0 0 T

1 —a —a
= T (4D + 4+ A =D - 20)
1 3
1-a) 1-a

Finally, we consider the case |#| < |£] and |¢| > u. Here we estimate

<

In|™ <

(e A+ [E]+ D™

! 1
Jurigrtpa < [+ a-oepa
0 0

= (1_la)|é|(/1 + |f|)lia — W
1 a 3¢
1-a) < = 1-a
LEmMmA 2.2. — Let ¢ :[a,b] — [0,400[ (—o0o<a<b< +o00) be bounded.
Assume that there are constants A, B,a and 0 < € < 1, such that
(2.2) #p) <AR-p " +B+epR) Va<p<R<b.
Then there exists a positive constant ¢ = c(a, ) such that
(2.3) () < c(AR—-p)“+B) Ya<p<R<b.
For the proof of Lemma 2.3 see for instance [6, chap. I11]. O

<

(e + 1€+ D™

3. — Caccioppoli-type inequalities.

The aim of this section is the proof of two Caccioppoli inequalities, which play
an essential role for the proof of the Theorem. To begin with, for u > 0 we define

Vi® = (u+ ED?2 for ¢eMiy,\ {0}
V,.(0) := w1212 if u>0,
V,(0):=0 if u=0.
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THEOREM 3.1. — Let u € [WL9(Q)] be a weak solution to the equations (1.1),
(1.2). Let all assumptions of the Theorem be fulfilled. Then

(3.1)

Q) @,k 1=1,2)

loc

and for each xy € Q,0 < r < dist (g, 0Q) and 1 € R? x RZ (1 =+ 0) there holds

M)

fvfua%D(u)szx

L B,

=
Il

2-q_
9q-D
32) < % (A (f|D(u)I|qdac> ' f|w— M dae ()
B,
+ 6f (1 + D@ F V5 | g & 4 [fl(%’)/z) da,
B?‘

where
A= L Aij + A ] =1,2
i _é( Ly + j'L) (Zu] — 4 )7
and ¢ = const > 0 depending on cy/vy and q only.

To prove Theorem 3.1 we will make essential use of the following two lemmas,
which can be proved by an elementary calculus.

LeEMMA 3.1. - For each ﬁmction w € [WEYQ)P there holds

621/{)1'
39@39&‘1

(3.3)

Ha D(w)H aein Q (Gkl=1,2).

Proor. — Assertion (3.3) immediately follows from the the following equa-
tions:

azwl 0 &Py 0
c')xl = o —Du(w )8 3.%'2 aszn(wL
82@02 0 Paws 0
8962 = o Dao(w), ——— DOy 871D22(w)

(*) For A C R?, A being Lebesgue measurable and ¢ € L!(A) define.

f(odx:% mes(4A ][(odx
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az’wl 82w1 827/02 827/1)2 a a
02~ O Owpdm  Omdm oy ) T gy P20
82wz 82?/{)2 827,{)1 6271)1 o o

_ - 0
02~ o | Ompom  Ompm 20wy D2 T gy P

O

LEMMA 3.2. — There exists a positive constant ¢, such that for any given ball
Bgr = Br(xo) C R? we have

for every v € WH2(Bg(x)):

3.4 C O\
(84) <f|vq dac) < caqf?](|v|2dx+ sf\vmzdx Ve >0.
B[{ B[{

Br

Proor. — 1) First, let us consider the case ¥y = 0 and R = 1. By the aid of
Sobolev’s embedding theorem we find

1/2
35 ol < 6@ (Il + Vol ) Vo€ WHGBD.
Set §:=2—¢q. Then 0 < 0 <1 and
1-60 0 1
2 T

Thus, by interpolation, making use of (3.5) and Young’s inequality applied with
€ > 0 arbitrarily chosen gives
201-0),.120
||UHL(2(BI;||U||LZ¢(BI)
2010 2 2 0
¢ [0l (Il17,) + 17012, p)

—0/1-0 2 ;
e 072, + el Volla,

IN

2
||”||Lr/(31)

IN

IN

~2)/(q-1)|[y(2 2
= @Dy, 0+ eVl

2) Second, for any given ball Bg(xy) C R? the estimate (3.4) easily follows
from 1) using an elementary rescaling argument. O

Proor oF THEOREM 3.1. The proof is divided into four steps

1° Interior differentiability of the weak solution. Let . € R% x R? (AT # 0) be
fixed. Taking into account (1.8) from [11] it follows that the second weak deri-
vatives exist and

loc

a+ ||D<u>||)<q*2>/2£0<u> €L (@] (k=12).
k
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Then by 2™ # 0,
(1D + Dy = 2" * 5 D(u) elLi @1 (k=1,2)().

Using the product- and chain rule gives

Ot 1D + Do — £ D) ~ 1)

L
= (u+ ||[Dw)|| + || D) — )v+||)q_28iD(u)
XL
+ (¢ —2) (u+ |D@)|| + |D@) — 2|3 (D) — 27)

3] D;i(w) Dij(u) — A5 >
= D. j ij
x (axk “(“))(||D(u)| D — i

a.e. in Q. Hence

(3.6) (1 + [D@)|| + |Dw) — 27T D) — 17) € W2 (@1,
and
3.7) H (u+ D@ + DG — D — )|

< 2Ge+ D) + D) - 212 5D

ae. in Q (k=1,2).

2° Local existence of the pressure and interior pressure estimates. Let xy €
0Q,0 < R < dist(xg,00Q) and 1€ R? x R? with 1+ # 0 be arbitrarily chosen.
Consulting [5; Th. III 3.1, Th. III 5.2] one gets a pressure p € L (Bg)/R, such
that for any p € p,

(3-8) f(Sij(D(u)) —S;i(G)Dy(p) dae = f]é(pj de +fp div ¢ da
B Bgp Br

for all p € [W-4(Bp)I%. In addition, observing

o/ q 2q
= = 2
@) g —1 3q—2<

(®) Here we have made use of the inequality

uA 1D+ 1D(w) +||> (125 + D @))-
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it follows

lp — pBg ||Lq’(BR)
2 7 6
<c (Znsij(p(u)) — 80N e @y + |[f||Lz(,/<3[,72>(BR)) vpep®).
ij=1

Then by the aid of (1.4) applying Lemma 2.1 and Hoélder’s inequality gives
, 2/q
([p-pal” @)
B

N2
o) < o [l 1D+ 1D - 22D - )7 ar)
Bg

+ cR4/q’f|f|2dx Vpep
Br

(cf. [5], [11]). Taking into account (3.7), the first integral on the right of
the last inequality may be estimated by (3.4) (with v = (u+ ||DWw)|+
ID@) — 2" )T *(Dyw) — 25 (i = 1,2)). Thus for each & > 0,

, 2/q
( _‘f|P — pBg | dx)
Br

< F L Qo 1D + 1D — 22 |D) - 7' do
(3.10) o
+ 0522: [ @+ 1D+ e — 24 p2e-?)| iz)(m\f dz

=i 8ack

+ cfmzdx.
Br

On the other hand again appealing to [5], [11] the following estimate is true
for every p € p

ij=1

2
lp — pa, ||L2(BR) <c <Z|SU(D(U)) - Sl']'(’]‘+)||L2(BR) + R“f|L2(BR)> .

(®) To this end, ¢ denotes a constant which may change its numerical value from line to
line, but depends neither on R nor on «.
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Then taking into account (1.4) we obtain
[®-pp)a
Bg

(3.11) < ¢ [ @+ D@ + [Da — 2 [ — 2
Br

+ cR2f|f|2dx.
Bp
3° LetxpeQand 0 <r< %dist (19, 0Q2) be fixed. Let § < p < R <7 be ar-

bitrarily chosen. Let { € C°(Bg) be a cut-off function for the ball B, ie. 0 <
{ <1in Bg,{=1 on B,, such that

s c 24 ‘ - c
ox;| — R— p’ 8.’)01'3.70]‘ T (R - /))2
(c = const independent of ). It is readily seen that

0 = Mo nC(Ugu) — k) O <h<rj=12)(")

in BR (7'7.7 = 172)

is an admissible test function in (3.8). Then inserting ¢ into (3.8) and applying the
transformation formula of the Lebesgue integral gives

f (1S5 (D@))) (e, Dy () A

Br

= _f(Sij(D(u)) — Si(A N A <§%((Z‘k‘huj) — Ajih)
Bg t

(3.12) + C% (A pus) — )bikh)> dx
8.%]'

[ Fie i) — 7)) de
Br
0
+2 é[ P A (C a_gi((l'k,hui) - ;hikh)> dee (%)
for all p € p.

(") Here 4; v denotes the difference v(- + Jey,) — v, where e; = (1,0) and ez = (0,1).

a .
() Notice that 2 — 0.
89011



INTERIOR CY*-REGULARITY OF WEAK SOLUTIONS ETC. 327

To proceed we first note that
8
(3.13) o D € [Li (@1 (k=1,2),

and

z)unH 2 de

uozf

(3.14)
< 2 Timinf [ (4 SyDa)) Dy de.
) —>! BR

Indeed in case u > 0 (3.13) and (3.14) can be proved by the aid of (1.5) using a
similar reasoning as in [13]), whereas in the case ¢ = 0 (3.13) and (3.14) will be
verified in the appendix below.

Then in (3.12) letting & tend to zero, using chain- and product rule gives

Dy I

<2 f (S;(D@)) — SU(A*»( " )(5 8922 ai% +%@%) dw

Cdx

Bp
) gty x4
42 Bf SDw) ~ 8GN 5oz d

(3.15) o2
w2f (5o ) (e %5—@) do

OPu;
+ f 39{%89% a—%d

+2fﬁ(%’-zik)ca de + ff Fui_
Bg

aak

=hL+1L+ 13+ 1s+ 15+ I,

where p € p is taken such that pg, = 0.
In order to estimate integrals I, I3, I3 and I, we will make extensively use of
the following inequality

(3.16) 1+ D@ + D) — it > u+ |2t aein Q

1) First, observing (1.4) the estimation of integral I; can be easily done by the
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aid of Lemma 2.1. This yields

2
hsms f(/l+\|D(u)||+HD(u) P 2Vu - A da

Then using (3.16) gives

C —2 112
(3.17) I < ——(u+||27|P? [V — A7 dee.
(R —p) ,!

2) Analogously as above, using Lemma 3.1 and then applying Young’s in-
equality we obtain

2
12 < Zkil VU a—ka(u)H C dx
(3.18) o
¢ , -2 2
+ ——— @+ AT [ Vu — 4" de.
(B - py Bf

3) To estimate integral I3 we apply Cauchy Schwarz’s inequality and make
use of the estimate (3.11). It follows

R
) 1/2
+ sz dec) <f|Vu/12doc>
Bg Bg

In addition, applying Young’s inequality together with (3.16) shows that

Iy < L)Z ( f(u + ID@)| + |D@) — P22 |V — A de
_p Br

1/2

(319) I < ﬁ{(u—&— ||/1+||)q*2f\Vu—A|2dac+ rzf(1+ 1f|<2+")/2)dx}.
—p

B, B,

4) In order to estimate I, we first apply Hélder’s and Young’s inequality and
then making use of (3.10) (with £ > 0 arbitrarily chosen). Hence, together with
(3.16) one obtains

ns gy (nan) (3 Jlegzoofas)
=1 B,

IA

| /\

13 [Vl
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@2-9/q

, 2/¢
Cf’% p ( il dx) ( f<u+||D<u>|>qu) )
Bg By

<93 [ g

16

Lo
(R —py

2-9)/q
< s i)

Br

{ev (12202 f 1D@) - 7| da

2 2-9/q
weer 12> [VE| o poo|de (f ot ipwiy o)
k=1 g, Bg

- @-9/q
+ [ireae( o 1oy dw) }
B, Bg
Thus, choosing

o @-2)/q
—w B wn)“( fut i)

4cp3 o

one arrives at

14<_ f

cr22-9/q
+ (R — p)z/(qfl)

Cdx

2—q

I ( [+ 1Dy dac) "

B,
(3.20) x f D) — 2|2 de

@-9/q
e f e fuus D e

= 4 e

(?) Observing VDu = 0 almost everywhere on{ye Q\D( y))=0} by Holder’s inequality,
0 q
-z — q
Bf [¢52- D" 2 = [+ 1Dy v ey Do a
R

Br

< ( i v?Hza%Dm)qum)W( [+ 1@y dx) o
Br ) Bg
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5) Using Cauchy Schwarz’s inequality and Young’s inequality we get

(3.21) Is < (Rc—fzp) f Vu — AP de + ¢ f A + [F|%2) da.
B, B,

6) Finally, by the aid of Hélder’s inequality and Young’s inequality it follows
that

(3.22) I < ¢ f (1 + | 4|27 4 |F (242 dg.
B,

Now, inserting the estimates (3.17)-(3.22) into (3.15) and taking into account
the estimate

=9 @-9/q
fw dx( f(u + D@ dac)
B, B,
iy (0-2)/(c+2) 4/(c+2)
2 [ ipaopotas) ([ ar)
B, B,

¢ [ (14 1D 73 4+ (e aa,

B,

IN

IN

which easily follows by the aid of Hélder’s and Young’s inequality, implies

> [ o] e

:1 B,
¢12@-0/q Gt D7 2)( (e + 1D d =y
c et ( [k 1buopras)
2/(g-1)
(B =py™ B,
< [ 1D — 24| da
B,
cr2/@-D o o
b ] (1 IDGOI 9 4 a0 1 )
R —py

1< 5| O 2
+3 [ Vill g2
=5 BR
where ¢ = const > 0 depends on ¢y/vy and ¢ only. Now the assertion (3.2) im-

mediately follows from the last estimate together with Lemma 2.2. O

Using a similar reasoning which let to (3.2) we have the following alternative
Caccioppoli inequality
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THEOREM 3.2. — Let u € [WY-9(Q)) be a weak solution to the equations (1.1),
(1.2). Let all assumptions of the Theorem be fulfilled. Then for each
Xy € 2,0 < r < dist (g, 02) and /. € R? x R? there holds

> [ o] e

k=1 B,
q/2
(3.23) <¢ { ]f|w — P de + f(m D)) dx}
B, B,
N7 _
+c (f |fI? dx) + cf (1 + |Au|(2+”)/” + |f|(2+5)2) de,
B, B,

where ¢ = const > 0 depending on cy/vy and q only.

1
PROOF. — Letxy e Qand 0 < r < Qdist (0, 0R) be fixed. Let { € C°(B,) be a
cut-off function for the ball B,,i.e. 0 < { < 1in B,,{ =1 on B, 3, such that

¢ e ’

c
. ]
ox; r 0x;0x;

< in B, (i,j=12)

<z
(c = const independent of 7). As in the proof of Theorem 3.1 we insert the ad-
missible test function 0; = Aky,h(éz((zlk,huj) —Aih)) (0 < h <7r,j=1,2)into (3.8)
applying the transformation formula of the Lebesgue integral and passing to the
limit 2 — 0 (cf. also the appendix below). This yields

vozf o

duj PL 9
<2 f (Sy(DwW) — S77(0))( ) <C oe0, o 89%) dx

Cdx

+ 2[ (8(D) - Sy 5 82“’ nrt
B, i
(3.24) ou; azc ¢ a
+ Zf p (8%;C B )Vik) (C ;0 * o, ox; 8ock> dw
Pu;
* Zf (990k890k 4'3_96‘1

F(om Pu;_,
+ zéfﬁ (6ack Alk>g do + 2fﬁ ox, 89%

=hLh+L+13+ 1+ 15+ I
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1) Observing (1.4) and applying Holder’s inequality we get

N

1
C —
I < ﬁgfof (+ D@ D@ [V — 42 dt dae

1/q 1/q
7% (f(u + ||D(u)|qu) <f |V — de)
By B,
q/2
c{ J(|Vu — P de + J[(“ + D)) dx} ,
B, B,

2) Similarly, making use of Holder’s inequality (cf. footnote (*)) and Young’s
inequality gives

<t ( [ ipapraz)” (ki / |2 peffraz)”

Zoki: szHa kD(u)H Cde + ¢ (f(m ID@)|)? dx)qﬂ.

3) In order to estimate I3 we apply Holder’s inequality and make use of (3.9)
(with 2T = 0), it follows

1/q 1/q

I3 <c (J[|p|q/ dx) (fWu — /lqdﬁc)

B, B,
/¢ ) 1/2
c{(Jf(ﬂJr |D(u)||)qu) + (f[f|2dac> }

B, B,
1/q
X <f|Vu—/l|qdac> .

B,

Then applying Young’s inequality gives

q/2 } q/2
327) I < c{ Jf|w—x|2 dx—l—f(,u—l— ID@)|)? dx} Yo <f|f|2dx> .
B, B,

B‘V

IN

(3.25)

IN

(3.26)

4) Applying again Hélder’s and Young’s inequality we obtain

=S [ 2w o

1B,
. 2/q
e furrae)  ( foripwpras)
B, B,

@C-9/q
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Then estimating the right of the latter inequality from above by (3.9) (with
* = 0) and then applying Hélder’s and Young’s inequality gives

2

1= 03 v 2

=1 3,

q/2 q/2
(f u+||D(u)||)2dx) n c(fm dac) .
B,

5) The integrals I5,1s may be estimated in the same way as in Theorem 3.1.

(3.28)

Thus
q/2 . q/2
Is+1Is <c (fWu—Mzdx) +c <f[f|2dx> (3.2)
Br Br
(3.29)
+ Cf(]. + |Au|(a+2)/a + l]?-l(a+2)/2) dac.
B,
Now, inserting (3.25)-(3.29) into (3.24) gives (3.22). O

4. — Proof of the Main Result.

By means of Sobolev’s embedding theorem to prove the Theorem it suffices to
obtain the higher integrability of second order derivative of u. This can be
achieved with the help the result of Giaquinta and Modica (cf. [7]) based on
Gehring’s lemma [8] after having established appropriate“reverse Hélder in-
equalities”. For, we consider the following two cases.

1/2
First case: u + ||((D(w))g, || > (fWu — (Vu)g |? dx) :
B,

Making use of triangular inequality we obtain

A

1/2 1/2
(fusip@irae) < et @1+ ( f170- g Pa)
B,

B‘V

(4.1)

IN

2(u + (D)), |-

Next, from (3.2) (with 4 := (Vu)g.) applying Hélder’s inequality and making
use of (4.1) it follows
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f V29D de

r/2

2—q

< S+ | D, T ( f @+ Ipa)y? dyc) o
B,

(4.2) x f IV — (Vg |2 de
B,

+ o [ (141D * 5 4 2V 4 |72
B,

< (ut D) D7 Vi — (Vg P de + ¢ [ g,

B, B,

where
§@) == 1+ [ D@@)||* 7% + | 4u@)| 27 4+ [f@) P2, zea.
To proceed we first note that

2
]f|w—(w)3,,|2dx < c72<f||VD(u)||dx) :
B,

B,

which easily follows by the aid of Poincaré’s inequality together with (3.3).
Then making use of Hélder’s inequality and (4.1) gives

f Vu — (Vg [* de

' 2

< 01"2( J[(u + [D@) P2V, VD@ dx)
B,

2—q q
er( furpwnas) (£ vDwI*as)
B,

B,

IN

IN

2 2—q 2/q !
(i + | (D)), |) Jf [V, IVD@)]* dz ) .
B,

Thus inserting the latter inequality into (4.2) gives

fvavowi]”

4.3) B
< ¢ <f[V IVD@)| 2/"dac) ¢ fga

B, B,



INTERIOR CY*-REGULARITY OF WEAK SOLUTIONS ETC. 335

1 .
forallxy € Qand 0 < r < édist (acg, 092), where ¢ = const > 0 depending only on
¢o/vo, q-

1/2

Second case: i+ ||(D(w)p, || < ( f [Vu — (Vu)BT|2 dx) :
B,

First using the triangular inequality we easily get

1/2
(4.4) (J[(,u + ||D(u)||2 dac) <2 <f|Vu - (VM)B,,|2 dx)
B, B,

Then (3.22) (with 2 = (Vu)p,) reads

1/2

q/2
fVi”VD(u)”de <ec <J(|Vu - (VM)B,|2 dac)
B,

B2

~ q/2 i
+cC (flﬂ? dx) + cf (1 + ‘Au|(2+0)/o' + lf|(2+o)/2) dae.
B, B

r

(4.5)

As above using the Poincaré inequality and Hélder’s inequality gives

q/2 q@2—q)/4)
(fVu— (Vu)g, dx) < C”I”q<1[(,u+ | D@)|))? dac>
B,

B,

¢*/2
x (f[m,uvu(u)u]z/q dac)

B,

Then taking into account (4.4) applying Young’s inequality we get

q/2 2 q
(fqu — (V) ? dac) < crz(f [VuIVD@)]|] qu) .
B, B,

Now, inserting this inequality into (4.5) yields

J wuvpe) ax

B,

(46) < o fwivowi)* ar)

B,

+ ¢(1+ (0(r; 29))) f (1+ 4| ®77 + |f|#%) da,
B,

o(r; x) := (f[ﬂ? dac)m.
B,

where
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Let Q' C Q be an open set with @ C Q. By the absolutely continuity of the
Lebesgue integral there exists a number 0 < 7y < dist (€', 0Q) such that

o(rimg) <1 VaoeQ, VO<r<mr.
Then combining (4.3) and (4.6) gives
q
an  fmlvpe))®ar < (Jf [V IVD@)]]* dx) +cfgaz,
B, B, B,

forallxg € € and 0 < r < 7y, where ¢ = const > 0 depends only on cg, vy, ¢ and o.
Now we are in a position to apply the following result of higher integrability
due to M. Giaquinta and G. Modica (cf. [7]) based on Gehring’s lemma (cf. [8]).

LEMMA 4.1. - Let F € L} (@) and G € L{ (@1 <t <d < +o0) be given

loc
non-negative functions. Suppose there are constants Ky > 1 and ry > 0 such

that
t
4.8) f Flaz < Ky Q]f Fdx> + {6l
B, j2(0) »(20) B,(x)

foreach xy € 2,0 < r < min{ry, dist (9, 0Q)}. Then there exists t < 19 < d, such
that

(4.9) FeLi (@ VYtell, ol

ProOOF OF THEOREM 1.1 continued. Applying Lemma 4.1 with

F:= 2V % p . G :=g"
= [Xnlapol] " =i

_ 2qo0
Co+2

t:=q, d:

gives

9

4
D(u)H c LY(Q) forsome 2<t1<——0_.
890k

o+2

2
2V

k=1

Then by an analogous reasoning which led to (3.7) we obtain
(4.10) VD) € [W-*(Q)]*

and hence applying Sobolev’s embedding theorem it follows that D(u) is bounded
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on Q. Using (3.3) we obtain

2

off )

k=

2 62

(qu)/
<2 D
. (1 max D@ )

k=1

Thus making use of Sobolev’s embedding theorem from (4.10) it follows

(4.11) u|y € [CH2 (@) P
This completes the proof of the theorem. O
5. — Appendix.

This appendix is devoted to the proof of (3.13) and (3.14) for the special case
w=0.

Let Q € R?(d > 2) be a bounded open set. Let N > 1 denote an integer. For
v: Q — RY Lebesgue measurable we define

V) (x) == |v(9c)|(q’2)/2 it v # 0
0 if w@x) =0,

x € Q, and given 1 > 0 we set,
V, o) i 4 0@+ @+ le)) TP ()| + o + Je)| > 0
it Jo@)| + |v(@ + Jep)| =0,
xeQ dist(r,0Q) > Atk =1,...,d).

LEMMA A.1 Letv € [LYQ)T. Suppose for every G CC Q there exists Ko > 0
such that

(A1) f (Vo @)P| ;0 de < Kg 2 V0 < A < dist (G, 0Q)
G

(k=1,...,d). Then v e WEUQ),

loc
(A.2) V(v)— e[l @F (*k=1,...,d
and for every G CC Q,

’ de < 2 hmlnff(VAk(v)) ‘/1 AW‘ de < Kg

(A3) f (V(v))Z‘ o
G

k=1,...,d).
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Proor. — Let G cC Q be fixed. As in [11] (cf. also [12], [13]) from (A.1) one
easily deduces that v € (WL4(@1N and
2 1 2
f t + 2|v|)q*2‘ @. dz < liminf f (Vlak(v))z‘ fAMv) dx
(A4) A oxy, 7—0 2 A
< KG

foreveryt > 0k =1,...,d). o
Do (k=1,...,d).. Then (A4) im-

For t > 0 we set wy; := (¢ + :2|v|)<q*2)/2 -
&

plies that {wy;|t > 0} is bounded in L2, By virtue of reflexivity there
exists wy, € [L2Z(@]Y and a decreasing sequence t; >ty > --- > t,, — 0 such that

(A.5) Wy, — W Weakly in (LAY as m — +o0.

In addition taking into account (A.4) by the aid of Banach-Steinhaus’ theorem we
get
2 P 2 1 2
(A.6) f|wk| dx < hmlglff(VM(v)) ‘IA;"W’ .
G G

Next for each € > 0 define
G. ={y € G||v(y)| > e}.

Using Lebesgue’s theorem it is easily seen that

Wiy — (ZIW\)(HW;—QZ in [LIGHTY as t—O.

Thus by (A.5),
(A7) wp = 2<q*2)/2\1)|("_2)/2;—QZC a.e.in {y € G|v(y) # 0}.
On the other hand, observing
(‘?_az; =0 aein {yeGlvy =0}

making use of (A6) and (A7) it follows

22*‘7] wye|* dwe
GN{v#£0}

Gf (V(v)ﬂ g—az ]2 e

IN

1 2
2—q T3 3 20~ 1.
22 lim inf Gf (V)| 5 00| dar

Whence (A.2) and (A.3). O
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ProoF oF (3.13) AND (3.14). Based on (3.15) and the fact that f € u-Vu €
(LY ()]% as in [11] we infer

loc

(A8) [ SN ADy ) dw < K22,
B,

r

forall0 < A < %dist (B, 092) (here K, > 0 is independent of 7).

By the aid of (1.5) with the notation introduced above setting v := D(u) one
finds

(A.9) 00| Vi) A,30 < (4;185(D@))(4;1Dyi(w))  a.e.in B,

Then integrating both sides of (A.9) over B, using (A.8) yields

w [ V@l do < K, 22
B,

Thus, the assumptions of Lemma A.1 are satisfied for v := D(u). Now both (3.13)
and (3.14) are an immediate consequence of Lemma A.1. O
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