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Bollettino U. M. 1.
(8) 10-B (2007), 293-315

The Boltzmann Equation: Mathematics and Applications

CARLO CERCIGNANI (¥)

Sunto. — Il lavoro ¢ suddiviso in due parti. La prima presenta un risultato recente
dell’autore riguardante Uesistenza della soluzione dell’equazione di Boltzmann per
molecole maxwelliane, senza alcun taglio nel nucleo del termine d’urto, quando la so-
luzione dipende da una sola variabile spaziale. A differenza del ben noto teovema di D1
Perna-Lions, st dimostra che vale anche la conservazione dell energia. La seconda parte
presenta problemi di dinamica dei gas rarefatti, rvetti dall’equazione di Boltzmann ri-
guardanti la teoria delle micromaxxhine (MEMS) e nanomacchine (MEMS).

Summary. — The paper is subdivided into two parts. The first presents a recent result by
the author concerning the existence of the solution of the Boltzmann equation for
Maxwell molecules, without any cutoff in the collision kernel, when the solution de-
pends on just one variable. At variance with the well-known theorem of DiPerna-
Lions, conservation of energy is also shown to hold. The second part will concern
rarefied gas dynamics problems, governed by the Boltzmann equation and con-
cerning the theory of micromachines (MEMS) and nanomachines (NENS).

1. — Introduction

The present paper is subdivided into two parts. The first presents a recent
result by the author concerning the existence of the solution of the Boltzmann
equation for Maxwell molecules, without any cutoff in the collision kernel, when
the solution depends on just one variable. At variance with the well-known
theorem of DiPerna-Lions, conservation of energy is also shown to hold. The
second part will concern rarefied gas dynamics problems, governed by the
Boltzmann equation and concerning the theory of micromachines (MEMS) and
nanomachines (NENS). These devices are increasingly applied to a great variety
of industrial and medical problems. In these problems, given the small dimen-
sions of the devices, it is necessary to use the kinetic theory, instead of the usual
fluid dynamics, based on the Navier - Stokes equations, to describe the motion of

(*) Conferenza tenuta a Torino il 3 luglio 2006 in occasione del “Joint Meeting S.I.M.A.I. -
S.M.A.L. - S.M.F. - U.M.IL. sotto gli auspici dell’E.M.S. Mathematics and its Applications”.
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air in the gaps of the devices. Some variational and simple numerical solutions
will be discussed and compared with costly Monte Carlo simulations in the
second part of the paper. In the rest of this introduction we shall introduce the
problem discussed in the first part.

In 1989, DiPerna and Lions [8] used various previous results and remarks,
together with their new concept of renormalized solution to prove the first
general global existence theorem for the Boltzmann equation in the non-
homogeneous case. It was soon clear [2] that solutions depending on just one
space variables are special in the sense that one may hope to obtain existence in a
more traditional sense; the final step was recently performed by the author [4],
who eliminated a truncation for small relative speeds in the collision term.

Here we are concerned with the initial value problem for the nonlinear
Boltzmann equation for Maxwell molecules without cutoff, when the solution
depends on just one space coordinate which might range from — oo to + oo or
from 0 to 1 (with periodicity boundary conditions); for definiteness we stick to the
latter case. Easy modifications, in the vein of Ref. [6], are necessary to deal with
the case of different boundary conditions. The x-, - and z- component of the
velocity v € R® will be denoted by &, 5 and ¢ respectively, and the equation reads

G

1.1) 8t+é%=Q(f,f)

with
12)  Q(f.NH,v,1) :f B - —v.),[v —v.)(ff] — ff)sin0dod¢ dv..

vV=v-nn @v-uv)l
v.=v.+n[n-@© -0,

For a detailed explanation of the structure of the collision term, see [3], [7], or [8].
The angles 6 and ¢ are the polar and azimuthal angles of the collision parameter
n € S? relative to a polar axis in direction V =v — v..

We introduce as in [4] the weak form of the collision term, Q( f,f). We shall
henceforth use the latter notation for the operator defined by:

3 [ QU@ e Hdvdudt
[0,71x[0,11x R?
1
=3 f Bn- - —v,),|lv —v.)(@ +¢. —o— ) ffdudt.
[0,7]x[0,1]x R? x R® x S2
for any test function ¢(x, v,t) which is twice differentiable as a function of v with
second derivatives uniformly bounded with respect to x and ¢t. In Eq. (1.4) we
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have used the notation
1.4) du = sin 6 dfd¢ dv..dvdx

We remark that for classical solutions the above definition is known to be
equivalent to that in (1.2). The main reason for introducing it is that it may
produce weak solutions (as opposed to renormalized solutions in the sense of
DiPerna and Lions [8]) even if the collision term is not necessarily in L. This also
avoids cutting off the small relative speeds, as done in [6].

For a function f to be a weak solution of the Boltzmann equation, it must
satisfy Eq. (1.1), where the derivatives in the left hand side are distributional
derivatives and the right hand side has been defined above.

We assign an initial value f(x,v,0) = fy(x,v), and we shall assume that
fo € LL([0,1] x R?) with the normalization

(1.5) fffo dwdo = 1.

The association of the solution with the weak formulation is standard. The ob-
jective of this paper is to show that the initial value problem for the Boltzmann
equation without angular cutoff has a global weak solution in the sense defined
above. The main step in proving this is a proof that collision term Q( f.f) is such
that the expression in Eq. (1.3) is finite.

2. — The collision term for weak solutions in the case of noncutoff potentials

In this section we want to prove that the definition of Sect. 1 makes sense for
inverse power potentials without introducing Grad’s angular cutoff, as hinted at
in the previous paper [4]. To this end we consider the following identity:

1

1
0?
@.1) Ofdsof t [ + 50"~ 0) + v, V)

0 [p + s — v))]}

 0s

1
a ! !
:b[ds{%[(p(lﬂ—s(v —v) + @, — V)]

= p(v,) — p@') — p(v") + p(v)

Hence
1

13
22) o)+ o) — @) — o) = [ds [ty
0 =l

0

Fo ., P
0w, ; —vi)(v; —v))

If K is an upper bound for the second derivatives, we obtain the following
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estimate
2.3) lp(@) + p.) — p@") — p.)] < IK|v' — v||v" —v'| <9IK|V|n - V|

Hence if the kernel B diverges for 6 = n/2, but B cos § is integrable, then the
integral with respect to 8 does not diverge. We recall that, if the intermolecular
force varies as the n-th inverse power of the distance, then

@4) B - (v —v.),|v —v.)) = BO)|V[

where B(f) is a non-elementary function of § which for 8 close to z/2 behaves as
the power —(n +1)/(n — 1) of |z/2 — 6|. In particular, for » =5 one has the
Maxwell molecules, for which the dependence on V' disappears.

We conclude that for power-law potentials, B cosé behaves as the power
—2/(m —1) of |n/2 — 0] and the definition of a weak solution given in Sect. 1
makes sense for n > 3.

Henceforth we shall consider just Maxwell molecules, for which we state the
main result of this section as

LEMMA 2.1. — The following estimate holds

2.5) f QUf.P)@,v,t) p(x, v, H)dv dedt

[0,77x[0,1]x R?

< BK f VI ff.dvdv.dudt

[0,71x[0,1]x R®x R?

where K is un upper bound for the second derivatives of ¢ and f, a constant that
only depends on molecular parameters.

3. — Basic estimates

We recall from a previous paper [4] that if we cutoff the values of 8 close to 7/2
then there is a weak solution in the sense defined in Sect. 1.

THEOREM 3.1. — Let fy € L*(R x R®) be such that

3.1 ffo( 1+ o) dvde < oo; ff0| Infy()|dvder < .

Also, assume that the collision kernel for Maxwell molecules B is cutoff for
|0 — /2| < & (e > 0). Then there is a weak solution f(x,v,t) of the initial value
problem (1.1), (1.4), such that f € C(R,, L*(R x RS)),f(.,O) = fo. This solution
conserves enerqy globally.
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We now set out to prove the crucial estimates for the solution of the initial
value problem and for the collision term. It is safe to assume that we deal with a
sufficiently regular solution of the problem, because this can always be enforced
by truncating the collision kernel and modifying the collision terms in the way
described in earlier work, in particular in [8]. If we obtain strong enough bounds
on the solutions of such truncated problems, we can then extract a subsequence
converging to a renormalized solution in the sense of DiPerna and Lions; and the
bounds which we do get actually guarantee that this solution is then a solution in
the weak sense defined above.

Consider now the functional

G2 1A0=[ [ [€-c)feobf@ v, dv.dvdady

<y R3 g3

where the integral with respect to x and ¥ is over the triangle 0 < & < y < 1. This
functional was in the one-dimensional discrete velocity context first introduced
by Bony [1]. The use of this functional is the main reason why we have to restrict
our work to one dimension; no functional with similar pleasant properties is
known, at this time, in more than one dimension ( for a discussion of this point see
a recent paper of the author [5]). Notice that if we have bounds for the integral

3
with respect to « of p = f f(x,v,t)dv and for
R

1
E(t) = f f w2 dvdz,
0
then we have control over the functional I[ f]1(t).
A short calculation with proper use of the collision invariants of the
Boltzmann collision operator shows that

6n  Snn=—[ [ [ criwe. i ndedo.d

[01] g3 g3

Notice that the first term on the right, apart from the factor (£ — @)2, has
structural similarity to the collision term of the Boltzmann equation, and the
integrand is nonnegative. This is the reason why the functional [ f]is a powerful
tool.

After integration from 0 to 7' > 0 and reorganizing,

T
G [ [ [ [e-crfeo.,bf@v,ndvdo.dedt = 1710 - LX),
0

01 v v.

According to a previous remark, the right-hand side of (3.4) is bounded. Since the
total energy is conserved, we have proved
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LemMmA 3.2. — If fis a sufficiently smooth solution of the initial value pro-
blem given by (1.1) and (1.4) with initial value fy, then

ftflff(f—f*)zf(%,v*,f)f(%v,r)dvdv*docdr
00 v oo

are bounded.

The idea of the basic estimates was given in Ref. [2]; we will repeat some
details here to make this paper self-contained.
We have now the following

LeMMA 3.3. — Under the above assumptions, we have, for the weak solutions
of the Boltzmann equation for noncutoff Maxwell molecules:

(3.7 f v —v.[f@,0, 0 f(@,v.,t)dtdu < Ko

R xR?x[0,T1x[0,1]

where Ky is a constant, which only depends on the initial data (and molecular
constants).

In fact, we can take ¢ = &2 as a test function and remark that the contribution
of the left hand side is bounded in terms of the initial data because & < |v[>.
Hence the integral in the right hand side is also bounded. When computing this
integral, we use as polar angles 6 (the angle between n and V) and ¢ (a suitable
angle in the plane orthogonal to V) so that the components n; (1 = 1,2, 3) of n are
given by

"N Vo .
n1—7c050—78m0005¢
Ve e . Vs . .
ng—vcos(i—i— o s1n0cos¢—v sin #sin ¢
W vy . Vo o .
s =1 cos 0+ o sinf cos ¢ + v sin 0 sin ¢

where V; (1 = 1,2, 3) are the components of V and V) = \/‘—/22—;;35 Then we have
& =¢—Viecos 0 + %Vg sin 20 cos ¢

& =¢, 4+ Vicos?0 —%Vo sin 20 cos ¢
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We have:

o) + p(.) — p") — (') = 2V cos® 0
~V1 Vo sin20 cos ¢ — 2V cos? 0 — %Vg sin® 20 cos® ¢ + 2V, V3 cos? 0sin 20 cos ¢

Then after integrating with respect to ¢:

9 [ QUp@uvnEdvdudt

[0,71x[0,1]1xR?

- i BO){l — 2V} cos? 0 + 2V} cos* 0] + 7 V§ sin® 20) ff.dpuclt
[0,T7%x[0,1]x R? x R® x S2

- f B(@){% (V2 — 3V2})sin 20 ff.dudt .

[0,77x[0,1]x R® x R x S2

We can separate the contributions from the two terms, since they separately
converge and obtain

3.10) f Qf. )@, v, )3 dvdedt — —3B, f (& — EV2ff.dvdp. duwdt

[0,77x[0,1]x R? [0,77x[0,1]x R® x R?

+ By f VA, dvodv. dedt.

[0,77x[0,1]x R®x R?

where if the force between two molecules at distance 7 is xr—?, then

(3.11) By (@ =1.3703...).

o K
The constant a was first computed by Maxwell [10]; the value given here was
computed by Ikenberry and Truesdell [9]. Since we know that the left hand side
of Eq. (3.10) is bounded and the first term in the right hand side is bounded, it
follows that the last term is also bounded by a constant depending on initial data
(and molecular constants, such as m and x).

4. — Existence of weak solutions for noncutoff potentials

In order to prove the existence of a weak solution, we shall assume that
this has been proved for Maxwell molecules with an angular cutoff ([4]), as
stated in Theorem 3.1 ; actually to make the paper self-contained and the
proof more explicit, we shall assume that the proof is available when a
cutoff for small relative speed is introduced. In this case, in fact the proof
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immediately follows from the DiPerna-Lions existence theorem with the
estimate of Lemma 3.4; it is enough to remark that a solution exists when
we renormalize by division by 1+ ¢f (f independent of ¢ > 0) and we case
to the limit ¢ — 0 thanks to (3.7), which, of course, holds in the cutoff case
as well.

In the noncutoff case we approximate the solution by cutting off the angles
close to 7/2 and the small relative speeds. In this way we can obtain a sequence f,,
formally approximating the solution f whose existence we want to prove.

LEMMA 4.1. - Let {f"} be a sequence of solutions to an approximating
problem. There is a subsequence such that for each T > 0

i) [f"dv— [fdvae andin L'(0,T) x R?),
ii)

f VP fedv. — f V[*f.d.
R? R?

in LY(0,T) x R® x Bg) for all R > 0, and a.e.,
iii)
[ VP fpdvdo, [ |V f.dvd.

@) gt = K — RxR = g(a,t)
1+ [fy do 1+ [fdv

weakly in LY((0,T) x (0,1)).

PRrOOF. - i) is immediate. ii) uses an argument well-known in DiPerna-Lions
proof with the estimate sup, [f,(1+ v|?) dv < 0o to reduce the problem to
bounded domains with respect to v..

For iii) we use i) and the fact that f,, converges weakly, but the factor mul-
tiplying it in the integral converges a.e. because of ii).

Now we remark that g,,(x, t) converges weakly to g(x,?) and p,(x,t) converges
a.e. to p(x,t) and the integral [ p,g,dxdt is uniformly bounded to conclude with
the following Lemma:

LEMMA 4.2. — Let {f,} be a sequence of solutions to an approximating pro-
blem. There is a subsequence such that for each T > 0

42) f \V 2fofondpudt — f VA dydt

0,7)x(0,1)x R®>x R? 0,7)x(0,1)x R®>x R?

We can now prove the following, basic result:
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LEMMA 4.3. — Let {f,} be a sequence of solutions to an approximating pro-
blem, weakly converging to f. There 1s a subsequence such that for each T > 0

43) f $Qu(fofo) dt daed — f $Q(f.f)dtdwdv

0,7)%(0,1)xR? 0,7)%(0,1)xR?

where Q, and Q are given by the weak form of the collision operator, as defined
m Eq. (1.4).

Proor. — Infact the integrand in the left hand side of Eq. (4.3) is dominated by
the integrand of Eq. (4.2) which weakly converges and we can take the limit.

Thanks to this result, we can now pass to the limit in the approximating
problem to obtain

THEOREM 4.4. — Let fy € L*(R x R®) be such that

(4.4) ffo( 1+ |oP)dvdz < oo; ff0| Infy()|dvde < co.

Then there is a weak solution f(x,v,t) of the initial value problem (1.1), (1.4),
such that f € C(R,, LA(R x R®),f(.,0) = f;.

An immediate consequence of Theorem 4.4 is

THEOREM 4.5. — The solution whose existence has been proved in the previous
theorem conserves energy globally.

In fact we can take ¢ = \v|2 as a test function and this immediately yields the
result. The lack of this property is one of the drawbacks of the DiPerna-Lions
renormalized solutions.

It is, of course, easy to prove that momentum is conserved globally. But we
can prove more, i.e.

THEOREM 4.6. — The solution whose existence has been proved above con-
serves momentum locally.

In fact we can take ¢ = vg(x) as a test function, where g(x) is a smooth per-
iodic function of the space coordinate: the result follows.

5. — Introduction to the second part

The presence of a fluid film is known to reduce the sliding friction between
solid objects. Although one usually thinks of a liquid (typically, oil), the case of a



302 CARLO CERCIGNANI

gas lubricant (typically, air) is also very important in several applications.
Sometimes, problems of gas lubrication are not so obvious, because air is so
easily available that one tends to disregard its presence. As technology expands
and the size of components becomes smaller and smaller, the role of rarefied
gases as lubricants becomes increasingly important. A typical example is pro-
vided by modern computers: the read/write head must be as close as possible to a
rotating disk, and the air in between has accordingly a thickness of the order of a
mean free path.

In lubrication theory, the thickness of the gas layer is extremely small
compared with its lateral dimensions. Properly handled, this observation can be
used to eliminate from the equations the dependence upon one of the three space
variables. This possibility was exploited since long time by the famous hydro-
dynamicist Osborne Reynolds [12] to integrate the mass balance equation across
the layer and to use the linearized Navier—Stokes equation for momentum
balance to evaluate the quantities appearing as integrands. Fortunately,
Reynolds’s argument can be extended to rarefied gases; the only difference is
that the linearized Boltzmann equation must now be used to evaluate the aver-
aged velocity components in the mass balance equation.

From a very superficial consideration of the matter one might expect that the
main problem of lubrication theory is to predict the friction which results from a
given configuration of solid objects. However, a little more reflection reveals that
the real problem is quite different. Lubricating layers are usually found between
two solid bodies which are acted upon by forces (such as gravity) tending to push
them together. To carry this load, the gas layer must develop normal stresses,
largely dominated by pressure. Thus the first task of lubrication theory is to
predict the pressure distribution and from it the load-carrying capacity. Thus we
must relate the velocity components to the pressure gradients and to the motion
of the solid surfaces bounding the gas layer. Since the variations of thickness are
very slow, this result is obtained by solving highly idealized problems between
parallel plates, such as plane Couette and Poiseuille flows, which will be con-
sidered in Sect. 8. Thus these problems, far from being didactic exercises, play a
very important role in applications of enormous practical importance.

6. — The Linearized Boltzmann Equation and the BGK model

The solutions describing equilibria of the Boltzmann equation are the so-
called Maxwellians, i.e. distributions of the form

(6.1) M = py(2rRTo) > exp[ — |& — vo|*/(QRT))]

where py, 0o, T are parameters having the meaning of density, bulk velocity and
temperature in an equilibrium state. The vector vy is usually taken to be zero.



THE BOLTZMANN EQUATION: MATHEMATICS AND APPLICATIONS 303

We can look for solutions in the form

(6.2) f =M1+ h).
Then the Boltzmann equation takes on the form:
oh oh
(6.3) a+é-$=Lh+F(h,h)

where L is the linearized collision operator:

6.4) Lh = 2M~'QWMh, M)

and I"(k, k) the nonlinear part (assumed to be small compared to the linear one):
(6.5) I'(h,h) = M *Q(Mh, Mh).

Here Q(f, ¢) is the bilinear symmetric operator uniquely associated with Q( f,f).
The rigorous theory for solutions of the form (6.2) was given by S. Ukai (see Refs.
[7] and [11] for more details).

In many applications, the collision term in the Boltzmann equation is replaced
by the so-called BGK model (see Refs. [3] and [11] for more details):

(6.6) J(f) = o[ @) — f(O)]

where the collision frequency v depends on the local density p and the local
temperature T, whereas @ is the local Maxwellian:

(6.7) @ = p@rRT)**exp[ — | — v[*/2RT)]

having the same density, temperature and bulk velocity v. Notice that from the
viewpoint of nonlinearity the BGK model is worse than the Boltzmann equation,
but offer the advantage tat one can derive integral equations for p,v,T. The
linearized form reads:

68 Lok = l [ e s, + g [ e de.

€53 [(IEE 3 e e
+(ZRTO B 2)f<2RTO - 2>M(€*)h(€*)dé* —h]

and is extremely useful, as we shall see.

7. — The Modified Reynolds Equation

The starting point to obtain the rarefied version of the Reynolds equation for
lubrication is the mass balance equation, a consequence of the Boltzmann
equation. This equation is considerably simplified by the fact that the variations
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of density do not show up for slow motion in the steady case, which is the most
important in applications and we shall consider henceforth. Thus

ouw  ov ow

where the three velocity components are denoted by u, v, w.

Let us consider a layer of gas between two walls located at z =0 and
z = D(x,y); the lower wall moves in its own plane (see Fig. 1, where, for sim-
plicity, the z-direction has been suppressed). If we integrate Eq. (7.1) across the
layer, we obtain

D D
(7.2) 3 fuolz%—2 fvdz =0.
ox oy

0 0

Since the problem is linear and the pressure gradient is assumed to be con-
stant across the layer, each component u, v is proportional to the sum of the
velocities given by a Poiseuille flow with pressure gradient dp/dx, dp/dy
respectively and a Couette flow with the lower wall moving with velocity
components U and V. We refer to Fig. 1 where, for simplicity, the y-axis has

been suppressed.

U

Fig. 1 — Geometry of a slider bearing.

D
In the case of Couette flow the evaluation of the integral: F(Cl) = [ucdz is
0
eagsy, if the walls are assumed to be identical. In fact, in this situation the profile
. . . . S Uup . .
is antisymmetric with respect to the midpoint and F(CD =5 Similarly

D D
Fg) = [vedz = VT The behavior of the flow rate for plane Poiseuille flow is
0
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much more complicated and is given by

D

1 op
F¥ = dz = ————— —D?*Q(5);
P Of wpaE = JRRT, 0z Q)
(7.3) B
1 op
FO — de=———— D205
P Of”P ¢ T T ov2RT, 0y Q)

where ¢ is the ratio between the distance and the (unperturbed) mean free
path.

5= PP
- w/2RT

and Q(J) is the nondimensional flow rate which can be obtained by solving the
problem of plane Poiseuille flow. Thus the modified Reynolds equation reads as
follows

0 190 peois)| 4 2 (22 ey — po/am; VD, VD

Given D = D(x,y), this is an (elliptic) partial differential equation for p
which must be solved for an assigned value of p (usually constant) at the
boundary.

We have assumed so far that the linearization assumption holds everywhere.
It may turn out, however, that the pressure undergoes a significant change. In
this case, one can still utilize the linearized Boltzmann equation to compute the
local flow rate, but one should use the local pressure p throughout, rather than
the unperturbed pressure pg. The modified Reynolds equation then reads as
follows

2 2
a5 2 {D Q) a_P} 9 {D Q) B_P} :% [Ua(pD) (D)

+V—7.
Ox [\2RT Ox| 0y |[\2RT 0Oy ox oy
In the continuum limit we have
pD
W2RT

=2

Q) =

and Eq. (7.5) becomes

(7.6)

2 [0 00] 0 [pD0] _ [0 D)

Ox| u Ox| Oy| u oy ox v oy |

which is essentially the equation originally given by Reynolds [12].
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8. — The Reynolds Equation and the Poiseuille-Couette Problem

The micromachinery fabrication techniques have become more and more
mature in the last ten years. In particular, the micro-electro-mechanical
systems (MEMS) developed rapidly and found many applications in micro-
electronics, medicine, biology, optics, aerospace and other high technology
fields. Both experimental and computational efforts have been undertaken
to understand the specific features of the microscale flows. A basic con-
stituent of the MEMS devices is the microchannel, the region between two
parallel plates that can reveal many specific features of the low speed in-
ternal flows in microdevices. Typically the first devices were integrated
micro-channel/pressure sensor systems. The Knudsen number at the outlet
of the channel at room conditions is 0.05 for nitrogen, and even higher for
helium; hence the flow is surely beyond the slip flow regime. The pressure
distribution along the channel and the flow rates across these channels are
found to deviate from the linear distribution of the Poiseuille flow. Monte
Carlo methods were used to simulate microchannel flows but they meet with
the excessively high demands to the storage and computation time. The
gradual regulation of the inlet and outlet boundary conditions of the channel
seems to be tremendously difficult for DSMC in solving the long channel
flows. In fact the typical DSMC simulation of the micro channel flow is
limited to high speeds. Recently, the so called information preservation (IP)
method was proposed [13, 14]; it uses a conservative scheme and a super-
relaxation technique, with results in excellent agreement with experimental
data.

However, the kinetic theory of MEMS does not require heavy computational
tools. The generalized Reynolds equation can be used to calculate the gas film
lubrication problem provided that the flow rate of Poiseuille flow is calculated
from the linearized Boltzmann equation.

Following Ref. 15, let us consider again two plates separated by a distance D
and a gas flowing parallel to them, in the « direction, due to a pressure gradient.
The lower boundary (z = —D/2) moves to the right with velocity U, while the
upper boundary (z = D/2) is fixed. Both boundaries are held at a constant
temperature T,. However, at variance with our previous discussions, we assume
the gas-surface interaction to be different at the wall.

As usual, if the pressure gradient and the velocity U are taken to be small, it
can be assumed that the Boltzmann equation can be linearized about a
Maxwellian. If we assumes the linearized BGK model for the collision operator,
the Boltzmann equation reads:

1 oZ 1

8.1 gk +<

1

n_if e_C§1Z(z7czl)dczl—Z(z7C)

9z ¢
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where by definition

400 400

260 =2 [ [ e bGene e ded,
polop_10p
T pox pox

with p and p being the gas pressure and density, respectively, and £ is the mean
free path. Consequently, the bulk velocity of the gas is given by:

+o00

8.2) ) =nt f e_cle(z,czl)dcz1

—00

From Eq. (8.1) we obtain the integral equation:

83) 20 =exp ( (e + 5 sem C)/(C@)Z(gsgn 5.)

+ [ exp("@ t')[q(t)—ké/m/@z)dt
7§sgn§

with the values at the boundary, Z (—gsgné, C), depending on the model of

boundary condition chosen. In the following, we will consider the Maxwell
boundary conditions and consider two walls having different physical properties,
i.e. with two accommodation coefficients (aj,ag). In this case, the boundary
conditions can be written as:

Z*D/2,0) =1 —a)Z (D/2,-0)
Z(-D/2,0)=aU+Q—a)Z (—D/2,-0)
where U is expressed in units of (2RTO)1/2; Z=(—D/2,0), Z=(D/2,0) are the
distribution functions of the molecules impinging upon the walls; similarly,
ZT(—=D/2,0), Zt(D/2,{) are the distribution functions of the molecules re-

emerging from the same walls. D
Once the function at the boundary, Z (— Esgn{, C), has been evaluated fol-

lowing the analytical procedure reported in Refs. 7 and 5, the substitution of the
integral formula (8.3) in the definition (8.2) of ¢(z) gives the following expression
for the bulk velocity of the gas:

8.4) 0 = SRy, )] + Uy 0)

Eq. (8.4) shows that the gas velocity is induced by the superposition of two
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distinct effects. The gas moves by an imposed pressure gradient (Poiseuille flow)
and by the shear driven flow due to the motion of the bottom surface (Couette
flow). The non-dimensional functions w,,(«) and . (u), giving the Poiseuille and
Couette contributions, respectively, satisfy the following integral equations:

/2

(8.5) t//p(u):1+% [ dw,@){a—anS 16 —u—w)+1 - S 16 +u+w)

—5/2
+(1 = a)d — a2)[S-1(26 — u + w) +S_1(26 + u — w)] + T—1(Ju — w|) }

8.6) w,(u) = % [T5(8/2+1) + (1 —a1)8,(3/20 — ) + (1 — a3 )(1 — a2)S,(5/25 + )]
. 5/2
+ [ dwv {1 = a)S 16— w—w)+ 1~ a)S 1@ +u+w)
& —3/2

+ (1 — )1 — a2)[S 126 — u +w) + 8126 +u — w)] + T_1(fu — w])}

where T),(x) is the Abramowitz function defined by

+o00
T, (x) = f t"exp(— — x/t) dt
0

S,(x) is a generalized Abramowitz function defined by

+00

thexp(—t2 —a/t
Sn(x75a alvaZ) = f p( /)
0

1-(1—0a)A—az)exp(—26/1) dt

and the following non-dimensional variables have been introduced:
o=D/t, w=t/t, u=z/tL.

Using Eq. (8.4), the flow rate (per unit time through unit thickness) defined
by:
D/2
8.7 F=p f () dz
-D/2

can be expressed as the sum of the Poiseuille flow (#,) and the Couette flow (F;)
as follows:

ap

. F=F,+F,=-2%
(8.8) p+Fe o5

UD
D?Qy(0,01,02) + 5= Qul6, a1, a2)
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where

1 1
Qp(d,a1,a2) = 5t f&/pr(u)du
5
~3/2
5 8/2
Quo,a1,02) == L v () du

are the non-dimensional volume flow rates.

9. — The Generalized Reynolds equation for Unequal Walls

One can easily extend the generalized Reynolds equation to the case of un-
equal walls:
d

9.1 in

d UD

_pDzQp(57 a17a2) 7/)—QC(57 alaaz) = 0

dx 2
For the purpose of a direct comparison with the classical Reynolds equation (7.6),
let us introduce the Poiseuille relative flow rate:

Qp (57 at, a2)
Qcon

where Qc.n = 0/6. Furthermore, the rarefaction parameter J can be expressed
as: 0 = 0,PH, where J, is the characteristic inverse Knudsen number defined by
the minimum film thickness, D,, and the ambient pressure p, as:

5 — pODO
’ " uv2RT,
Finally, assuming that the heat generation in the gas is very small, so that an

isothermal process can be considered, the non-dimensional generalized Reynolds
equation reads:

a4
X

9.2) Q,(0,a1,02) =

9.3) (Qp(aopH, a1,02) PH® 7o — Qu(0,PH., al,ag)APH> = 0.

Here the bearing number 4 is defined as

6uUl
A=
PoD?

9.4)

where u is the viscosity coefficient. If the two walls are identical (a; = ag = a),
the Couette flow rate is independent of the Knudsen number regardless of the
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value of the accommodation coefficient a and Eq. (9.3) reduces to the generalized
Reynolds equation introduced by Fukui and Kaneko [16, 17].

Writing the non-dimensional film thickness H in terms of the longitudinal
coordinate X,

9.5) H:%—%(ﬁ—l—l)X
such that
L)
aX L\D, dH
Eq. (9.3) can be immediately integrated to give:
9.6) é (g—i - 1) Q,(0,PH, a1, az) PH? g_fl +Q.(6,PH, a1, az) APH = K;

where K is a constant of integration. The substitution of
9.7 PH =
in Eq. (9.6) gives:

9.8) a0 1Q0nl m, )AL — Ky

dH ~H  |/L(D,/D, - DQ,0.(, a1, az)H(

Eq. (9.8) can be solved numerically using relaxation methods. To apply this
numerical scheme, the differential equations have to be replaced by finite-dif-
ference equations on a point mesh. The solution of the resulting set of equations
is determined by starting with a guess and improving it iteratively using
Newton’s method. The Poiseuille flow rate coefficient @,(d,a1,a2) has been
evaluated by means of the numerical method described in Ref. 18 and the var-
iational technique for the integrodifferential form of the Boltzmann equation

oooooo

oooooo

aaaaaa

Fig. 2 — Pressure profile for J, = 0.5. The line styles indicate a = 0.8 (solid), a = 0.3
(dashed), and a = 0.1 (dot dashed). The bearing number A is 10 (left) and 50 (right)
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based on the BGK model. In order to compute the Couette flow rate Q.(d, a1, az)
one can solve numerically Eq. (8.6), extending a finite difference technique first
introduced by Cercignani and Daneri [19].

Once {(H) has been numerically evaluated on a grid that spans the domain of
interest, Eqgs. (9.5) and (9.7) give the pressure field in the gas film as a function of
X. Furthermore, a prediction of the vertical force acting on the upper surface of
the slider bearing, crucial for practical design, may be obtained from the load
carrying capacity W, defined as

I
9.9) W= Of L/KP 1) dX

In order to investigate the effects of the rarefaction parameter J, and the
bearing number /1 on the basic lubrication characteristics (pressure distribution
and load carrying capacity), the parameters describing the gas film geometric
configuration were fixed at the following values: D;/D, = 2, L /D, = 100. Figure
2 shows the pressure field as a function of the longitudinal coordinate X at three
different bearing numbers: 4 =10, 50, 200. To assess the influence of the
boundary conditions, the profiles corresponding to different accommodation
coefficients (for bounding walls supposed physically identical) are drawn in Figs.
2 and 3.

T e —

1.42 o
1.36 i
1.3 F i

o 124 i

1.18 - e .

1.06 - - [ \

(o) ‘0.1 ‘ 0.2 ‘ 0.3 ‘ 0.4 ‘ 0.5 ‘ 0.6 ‘ 0.7 ‘ 0.8 ‘ 0.9 ‘ \1
X
Fig. 3 -- Pressure profile for J, = 0.5. The line styles indicate a = 0.8 (solid), a = 0.3
(dashed), and a = 0.1 (dot dashed). The bearing number A is 200.
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Fig. 4 — Pressure profile for J, = 0.5. The line styles indicate a; = 0.5 a = 0.8 (solid),
a1 = 0.5 ag = 0.3 (dashed), and a; = 0.5 ag = 0.1 (dot dashed). The bearing number A is 10
(left) and 50 (right).

Looking at the pictures, one sees that the pressure distribution in the gas film
increases with increasing 4. Furthermore, at fixed bearing number, the pressure
field reduces by increasing the fraction of gas molecules specularly reflected by
the walls. Fig. 3 reports the pressure profiles for the same parameters as in Fig.
2, except that now the two bounding plates are allowed to re-emit the impinging
gas molecules differently, so that two accommodation coefficients can be defined.
We keep the accommodation coefficient of the upper wall (a;) fixed and vary the
other one (ap).

1.48 — 77— — 77—

1.42 -

1.36 -

o 1.24 -

1.18 = _

1.12 | e N .

1.06 s e \

(0] 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 1
X

Fig. 5. — Pressure profile for d, = 0.5. The line styles indicate a; = 0.5 a2 = 0.8 (solid),
a1 = 0.5 ag = 0.3 (dashed),and a; = 0.5 az = 0.1 (dot dashed). The bearing number A is 200.
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15 2

0 01 02 03 04 05 06 07 08 08 1 6 01 02 03 04 05 06 07 08 08 1
X X

Fig. 6. — Pressure profile versus X. Comparison between the results obtained with the
modified Reynolds equation (solid line) and DSMC data ! (open circles). The parameters
are: 9, = 0.7, 4 = 61.6, a = 1 (left); 6, = 0.2, 4 = 1264, a = 1 (right).

A comparison with Fig. 2 shows that, for every 4, the pressure distribution
significantly depends on ay and only weakly on ;. This picture remains true at
different Knudsen numbers progressing from free molecular, through transi-
tional, to continuum regions (see Fig. 4).

It is worth noting that, when A increases, the Couette contribution to the
lubrication flow rate becomes dominant compared with the Poiseuille flow.
Therefore, if the two walls are identical, the influence of the Knudsen number on

1368 ——m——r————F———1+—— 11—

1.25 -

o 1.15

1.05

0.95 S T S S Sy S S S SO BTSB!
[} 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1

X

Fig. 7. — Pressure profile versus X. Comparison between the results obtained with the
modified Reynolds equation (solid line)and DSMC data' (open circles). The parameters
are: d, = 0.7, 4 =61.6, a = 0.7.
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the load carrying capacity decreases as A increases, since @), is independent of ¢
and a. On the contrary, if the two walls have a different physical structure the
load carrying capacity shows a dependence on both the Knudsen number and the
accommodation coefficients a;, ag. For the validation of the code, the results
obtained with the modified Reynolds equation have been compared with the
results from DSMC (Direct Simulation Monte Carlo) simulations published by
Alexander et al. [20] in the case of Maxwell’s boundary conditions on two phy-
sically identical walls (see Fig. 5).
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