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Hypocoercive Diffusion Operators

CEDRIC VILLANI (¥)

Sunto. — In molti problemi provenienti dalla fisica matematica, l'associazione di un
operatore di diffusione degenere con un operatore conservativo puo povtare a dis-
sipazione i tutte le variabili e a convergenza verso lequilibrio. Si puo tracciare
un’analogia con il fenomeno ben studiato di ipoellitticita nella teoria della regolarita,
ed effettivamente entrambi 1 fenomeni sono stati studiati insieme. Ora una teoria
distinta di “ipocoercivita” sta iniziando ad emergere con alcuni risultati gia sor-
prendenti e numerost problemi aperti pieni di sfida. Questo testo (una versione ab-
breviata di quello che ho preparato per il Congresso Internazionale dei Matematict)
ne analizza alcuni.

Summary. — In many problems coming from mathematical physics, the association of a
degenerate diffusion operator with a conservative operator may lead to dissipation in
all variables and convergence to equilibrium. One can draw an analogy with the well-
studied phenomenon of hypoellipticity in reqularity theory, and actually both phe-
nomena have been studied together. Now a distinctive theory of “hypocoercivity” is
starting to emerge, with already some striking results, and several challenging open
problems. This text (an abbreviated version of the one which I prepared for the
International Congress of Mathematicians) will review some of them.

Introduction

During the past decade, considerable progress has been achieved in the
qualitative study of diffusion equations in large time, be it for linear or nonlinear
models. Quantitative functional methods have become especially popular. Here
are some of the keywords in the field: spectral gap (Poincaré) inequalities,
logarithmic Sobolev inequalities, analysis of entropy production, gradient flows,
rescalings. Most of the time, estimates on the rate of convergence are established
in the end by means of some Gronwall-type inequality dE'/dt < —®(E), where £
is a Lyapunov functional for the system. Among a large literature, I shall only
quote some of my own works: entropy production estimates for the spatially
homogeneous Boltzmann equation, in collaboration with Giuseppe Toscani [25],

(*) Conferenza tenuta a Torino il 7 luglio 2006 in occasione del “Joint Meeting S.I.M.A.I. -
S.M.A.L. - SM.F. - U.M.IL sotto gli auspici dell’E.M.S. Mathematics and its Applications”.
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[26], [28]; and for certain nonlinear diffusion equations with a convex mean-field
interaction, in collaboration with José Antonio Carrillo and Robert McCann [2].
While these subjects are still very active, in this text I shall focus on a newer
direction of research which has emerged only a few years ago, and can be loosely
described as “the role of the non-dissipative part in the dissipation process”.

Indeed, it happens not so rarely that the dissipative properties of an equation
are strongly influenced by some of the conservative terms in this equation. In the
context of diffusion equations, the interaction between dissipative and con-
servative terms is also well-known, since it is at the basis of the phenomenon of
hypoellipticity. To make the discussion a bit more precise, let me recall a par-
ticularly simple theorem of hypoelliptic regularization, which is a direct con-
sequence of Lars Hormander’s celebrated regularity theorem [20]. Let
Ay, ..., Ay and B be C™ vector fields on RY, identified with derivation operators,
and let L = — ZAJZ- + B. If the rank of (A1, ...,Ay) is strictly less than N, then
the operator L is not elliptic, and there is no a priori reason why the semigroup
e~ would be regularizing in all variables. But if — 3" [4;, BF — >_ A% s elliptic,
where [4;, B] is the Lie bracket between A; and B, then e~ 'L is regularizing in all
variables, and the operator L is said to be hypoelliptic. (This is not the classical
definition of hypoellipticity, but it will do for the purpose of this presentation.)
We see here how the “nondissipative” first-order operator B interacts with the
“dissipative part” of L, or more precisely the derivation operators A;, to produce
the missing directions of regularization. Possibly the most important instance of
application is to the operator L = —4, +v - V,, where (x,v) € R" x R"; in that
case A;j=0/0v;, B=v-V,, [A;,B]=0/0x;. The corresponding evolution
equation 0;f + Lf = 0 is degenerate, but still presents some of the typical fea-
tures of a parabolic equation.

Hypoelliptic regularity has been the object of hundreds of works for the past
four decades. But what was understood only very recently is that quite similar
phenomena arise in the study of rates of convergence to equilibrium. To describe
this, I shall use the word “hypocoercivity”, which was suggested to me by Thierry
Gallay. A typical hypocoercivity theorem will give sufficient conditions on an
operator L so that e~ will converge to equilibrium at a certain rate, even though
L is not “coercive”, in the sense that the kernel of its dissipative part is much
larger than the set of equilibria.

Hypoellipticity and hypocoercivity are often found together, and have been
actually studied together, by refined hypoelliptic techniques [6], [7], [15], [16],
[19], and sometimes by probabilistic methods [8], [22], [23]. However, these two
phenomena are distinct: Each of them can occur without the other; and the
structures which underlie them are not exactly the same. This motivates the
development of a separate theory of hypocoercivity. In the sequel, I shall present
some of the first results in this direction. For a much more detailed presentation,
the reader can refer to [31].
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1. — Motivations

In this section I shall deseribe some concrete examples which motivate the
study of hypocoercivity. All of them come from mathematical physics, and none
of them is academic. Of course the list is far from exhaustive.

The kinetic Fokker-Planck equation

In stochastic analysis, Fokker-Planck equations are often encountered as
equations satisfied by the time-dependent laws of solutions of first-order sto-
chastic differential equations. In “real life” however, equations of motion are not
first-order, but second-order. Consider for instance a particle in R", following
Newton’s equations with a potential force —VV, a white noise random forcing,
and a linear friction with coefficient 0 = 1: Then its position X; at time ¢ satisfies
the second-order stochastic differential equation

X, dB; dX;

=g = V&) + V2t -k
where B; is a standard Brownian motion. (Of course, the coefficient v/2 is
just a convenient normalization, and the writing is formal in the sense that B,
is not differentiable.) To write the associated partial differential equation,
define fi(x,v) as the density of the law of (X;,X;) in R" x R™. Then f is a
solution of

of

1) ot +v-Vof =VV(@) - Vyf = 4,f + V- (fv),
where 4, and V,- respectively stand for the Laplace and divergence opera-
tors in velocity space. Equation (1) is kinetic in the sense that it involves not
only the position, but also the velocity variable; it is one of the fundamental
equations in gas dynamics. It admits many nonlinear variants, among which
the Vlasov-Poisson-Fokker-Planck equation, which is accepted as one of the
fundamental equations of stellar dynamics.

When V is quadratic, the fundamental solution of (1) is explicit and Gaussian.
Its examination shows that there is relaxation to a Gaussian equilibrium (in « and
vvariables) as t — oo, and this convergence is exponentially fast, with an explicit
rate. Here we see a perfect illustration of the hypocoercivity phenomenon: The
differential operator on the left-hand side of (1) is conservative (it describes the
trajectories of a classical dynamical system in R" x R® with Hamiltonian
Vix) + |v|2 /2), and the right-hand side alone is diffusive degenerate (it only acts
on the velocity variable v, so cannot cause any relaxation to equilibrium with
respect to the x dependence); however, their combination leads to an exponential
convergence to equilibrium.
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For more general potentials, there is still a global equilibrium:
e [V(WH‘#]
7z
where Z is a normalizing constant. Then it is an obviously natural question
whether exponential convergence to f,, holds true under adequate assumptions
on the potential V, which go beyond the “trivial” quadratic case. Shockingly
enough, the first such results were obtained only around 2002, by Frédéric
Hérau and Francis Nier [19]. They used a quite sophisticated approach taking
roots in Joseph Kohn’s approach to hypoellipticity. Since then, their method has
been very much simplified, as I shall describe later.

It should be noted that in most works on the subject, one studies the Fokker-

Planck equation after making the change of unknown % = f /£, so the resulting
equation reads

Joolae,v) =

(2) %ﬁ+v-vxh—VV(ac)-Vvh:Avh—wVvh.

This has the advantage that the operator appearing on the right-hand side is self-
adjoint in the Hilbert space L?(f., dxdv), so (2) might lend itself to a spectral
treatment. Of course, formally, equations (1) and (2) are equivalent; but in
practise they are studied in different functional spaces. For simplicity, I shall not
say more on this important issue.

Oscillator chains

Even though Fourier’s law of conduction of heat is one of the oldest partial
differential equations, it is still extremely far from a rigorous theoretical un-
derstanding. Many models of statistical physics have been proposed to describe
heat conduction. Here is one of them, described in [8]. Each atom in a solid body
is labelled (for the sake of this discussion, we may assume that the dimension
is 1, so atoms are labelled 0,1, ..., N), and the unknowns are the displacements
X0 ..., X" of the atoms with respect to their respective equilibrium positions.
Each atom is bound to its equilibrium position with a “pinning potential” V, and it
also interacts with its two neighbors by an interaction potential W, assumed to be
symmetric (W(z) = W( — z)). So the equation for X" is just

2xk
(3) d r t; = —VV(&XF) - VW(&XF — XF1) - YW(XF — XF),

Of course these equations do not apply to the atoms that are at the extreme left
(k =0) and the extreme right (k = N) in the chain, since they have only one
neighbor. But these extremal atoms are also shaken by some external bath, with
a temperature of agitation 7 on the left, and 7™ on the right. The corre-
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sponding equations for, say, k = 0, can be written

2v0

d digt — UV — VW — X1+,
4)

%_ 2 (0) () _ngf) — (0y2 d_Xz?

o = AOVRTO ol — 04 GOPe k.

Here ¥ is a coefficient describing the strength of the coupling between the
particle and the heat bath.

Again, the law of this system is described by a linear partial differential
equation in the variables ¢, X%, ... XV X° ... XN. It is very similar to the
kinetic Fokker-Planck equation, except that it is much more degenerate, since
the diffusion only acts on the variables ¢ and r.

There are now two difficult problems which naturally arise: (i) Show that the
solution f;(4,r,2°, ..., 2N, 20, ..., vV) approaches some stationary distribution as
t — oo; (i) Study the properties of this stationary distribution, and in particular
the associated energy flux. (In this case, it is better to say “stationary dis-
tribution” rather than “equilibrium”, precisely because the temperatures are not
necessarily equal.) In particular, if 7 > 7™ in the asymptotic regime N — oo,
is it true that energy flows from the left to the right, and what is the relation
between the average flux and the difference of temperatures!?

When T® = T, the equilibrium distribution is easy to write down explicitly,
and problem (ii) is trivially solved. But as soon as these temperatures are dif-
ferent, the stationary solution is not explicit - except in the case when V and W
are quadratic, but then the results are physically irrelevant!! It is conjectured
that some anharmonicity is necessary to get the Fourier law (ironically enough,
the heat equation, although one of the most basic linear models in science, needs
some dose of microscopic nonlinearity to be explained). Then problem (ii) be-
comes incredibly difficult.

Even when the two temperatures are equal, problem (i) appears to be quite
difficult. It is actually a typical hypocoercive situation: The diffusion on ¢ and »
should lead in the end to a relaxation to equilibrium in all variables.

Exponential convergence to the stationary distribution has been proved re-
cently by several authors [8], [7], even for the case when T # T®, under var-
ious assumptions on the potentials; but the dependence of the estimates upon the
number of atoms is just terrible.

The Boltzmann equation

The Boltzmann equation is one of the basic partial differential equations in
statistical mechanies. It is a kinetic model for the evolution of a rarefied gas of
particles interacting via binary collisions. Historically, it has preceded the
Fokker-Planck equation; but the analytical problems that it raises are con-
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siderably more acute. A mathematically-oriented presentation of the Boltzmann
equation can be found in my long review paper [27]. The classical Boltzmann
equation in n dimensions of space can be written

of

(5) TV Vel =QUF S, we, veR,

where 2, is a bounded connected open spatial domain, and @ is the Boltzmann
collision operator, defined by

Q(f.f) =f fB(v — v, 0) [ [, V) f@,v) — fle,v) f(x,v.)] dodv..

R" §n-1

Here ¢ is a variable unit vector in R", B(v — v,, o) is a collision kernel depending
on the particular form of the interaction (for instance B(v — v,,0) = |[v — v.]), and
the transform (v,v,) — (¥, v) is computed by the rules of elastic collision:

v,iv—&—v* |v—v*|(7 v,iv+v*7|v—v*|0
2 2 ’ ) 2

This equation should of course be supplemented with boundary conditions. To
simplify things, one can assume that @, is just the n-dimensional torus 1"
(periodic boundary conditions); another common choice is specular reflexion in a
bounded open set.

In spite of hundreds of papers, the mathematical theory of the Boltzmann
equation is far from complete; in particular there is still no theory of classical
solutions in the large. However, strong regularity results have been obtained in a
close-to-equilibrium regime. A complete theory can also be put together as long
as there is a pointwise control of certain hydrodynamic fields (density in physical
space, mean velocity, temperature, pressure tensor).

It was Boltzmann’s beautiful observation that the H functional (negative of
the entropy),

H(f):fflogfdacdv

is nonincreasing with time along solutions of the Boltzmann equation. Then there
is a unique large-time equilibrium, which takes the form of a Maxwellian
(Gaussian) distribution:

Fclt,0) e
o, V) =p ———5,
p (2 7'CT)TL/2
where p > 0 (total mass), « € R" (total mean momentum) and T > 0 (mean
temperature) are constants. This equilibrium is obtained by maximizing the

entropy given the conservation laws.
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The problem of convergence to equilibrium for the Boltzmann equation is
famous for historical reasons (it triggered a hot controversy in the nineteenth
century) and also for theoretical reasons (as a manifestation of irreversibility in
the statistical description of a reversible mechanical system; and as the justifi-
cation of the law of maximum entropy on a basic model). See my lecture
notes [29] for an overview of this question.

Of course the complexity of the Boltzmann equation, and its nonlinearity are
major difficulties in the study. But behind that, we can recognize once again a
hypocoercive situation: The dissipation (collision) operator @ on the right-hand
side of (5) is very degenerate since is only acts on the velocity dependence, and it
is only its association with the conservative transport operator v - V,, on the left-
hand side which can lead to convergence to equilibrium.

Stability of Oseen’s vortices

The last example in this gallery comes from hydrodynamics and was brought
to my attention by Thierry Gallay. It is a well-documented fact in turbulence
theory that the vorticity of a two-dimensional incompressible flow tends to
coalesce and form large vortices. Thierry Gallay and Eugene Wayne [11] have
studied this phenomenon rigorously for a two-dimensional incompressible vis-
cous fluid in the whole space: If w = w;(x) is the vorticity, the equation is just

8_60 + BS[w] - Vo = 4w,

ot
where BS[w] is the velocity field obtained from the vorticity w via the Biot-Savart
law:

o 1
f (Z Z;)F w(y) dy,

and v* is obtained from v by rotation of angle /2.

If wy € LI(RZ), then w; converges to 0 as t — oo, due to viscous dissipation.
But a refined analysis shows that w; is asymptotically close to an explicit self-
similar Gaussian solution, which physically corresponds to a unique large vortex,
called Oseen’s vortex. In fact, in suitably rescaled variables, the vorticity does
converge to a stationary Gaussian distribution.

The linear stability analysis of this phenomenon reduces to the spectral
analysis of the operator S + aB in LZ(Rz), where

BS[w](@) = %
]

RZ |

Sw = —Aw+@w—9
(6) Bl 16 2’

Bow = BS[G]- Vo + 2BS[GY2w] - VG/2.
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Here G is a Gaussian distribution: G(x) = e lel*/4 /(dn); and «a is the value of the
“circulation Reynolds number”, which in the present set of conventions is just
f .

The spectral study of S + aB turns out to be quite tricky. In the hope of
getting a better understanding, one can decompose w in Fourier series:
0=y w,(1e™, where (v, 0) are standard polar coordinates in R2. For each n,

nez .
the operators S and B can be restricted to the vector space generated by e,
and can be seen as just operators on a function w(r):

2
(Su)r) =~ — (T N 1) P (1 B "_2> o
2 7 7

Brw)(r) = 11 (pw — g€2y).

Here g(r) = e "/*/4z, p(r) = (1 — e~"*/*)/2m2, and Q,(r) solves the differential
equation

2
0+l e=1n
P 2

The regime |a| — oo is of physical interest and has already been the object of
numerical investigations by physicists. There are two families of eigenvalues
which are imposed by symmetry reasons; but apart from that, it seems that all
eigenvalues converge to infinity as |a| — oo, and for some of them the precise
asymptotic rate of divergence 0(|a|1/ %) has been established by numerical evi-
dence. If that is correct, this means that the “perturbation” of S by aB is strong
enough to send most eigenvalues to infinity as |a| — oo. This is particularly
striking when one realizes that S is symmetric in LZ(RZ), while B is antisym-
metrie. Obviously, this is again a manifestation of a hypocoercive phenomenon.

Let us simplify things just a bit by throwing away the nonlocal term g2, in
the expression of B,. After a few manipulations, the problem reduces to the
following

MoDEL PROBLEM 1.1. — Identify sufficient conditions on f: R — R, so that
the real parts of the eigenvalues of
L, : w»—>(—8§w+x2w—w)+iafw

in L2(R) go to infinity as |a| — oo, and estimate this rate.
So far this problem has been solved only partially, by Isabelle Gallagher and
Thierry Gallay; I shall describe their results later on.

2. — A dynamical approach

Together with Laurent Desvillettes [3], [5], I have developed a method to
study quite general hypocoercive situations. The method ultimately relies on the
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analysis of a system of coupled differential inequalities of first and second order
(instead of just one first-order differential inequality as in Gronwall’s lemma).
The method was devised with the aim of proving convergence to equilibrium for
uniformly smooth solutions of the Boltzmann equation. The main result reads as
follows:

THEOREM 2.1. — Let (fi)i>0 be a smooth solution of the Boltzmann equa-
tion (5), such that all the derivatives of f are uniformly bounded, and all the
moments of f are bounded, uniformly in time. Further assume that f satisfies a
pointwise lower bound of the form fi(x,v) > Koe 2", Then, under adequate
boundary conditions, f; converges to global equilibrium ast — oo, at least as fast
as O@t™) for all k > 0.

Some information about the implementation of this program in the context of
the Boltzmann equation can be found in the original research paper [5], or, in a
lighter form, in the lecture notes [30], [29]. Before being used on the Boltzmann
equation, the dynamical approach had been tried on the Fokker-Planck equa-
tion [3] and on some other linear models [1], [9]. It is quite robust and adapted to
equations with very little structure.

One of its appealing features is that it seems to provide a good physical in-
tuition of what is going on: The system approaches hydrodynamical state under
the influence of collisions, then it is driven out of hydrodynamical state by the
influence of the transport, etc. Numerical simulations have corroborated this
qualitative analysis surprisingly well. In the diagram below, computed numeri-
cally by Francis Filbet, one sees very clearly that the solution of the Boltzmann
equation oscillates between states where it is close to hydrodynamical, and states
where it is close to homogeneous. In particular, contrary to a widespread belief,
the approach to hydrodynamical regime is not faster than the approach to global
equilibrium. (All of this is valid only on scales of time on which the Knudsen
number is of order 1.)

From the point of view of physics, the discovery of these oscillations may be one
of the most noticeable outcomes of the program of hypocoercivity applied to the
Boltzmann equation. They are not easy to observe, and have even been used as a
“benchmark” to test the accuracy of certain numerical schemes (see e.g. [10]).

However, the dynamical method suffers from the complexity of its practical
application, and its heavy computational cost. In the next section, I shall describe
another method which may be less appealing from the physical point of view, and
requires a bit more structure, but has the advantage to be much lighter.

Also, I emphasize that Theorem 2.1 requires strong regularity and decay
estimates on the solutions. As discussed in [5], all these estimates can be proven
in the close-to-equilibrium regime, but remain a major open problem for solu-
tions in the large. Even in a close-to-equilibrium regime, decay estimates based
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Fig. 1. — The upper curve is the H functional as a function of time, in semi-log plot; the

lower curve is the purely kinetic part of the H functional. When the two curves are far

away, the distribution is almost in hydrodynamical state; when they are very close, it is
almost homogeneous.

on a linearization method are quite hard to obtain, and were not available at the
time when [5] was published; since then this gap has been filled in a series of
important works by Yan Guo and Robert Strain [13], [14].

3. — A functional approach

Inthe previous method the resolution of the main degeneracy problem was done
via the time-differentiation of certain (relatively) simple functionals. Now the idea
is to put as much as possible of the difficulty in a careful choice of the functional; and
more precisely to add “correction terms” which are negligible in size, but contribute
in an important way to the time-derivative of the functional. This will be more easily
explained on the example of the Fokker-Planck equation, in the form (2).

Suppose you want to get a Gronwall inequality for some well-chosen func-
tional, applied to the Fokker-Planck equation. First try the L? norm. With the
notation u(dx dv) = f,.(x,v) dx dv, and omitting once again the dependence upon
time, one has

%fhzd,uz —f|vvh|2dﬂ.

Since the derivatives in the right-hand side involve only the velocity variables,
there is no way to dominate the integral in the left-hand side by the right-hand
side (choose & = h(x), then the right-hand side vanishes).
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So go to a higher order norm, involving gradients of k. After a bit of work,
under suitable assumptions on V, one can find constants a, ¢, K > 0 such that

d 2 2 2
(7) %(fh dutaf (VP du+c[ [V, dﬂ)
< —K<f|vvh2d,u + [ 199, du +f|VvVvh|2du).

Again, the right-hand side is not sufficient to control the expression in brackets
on the left-hand side. So still nothing!

But now correct the functional on the left-hand side by adding an innocent-
looking term 2b [V, h - V, hdu. If b < \/ac, this term does not play any notice-
able role in the value of the functional, since

ZbIVthvhd,u

<1-9) [afmmz dy+ cf|v1,h|2dﬂ]

for some positive constant 6. However, if a, b and c are properly chosen, then we
have a differential inequality which is much better than (7):

d 2 2 2
8) %O-h du+af|vxh| dﬂ+2bfvxh~vvhdﬂ+cf|vvh| dﬂ>
< K<f|vxh|2d,u + [ 1o e+ [ 19,9, 0 dp +f|vvvvh|2dﬂ>.

Now it very easy to close this differential inequality: It suffices that u satisfies
a Poincaré inequality (in the x and v variables).

The algebraic core

I started to work on this approach while struggling to understand the results of
Frédéric Hérau and Francis Nier [19], without resorting to the technical hy-
poelliptic machinery used in their work. After deciding that there should be an
elementary approach based onintegration by parts and chain rule, I was still flooded
by the complex calculations. Then I decided that there should be an even simpler
approach with no analysis at all. After going to an abstract formulation of the pro-
blem, I found out that there was indeed an extremely simple “algebraic core” which
can be presented as follows. Take two operators A and B on a Hilbert space (in the
present case A would be the vector-valued differential operator V,,, while B would be
v-V, — VV(x) - V,),with B* = —B. Then, at least formally, the time-derivative of

(Ah,[A, B1h)
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along the influence of B can be written as
(ABh,[A,Blh) + (Ah,[A, B1Bh).

Pretend that B commutes with [A, B]; then the previous expression is
(ABh,[A,Blh) + (Ah,B[A, B]h),

and since B* = —B, this can be rewritten as
9) (ABI,[A,Blh) — (BAh,[A, BIk) = ([A, Blh,[A, BIh).

In the example of the Fokker-Planck equation, [A, B] = V, so (Ah,[A,Blh) =
[V, h -V, hdu, and the right-hand side of (9) is the desired term in ||V, &%

The advantage to input terms with “mixed derivatives” such as [V, h -V, h
had been actually noted before in studies of global in time propagation of the
smoothness for kinetic equations, most notably by Denis Talay [24] and Yan
Guo [12]. The simple algebraic core presented above explains why this trick also
applies to problems of convergence to equilibrium.

The rest of this section will be devoted to a presentation of some results which
I have obtained by pushing further this approach [31]. There are other works in
this direction by Clément Mouhot and Lukas Neumann [21], and Frédéric
Hérau [18], [17]; all of them based on quite similar tools.

The basic theorem
Two important features of the next theorem are that

— it applies to a general abstract framework: H is a Hilbert space (think of H
as L2(u), where y is the equilibrium measure); and V another Hilbert space (think
of V as R", the space of velocities); then A is an unbounded operator H — H @ V,
and B is an unbounded operator B — B with B* = —B;

— it considers a linear operator L which is in (abstract) Hormander form,
that is L = A*A + B for some operators 4, B as above.

Assume that the semigroup e ** is well defined and that there is no problem

to differentiate the square norms, ete. Systematic tensorization with the identity
operator will be used to make sense of notation such as [A,B] = AB — (B ® DA.
The scalar product in H will be denoted by (-, ), the norm in H by || - ||, and an
operator S will be said to be bounded respectively to a family of operators
Ty,..., T} if there is a constant C such that ||Sy| < C(||Twy|| + - - - + || Txy|])- The
symbol ® stands for real part.

THEOREM 3.1. — With the above notation, write [A, B] = C, and assume that

(i [A,C]=0,[A4",C]=0;
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(ii) [A,A*]is bounded relatively to I and A;
(iii) [B,C]is bounded relatively to A, A% C and AC.

Further assume that
(H) A*A + C*C 1s coercive.

Then for a suitable choice of constants a,b,c one has the differential in-
equality
d

7€) < —KFeh),

where
Fh) = |h|* + a||Ak|* + 20%R (Ah, Ch) + ¢ ||Ch]|?,

and K is a positive constant which only depends on the constants appearing
implicitly in assumptions (ii), (iii) and (H).

REMARK 3.2. — The assumption (H) is obviously an analog in this context of
Lars Hormander’s bracket condition.

This theorem applies to the Fokker-Planck equation (2) under simple as-
sumptions on the potential V, and yields exponential convergence to equilibrium
for initial data ko satisfying ||V, ho||* + ||V o||* < 4 co. The latter restriction
can finally be removed by an independent study of hypoelliptic regularity [16],
[31]. (This is not a standard hypoelliptic estimate since it is global; there would be
much to say about it, but this would take us too far.) In the end, one obtains the
following theorem, which generalizes and improves the results of [19], [16].
Recall that a measure v is said to satisfy a Poincaré inequality if one has a
functional inequality of the form ||Vh|| ., > Plll — (k)| 12y, P > 0, where (k) is
the average value of h with respect to v.

THEOREM 3.3. — Let V € C2(R™) with inf V > —oo, such that

(@ |V2V| < C+|VV));
(b) the reference measure v(dx) = e~V® du satisfies a Poincaré inequality
with constant P.

Let u(dx dv) = e~ V@112 do dv | 7, where Z is a normalizing constant. Then
there are constants 1 > 0 and C', explicitly computable in terms of C and P, such
that solutions of the Fokker-Planck equation (2) satisfies

e = (o)l < C'e* llho — (o)l -

Theorem 3.1, or more precisely its proof, was also used by Isabelle Gallagher
and Thierry Gallay to provide a first solution to the Model Problem 1.1, as fol-
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lows. Set H = L2(R; C), A = 9,0 + xw, Bow = (iaf)w. Then Cw = iaf’'w, so the
operator A*A + C*C is of Schriodinger type:

AA+C O w=(-Fw+ro— ) +df o,

and the spectrum of A*A + C*C can be studied via standard semi-classical
techniques. For instance, if f/(x)® = a2 /A + 22, k € N, then the spectral gap of
A*A + C*C is bounded below like O(\a|2”), with v = min (1,2/k). Then a careful
examination of the proof of Theorem 3.1 yields a lower bound like O(|a|") on the
real part of the spectrum of A*A + B.

Multiple commutators

As in Lars Hormander’s hypoellipticity theorem, multiple commutators are
also allowed in hypocoercivity results. But as an important difference, it seems
that one only needs to consider commutators with the antisymmetric part. Here
is such a theorem:

THEOREM 3.4. — With the same notation as before, assume the existence
of (possibly wunbounded) operators Cy,Ci,...,Cn,41, Ri,....Bn.41, and
Zy,...,ZN,4+1 such that

Co=A, [Cj,Bl=2Zj1Cin+Ri1 0<j<N), Cy1=0,

and, for all k € {0,...,N.},
(@) [A, Cklis bounded relatively to {C;}- <k and {CiA}< i<k-1
(ii) [A*, Cy]is bounded relatively to I and {Cj}OS i<k
(i) Ry is bounded relatively to {C;}o< 1 and {CiA}o<jop 15
(iv) Z; s bounded relatively to I, and I is bounded relatively to Zj;

N.
H) > C]*C] s coercive.
j=0
Then one can choose constants aj. and by in such a way that the functional
N,
F) = 11>+ " (ar|Cxhl* + 2 R (Cih, Cri11))
k=0

satisfies the differential inequality

%]—"(e‘tLh) < —KF(e "h)
for some constant K which can be computed explicitly in terms of the constants

appearing implicitly in ()-1v) and (H).

This result generalizes Theorem 3.1 in several ways: Multiple commutators
are allowed; a remainder R; i, and a multiplier Z; are allowed in the identity
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defining Cj,; in terms of Cj; and the various directions Cj are not assumed to
commute.

As a simple application of Theorem 3.4, it is possible to prove exponential
convergence to equilibrium for the oscillator chain described by equations (3)-
(4), under the assumption that V and W are uniformly convex and have a
bounded Hessian, and that the temperatures on the left and on the right are
equal, that is T = T™, Interestingly enough, bounded Hessians are not cov-
ered by the results of Jean-Pierre Eckmann and Martin Hairer [7], who impose a
superquadratic growth at infinity. Conversely, it is not clear whether
Theorem 3.4 can be used to recover the results in [7]. Still some work is required
to clarify the situation about these assumptions on the potentials. I shall also
come back in the end of these notes to the very unsatisfactory restriction
TO — 7).

Beyond the Hormander form

All the examples treated so far were dealing with linear operators in the form
L = A*A + B, where B is antisymmetric. In theory, any operator can of course
be cast in this form, but this might be a terrible thing to do in practise; for in-
stance, if the symmetric part of L is an integral operator then A would look
horrendous. So it is desirable to prove results under alternative structure as-
sumptions.

It would be illusory to hope for a gain based on commutators like [L, B].
Instead, one can introduce an adequate auxiliary operator A into the esti-
mates, in such a way that (i) A*A + [A, BI*[A, B] is coercive, and (ii) A “almost
commutes” with L. Recently, Clément Mouhot and Lukas Neumann [21] have
derived such a hypocoercivity theorem in the particular framework of kinetic
equations. I shall not say more about this promising approach, and just refer
to [21] for more information. One of the outcomes of their work is a simpli-
fication of Yan Guo’s theory of collisional kinetic equations close to equili-
brium.

Nonlinear equations

To conclude this section, I shall show how to recover fully nonlinear hy-
pocoercivity estimates by a variant of the approach developed above. For
general nonlinear operators, it is probably hopeless to try to get anywhere
unless one assumes some strong assumptions of smoothness and decay at
infinity, to make sure that all norms involved are “almost comparable” (that is,
they are comparable if one allows them to be raised to powers that are ar-
bitrarily close to 1). So I will assume that (f;);>o satisfies uniform bounds in a
scale of weighted Sobolev spaces (X*);cr of arbitrarily high smoothness and
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decay, that are in interpolation. (For instance, X* might be defined as the
space of functions f such that (I — 4, — Ax)s/zf(x, )1 + |9c|2 + \v|2)8/2 lies in L2.)
Then all the nonlinear operators involved will be assumed to be Lipschitz
when restricted on balls of X*, with values in some higher order space X***. In
practise, this means that our nonlinearities are not worse than polynomial,
with coefficients that do not increase faster than polynomial. Then I shall
denote the functional derivative of a functional F at function f by just ]-'}.
I shall further assume that there is a unique equilibrium f,,, and a Lyapunov
functional £ satisfying

Ef) — E(fo) > K || fi — Fuol P

for some suitable s = s(¢), K = K(¢), where ¢ is arbitrarily small. In words, this
means that £ essentially controls the square of the distance to equilibrium.

THEOREM 3.5. — With the above notation, let
L=B-C

be a nonlinear differential operator, such that B preserves the Lyapunov
functional £ (that is, 8}- - Bf = 0), let (f1)i>0 solve Oy f + Lf = 0, and let (ITj)1< <y
be nonlinear operators satisfying

(10) 1 o Iy, = Hax(j k)
such that, for all t > 1,

@) Colly =0; —& - (Cf)) > KIE(f) — EUTL NI
() K| IT1fy — fool7 < EUTLS) = E(f0) < CollIT1fi — fool P55
(iii) HJf :foo; Bfoo =0;

(H) |1 — 11y, - BIGAIF > KT — I,)f P for all je{1,...,.J — 1},
Then || f; — fll = OE°).

This theorem may seem particularly abstract and confusing, so I should give
some explanations. First, B plays the role of the antisymmetric part, but this
shows only in the assumption that it does not contribute to the decay of £; on the
contrary, C should be thought of as the symmetric, or collisional part, and it does
make the Lyapunov functional decay.

Next, the operators /7; act as a family of “nested projections”. The first one,
114, sends f to the kernel of the “collision operator” C; then the second one sends f
to a smaller subspace, and then each /7; takes values in a smaller subspace until
finally one reaches f.. The “concrete” examples are the maps f — MiuT,
f— M£M<T>, f— M,{op f — fo which we considered in Section 2 (so for the
Boltzmann equation we need four such nonlinear projections).
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Finally, the key hypocoercivity condition is (H): It ensures basically that the
effect of the “antisymmetric part” B is strong enough to get us out of the image of
II;, unless we are in the image of I7;,;.

Theorem 3.5 leads to a simplified proof of Theorem 2.1, which does not in-
volve any second-order differential inequality, but just variants of Gronwall’s
lemma. Once again, the key point is to add a correction to the Lyapunov func-
tional £ into another functional F. The correction is small enough that the value
of F is very close to the value of &; but its structure is such that F satisfies
(almost) a Gronwall-type estimate. More explicitly,

J-1
1) F) = [E) —EF] + Do (Ad — Ipf,Ad — T - (B)),

J=1

where (-,-) denotes the scalar product in, say, X° and &> 0, a; >0
(1 <j<J —1) are small numbers depending on the smoothness of f;, on J, and
on estimates on the distance of f to f, (in general 1 > a; > ... > ay_1).

If the reader thinks that I am being too abstract and formal here, I invite
him or her to write down explicitly what (11) is for the Boltzmann equation:
Take £(f) = [flogf, fuo=M@), ILf =M, , Hof =M, 0, Hsf =My,
I4f = fx,and Bf = v - V,f; then the expression of F(f) would fill up basically
awhole page. Expression (11) is not only quite general, it is also the best way to
conduct calculations.

Let me conclude this section with another theorem that can be derived from
Theorem 3.5: convergence to equilibrium for the nonlinear Vlasov-Fokker-
Planck interaction with moderate interaction and small coupling.

THEOREM 3.6. — Let W € C°(1") be an even smooth function with
sup W — inf W small enough, and let fy be a probability density on 17 x R, with
all moments finite. Then there is a unique solution (f;)yo to the partial differ-
ential equation

of

SV VS = VW ) Vof = Auf + Vo (), pa) = [ fie, )

and it does converge to a uniquely determined equilibrium distribution f., with
Hft _foo ||L1 =0@t™™).

This theorem also follows directly from Theorem 3.5, now by choosing
just\break I71f = pM, Ilof = f, where the equilibrium f, is the unique mini-
mizer of the energy functional H(f)+ (1/2) [ p(x) p(y) W(x — y) dx dy. The as-
sumption on W being smooth and small enough guarantees the uniqueness of the
minimizer (it implies that we stay away from phase transitions) and allows to
develop a very strong regularity theory for the equation.
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