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Inclusion Indices of Quasi-Banach Spaces.

FERNANDO COBOS - Luz M. FERNANDEZ-CABRERA -
ANTONIO MANZANO - ANTON MARTINEZ (¥)

Sunto. — Vengono studiati gli indici di inclusione per spazi quasi-Banach. Prima si
considera il caso di spazi di funzioni su [0, 1], pot il caso degli spazi di successioni e,
mfine, si sviluppa un approccio astratto, usando indict definiti dalla scala degli
spazi di interpolazione reale generata da una coppia quasi-Banach.

Summary. — We investigate inclusion indices for quasi-Banach spaces. First we consider
the case of function spaces on [0, 1], then the sequence case and finally we develop an
abstract approach dealing with indices defined by the real interpolation scale gen-
erated by a quasi-Banach couple.

0. — Introduction.

Let E be a Banach space of Lebesgue-measurable functions on [0, 1], such
that L.[0,1]<— E < [1[0,1]. The inclusion indices of E are defined by
og =sup{p >1:E—L,[0,1]} and yyp =inf{p < oo : L,[0,1]— E}. Inclusion
indices are an useful tool in the study of properties of embeddings between
function spaces. In particular, they allow us to estimate the grade of proximity
between function spaces K — F when dr = yg, dr = yr and one has certain in-
formation on the inclusion from £ into F' (see [13], [9] and [11]).

If £ is symmetric (that is, rearrangement invariant) and ¢y, is its fundamental
function, then it was proved in [13], p. 249, that

.. logt . logt
0.1 og = liminf ———— and =limsup—————.
(0.1) B t-0 log pg(t) T 0 plog op(®)
Boyd indices and fundamental indices (see [2], [16], [17] and [18]) are different
from inclusion indices.
It is natural to investigate the notion of inclusion indices by using the whole

scale of L-spaces, that is {L,[0,11},,_, and not only the Banach part 1 < p < oc.

(*) Authors have been supported in part by the Spanish Ministerio de Educacién y
Ciencia (MTM2004-01888).
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Accordingly, we investigate in this paper such problem. The natural spaces to
work with are now quasi-Banach spaces.

Besides the case of function spaces, we consider also the sequence case and
abstract versions of these results using indices defined by the real interpolation
scale generated by a quasi-Banach couple. In all these cases, we establish ana-
lytic formulae for computing the indices. In particular, we show that (0.1) still
holds for symmetric quasi-Banach spaces. Note that the proof of (0.1) in the
Banach case does not work in our setting because it is based on the well-known
fact that any symmetric Banach space E lies between the Lorentz and the
Marcinkiewicz spaces with fundamental function ¢j. As far as we are aware, no
similar fact is known for symmetric quasi-Banach spaces (see [1] for a partial
result in the p-Banach case).

Furthermore, we establish proximity results based on the equality of the
indices. To use them, we need to know when the indices of a given space coincide.
We pay special attention to this question, proving several criteria for equality.

The paper is organized as follows. In Section 1 we deal with function spaces on
[0, 1]. Section 2 is devoted to sequence spaces. Results of these two sections refer
mainly to symmetric spaces. In Section 3 we develop the abstract approach to
these results. When we specify the results to the former concrete cases, we can
apply them to general spaces, not necessarily symmetric. The final Section 4
refers to a class of spaces defined by using bounded linear functionals: rank-one
interpolation spaces. Because of this, we deal there with Banach spaces ex-
clusively. We characterize equality of indices for this kind of spaces.

1. — Function spaces on [0, 1].

In this section we work on [0, 1] with the Lebesgue measure m. Let £ be a
quasi-Banach space of measurable functions on [0, 1]. We say that E is a lattice if
whenever ||g()| < | f(x)| a.e. with f € E and g measurable, then g € £ and
lgllz < IIfllz- A quasi-Banach lattice E is called symmetric (or rearrangement
wmvariant) if ||y 1|l = 1 and whenever f € E and g is equimeasurable with f,
then g € E and || f]|5 = ||g||g. In particular, if £ is symmetric and f € E, we have

1Az = 111" 1lg-
Here f* is the non-increasing rearrangement of f
ff@®) =inf{oc >0 : m{x: |f(x)| > o} < t}.

Any symmetric quasi-Banach space E satisfies that L..[0, 1] — E, where the
symbol — means continuous inclusion. Indeed

1z =111z < Az omonle = 11z, 00
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Moreover, it is not difficult to show that if {f,,} — f in £, then {f,,} tends to f in
measure.

If E is symmetric then the function ¢g(t) = ||xplly Where D C [0,1] with
m(D) = tis well-defined and it is called the fundamental function of E. Note that
pg is non-decreasing so %133 ppt) exists. Using that f* is a right-continuous

function it is easy to see that

(1.1) 111% o) >0 if and only if E=L_[01]

Let F be a quasi-Banach space of measurable functions on [0, 1]. We define
the lower inclusion index of F' by

oF =sup{0 < p < oo : F—Ly0,1]}.

If F'<~ Ly[0,1] for any 0 < p < oo, then we put dp = 0.
The upper inclusion index of F' is defined by

yp =inf{0 < p < oo : Ly[0,1]— F}.

If there is no 0 < p < oo such that L,[0,1] — F, we put yz = oc.

In the Banach case, it was shown in [13], p. 249, that the indices are related to
the fundamental function. The proof is based on the well-known fact that working
with symmetric Banach spaces, there are the smallest and the largest symmetric
space with a given fundamental function (see [16], Thms. I1.5.5 and I1.5.7, or [2],
Thm. 11.5.13). Although there is no similar result in the quasi-Banach case, we
show next that the indices can be still computed by using the fundamental
function.

THEOREM 1.1. — Let E be a symmetric quasi-Banach space on [0,1]. Then

.. logt
5E‘ - hrtril(}'lfw

Proor. — Assume first that %ma ¢p@) > 0. Then

liminf 1280 _ o
t—0 log gg(t)

On the other hand, by (1.1), £ = L..[0,1], so dg = oc.
Assume now that ?rr& pg®) = 0. If there is some 0 < p < oo such that

E — L,[0,1], then we can find C > 0 so that Cctl/r < pp®) forall 0 < ¢t < 1.Taking
logarithms and using that ¢5(f) < ||x01llz = 1, we get
plog C logt
log pp(t) * log pr) — p-
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Hence
.. logt
1.2 1 f > .
(1.2) Htrilon log o) — p
It follows that
logt

< liminf .
o8 < Htlllon log pp(t)

If lirtn ionf [logt/log pp(t)] = 0, then (1.2) implies that there is no 0 < p < oo

such that £ — L,[0,1]. Hence 65 = 0 and we obtain the desired equality. Let us
establish the remaining case. Take any p with 0 < p < 1irtn ionf [logt/log pg(t)].

We should show that E— L,[0,1]. With this aim, choose ¢ with p < ¢ <
lirgl iOnf [logt/log pg(t)]. There is 0 < t; < 1 such that log pz(t) > logt!/? for any

0 <t <ty Let C > 0so that
(1.3) 1 < Cogt) for every 0<it<1.
Using (1.3), for any f € E and any 0 < t < 1, we have
1fllz = 11£ 15 = I1f 200z = f*@wp® = CTHEIF @),

Therefore
1 1/p 1 1/p .
- “ypdt| <c f rriogr) —of-4 )"
1110 = Of Foya) <Ol || =c(, 1) Wl
This yields that &' — Ly[0,1] and completes the proof. O

The corresponding result for the upper index reads as follows.
THEOREM 1.2. — Let E be a symmetric quasi-Banach space on [0,1]. Then

yg = limsup k)igt.
-0 logpg(t)

Proor. - Let 0 < p < oo with L,[0,1]—E and let C >0 be such that
pp(t) < Ct/? for any 0 < t < 1. Then lim ¢, (t) = 0. Moreover, taking logarithms
we get =0

plogC logt
log pp(®) " loggp(® ~ "

This implies that lim sup [log t/log ()] < p and therefore
t—0

lim sup

g
< .
-0 logog(t) VE
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If lim sup [log ¢/log ¢ (t)] = oo, there is no 0 < p < oo such that L,[0,1] — E.
t—0

Whence y; = oo and equality holds. To establish the remaining case, take any
0 < p,q < oo with

(14) lim sup log!

— < <p< .
-0 logog(t) A=p=oc

We claim that the function g(t) = t~/? belongs to E. Indeed, by (1.4), there is
0 < to < 1 such that pz(t) < t1/9 for any 0 < t < ty. Choose C > 0 so that

(1.5) ppt) < CtY9 forany 0<t<1.

Put g, = gxj2-» 1)- Then g,, € E because g, < g(27")yo 1}- Let us show that {g, } is
a Cauchy sequence in E.

Let ¢ be the constant in the triangle inequality of £ and define p by the
equation (2¢)’ = 2. Using [3], Lemma 3.10.1 and (1.5) we have for n < m

m—1 p m—1 )
1gm — gull = Zgl[z%iﬂﬁz—j] <2 ZQ(Z_OH))p||}([27(7‘+l)72—.7'] I <
j=n E j=n
m-1 L1
2C? ZZWW(EW) —0as n — oo.
Jj=n

This yields that {g,,} is a Cauchy sequence in the complete space E. Its limit
should be the function g because {g,} converges pointwise to g. So g € E.
Now for any f € L,[0, 1] we obtain

£l = 15 < gz sup {27 @} < gl f 1z, 001
0<t<1
Consequently, L,[0,1]— E. This implies that

yp < lim sup logt
E=00 log pg(t)

and ends the proof. O

Next we state two immediate consequences of these formulae.
COROLLARY 1.3. — Let E be a symmetric quasi-Banach space on [0,1]. Then

. . . logt
o =yg if and only if lim o8

% Tog pp @) ex1sts.

COROLLARY 1.4. — Let E be a symmetric quasi-Banach space on [0,1].
Assume that there is 0 < p < oo such that for any 0 < ¢ < 1/p, there are positive
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constants c;, C; so that
(1.6) c, b < op®) < C,ti* forany 0<t<1.
Then og = yg = p.

The following result shows that if 5 has regular variation at 0, then the in-
dices are equal.

COROLLARY 1.5. — Let E be a symmetric quasi-Banach space on [0,1]. If
%irr(} [pg2t)/pr(t)] exists, then og = yg.

ProoF. — Since ¢z(1) < pz(2t), we have

lim 7220

=2/ for some 0<p < oco.
t—0 (ﬂE(t) - ﬁ

Assume 0 < f# < oo and take any 0 < ¢ < f§. There is 0 < ¢y < 1/2 such that
2=+ n(2t) < ppt) <27 pn@2t) forall 0 <t <t.

Given any k € N, if 2-®D¢; <t < 27F¢), we get

2l gL @) < pp(t) < 270D @),
Since

t#+4(2t0)” "V pp(to) < PRI pp@E ) = 270HOE D g @)
and
2P0k Dy (hF1p) < tﬁ’gtg(ﬁ_a)(pE(Zto),

it follows that

77 1@t0) "ot < pp(®) < Tty " Vpp2to)].

Hence, we can find C, > 0 such that
1 fi+& fi—¢
Et < pr@) < Cit forany 0<t<1.
&

This implies that o = y5 = 1/p.
If f = 0, a similar argument yields g = yz = oc. O

We end this section with the extension of [9], Thm. 2.3, to the quasi-Banach
case. Recall that a bounded linear operator T € £(X,Y) from the quasi-Banach
lattice X into the quasi-Banach space Y is said to be disjointly strictly singular if
the restriction of 7' to any infinite-dimensional subspace generated by a sequence
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of disjoint vectors in X is not an isomorphism (see [12]). For example, if
0 < g <p < oo, the inclusion operator L,[0,1]— L,[0,1] is disjointly strictly
singular.

We let M denote the space of all measurable functions on [0, 1] which are
finite almost everywhere, endowed with the topology of convergence in measure.

THEOREM 1.6. — Let E be a quasi-Banach function lattice and let F be a quasi-
Banach function space with L.[0,1]— E — F— M. Assume that og = yg and
or = yp. If the inclusion operator E — F is not disjointly strictly singular, then
either:

(D) L0, 1] CECF C [ Lgl0,1] or

g<oo

(i) U Lgl0,1]CECF C M or

q>0
(i) (U Lgl0,11C E CF C () L,l0,1] for some 0 < p < oo.
q>p q<p
Proor. —- Since E — F', we have or = yr < dg = yg. The inequality cannot be
strict, because if yp <Jg then we could find 0 <p,qg <oo such that
yp < q <p < Jg. Hence

E < L,[0,1]— L,[0,1]— F

and the inclusion £ — F would be disjointly strictly singular. Therefore,
OF = yp = O = 7g-

Let or = p. If p = co we get (i). If p = 0 we obtain (ii), and if 0 < p < co we
derive (iii). d

2. — Sequence spaces.

We now work on N = {1,2,---} with u({n}) =1 for each n € N. The non-
increasing rearrangement of a sequence u= {u,} €. is the sequence
1= {su(w)} defined by

$p() = inf{[|p — 7|, : 7= {tm} € lo, card{m € N : 7, # 0} <m}

(see [20]). Here cardA designates the cardinality of the set A. Clearly, if & € ¢
and {& } is the rearrangement of the elements of {&,} by magnitude of the
absolute values, |}| > |&| > - - -, we have s,(&) = ||

Given any subset D C N, we put ep = {t,,} where r, =1ifn € D and 7, = 0if
né¢ D.

A quasi-Banach lattice of bounded sequences E is called symmetric (or re-
arrangement invariant) if ||eqy||y =1 and whenever ¢ € E and u € £y, with
& = i, then g € B and ¢l = |1l -
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If E is symmetric, we have f C E where f is the set of all sequences ¢ = {&,}
which have a finite number of coordinates &, # 0. Moreover E — /., (see [20],
Prop. 13.2.4).

The fundamental function of the symmetric sequence space E is defined by
(DE(n) = He{l,“"’ﬂ}HE'
The function ¢y is non-decreasing with ¢z(1) = 1. Moreover,

lim pp(n) =c < oo implies E =cyor £ = (.

NnN—00
Indeed, let ¢ = {¢,} € co and write 7, = e,y Then {7,} is a Cauchy se-
quence in E because for m > n

””m - '7n||E < maX{K]‘ tn+1<j< m}(ﬂg(m—n) <
cmax{|&[ :n+1<j<m}—0asn— oo

It follows that & € E. So ¢y — E — £.. Now [20], Thm. 13.1.8 yields that £ = ¢( or
E=1.
Let F be a quasi-Banach space of sequences. The lower inclusion index of F'
is defined by
op =sup{0 < p <oo:l,—F}.

If there is no 0 < p < oo such that ¢, — F, we put ér = 0.
We define the upper inclusion index of F' by

yp=1nf{0 <p < o0 : F—1¥,}.

If <~ ¢, for any 0 < p < oo, then we write yz = oc.

The techniques used in the proof of Theorems 1.1 and 1.2 may be modified to
derive the following analytic formulae for computing the indices of a symmetric
sequence space £ in terms of its fundamental function ¢g.

THEOREM 2.1. — Let E be a symmetric quasi-Banach sequence space. Then
(@) o = liminf[logn/log¢pg(n)]
n—oo
(b) yg = limsup[logn/log pp(n)].

NnN—00

In order to extend [9], Thm. 2.7. to the full range of parameters, we recall that
a bounded linear operator 7' € £(X,Y) between two quasi-Banach spaces X and
Y is called strictly singular if it fails to be an isomorphism on any infinite di-
mensional subspace (see [14] and [20]). Comparing this notion with the concept of
disjoint strict singularity mentioned in the previous section, it is clear that any
strictly singular operator is disjointly strictly singular. On the other hand, for
0 < g < p < o0, the inclusion L,[0,1] — Ly[0,1] is a disjointly strictly singular
operator which is not strictly singular.
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THEOREM 2.2. — Let E and F be quasi-Banach spaces of sequences with
fCE—F (. Assume that o = y5 and op = yp. If the inclusion operator
E — F is not strictly singular, then either:

@ FCECFC N or
q>0

() Ut CECFCly, or

g<oco

(ii) U4 CECFC ()4 forsomel <p < .
q<p >p

Proor. — The argument is similar to the one in the proof of Theorem 1.6 but
using now that for 0 < p < g < oo the inclusion ¢, — {, is strictly singular (see,
for example, [15], Thm. 5.3). O

If £ is a symmetric quasi-Banach space, it follows from Theorem 2.1 that

o =yg if and only if lim logn exists.

n—oo log (oE(n)
In particular, if ¢5(n) “behaves like” n!/? for some 0 < p < oo, in the sense that
for any 0 < ¢ < 1/p there are positive constants c,, C, such that
e, it < pr(n) < C; wt for any n €N,

then o5 = y5 = p. This is the case when ¢ has regular variation at infinity, that
is to say, when lim [pz(2n)/pp(n)] exists.
Nn—o0

3. — Inclusion indices relative to an interpolation scale.

In this section we develop an abstract approach to the results on function
spaces and sequence spaces. We study inclusion indices defined by the real in-
terpolation scale generated by a quasi-Banach couple. In the Banach case, this
question was considered in [11].

Let X = (Xo, X1) be a quasi-Banach couple, that is, two quasi-Banach spaces
Xy, X1 which are continuously embedded in some Hausdorff topological vector
space. The Peetre’s K-functional and J-functional are defined by

K(tax) :K(tvx;X(%Xl) =
inf{{jwolly, + tll@1lly, : @ = w0 + 21, 2; € X}, £ >0, v € Xo + X,

and
J(t,2) = J 0,05 Xo, X0) = max{ e, flally, b, t>0, @€ XonXi.

A quasi-Banach space X is said to be an intermediate space with respect to
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the couple X if Xy N X; — X — X, + X;. Following [4], we put
wx (@) = wx(; Xo, X1) = sup{ K, x; X0, X1) : x € X, |||y = 1},
px®) = px(t; Xo, X1) = inf{J (¢, 2; X0, X1) : @ € Xo N Xy, |||y = 1}.

Variants of the functions wy and py have been used in many papers. We refer, for
instance, to [8], [19] or [22]. See also [7], [9] and [10] for other properties of these
functions.

Subsequently, we mostly work with ordered couples, that is, quasi-Banach
couples (Ay,A;) with Ay — A;.

For 0 < 0 <1and 0 < g < oo, the real interpolation space Ag.’q = (A0, A1 4
consists of all elements a@ € A; having a finite quasi-norm

([ k@) ayt) " ito<g<oo
lallpg =4 ©

sup{t "K(t,a)} if =00

>0

(see [3] and [23]).
Since Ay — Ay, for 0 < u < 0 < 1 it holds

(3.1) (Ao, A1), p — (Ag,A1)gy forany 0<p,qg<oo

(see [3], Thm. 3.4.1).

The equivalence theorem is still valid for quasi-Banach couples (see [3], Thm.
3.11.3). As a consequence, given a quasi-Banach space A with Ag — A — Ay if
there is a constant C > 0 such that

lal|, <CtI(¢t,a) forany acA, and t>1,
it follows that
(3.2) (Ag,A1)pg— A for some ¢ <1.

DEFINITION 3.1. — Let A be a quasi-Banach space with Ay— A — A;. The
wmclusion indices of A relative to the scale {(Ay,A1)p1} are defined by

da=sup{0<0<1:4y;—A}, y,=inf{0<O<1:A—Ay;}.
If there is no 0 < 0 < 1 such that Ag}l — A [respectively, A <—>A971], then we let
04 = 0 [respectively, 7, = 1].

REMARK 3.2. — We have taken the value 1 for the second parameter of the real
interpolation scale, but we can equally choose any other value because, by (3.1), it
has no influence on the definition of the indices.
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REMARK 3.3. — In the Banach case, definition of indices given in [11] is slightly
different from Definition 3.1. There, one works with the complex interpolation
scale and the supremum and the infimum of the set {1/(1 — 6)}.

Next we establish analytic formulae to calculate the indices. The proofs are
patterned on those of [11] for the Banach case.

THEOREM 3.4. — Let A be a quasi-Banach space with Ay — A — Ay. Then

5.4  limint 287a®
t—oo Ogt

Proor. — We may assume, multiplying by a constant the norms of Ay and A, if
necessary, that p,(1) = 1. Hence p,(t) > 1 for each ¢ > 1 because the function p,
is non-decreasing. Moreover, since p4(t)/t is non-increasing, we have p,(t)/t <1
for each ¢ > 1. It follows that

0 < limint 28240 _ 1
t—oo logt

Suppose that Ag_l — A for some 0 < 0 < 1. Then there is a constant C > 0
such that ||a||, < Ct=%J(t,a) for all @ € Ag and ¢ > 0. Hence t? < Cp,(t). Taking
logarithms and lower limits, we get 0 < 1i¥n inf [log p4(t)/log t]. This yields that

54 < liminf 128240
too  logt

If lifn inf[log ps(t)/logt] = 0, the desired equality holds. To establish the
wmaimfgOo case, suppose that

log p4 ()

(3.3) 0<O<pu< hmglf og {

and let us show that A()’l — A. By (3.3), there exists typ > 1 such that t* < p,(¢) for
any t > ty. Find C > 0 such that 1/p,({) < Ct~* for all t > 1. Given any a € A,
and ¢t > 1, we obtain

J(, a)
pa®

Then (3.1) and (3.2) imply that Ay; < A, ,— A and finishes the proof. O

lalla <

< Ct Mt a).

THEOREM 3.5. — Let A be a quasi-Banach space with Ay — A — Ay. Then

_ . log w4 (t)
= 1 _
74 =lmsup =0
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ProoOF. — We may assume, multiplying by a constant the norms of Ay and A, if
necessary, that y,(1) = 1. Then w4 () > 1 and w,(t)/t < 1 for any ¢ > 1. So

0 < limsup M <1
t—o0 ogt
Let 0 < 0 < 1 with A < Ay;. Since Ay; — Ay, we can find C > 0 such that
tK(t,a) < C|lal|4 for any ¢ > 0 and a € A. It follows that w,(¢) < Ct’ and so
lim sup [log w4 (t)/logt] < 0. This implies that
t—o0

logy 4 (t) <5

li .
imsup ot = N

t—o0 lo

If limsup [logy,(t)/logt] = 1, we are done. In order to prove the remaining

t—o0

case, take any u, 0 with

. logy 4 (t)

1

g
There is t) >1 so that w,({) <t for every t>1,. Let M >0 such that
w4 () < Mt* for any ¢t > 1. Using (3.1) and the embedding Ay — A;, we get

=M; sup {t “K(t,a)}

0<t<oo

< Mysup{iK(t.)} < MoM sup{K(t. )4 1)} < MoMal .
t> t>1

<u<0<l.

lallgy <Milla]

4,00

Consequently, A <—>A071. This implies that
_ . logy 4 (t)
<1 —
74 S HtTLSOlClP log t

and completes the proof. O

Theorems 3.4 and 3.5 can be used to complement the results of the previous
sections. We illustrate it with an example.

Let 0 <7 < oo. Consider the quasi-Banach spaces Ay = L[0,1]—A; =
L,[0,1]. It is well-known that interpolating this couple with parameters (6,1) we
obtain Lorentz function spaces

Ap1 = (Loc[0,11, L0, 1)y = Li1[0,1]

(see [3] or [23]). Here s =r/0. If E is a quasi-Banach function space with
L[0,1]— E — L,[0,1], the indices of £ defined by the interpolation scale do not
coincide with those considered in Section 1, but they are related. Indeed

Oop = sup{0 < 0 < 1:(Ly[0,1],L,[0,1])p; — E}
= sup{r/s : Ls1[0,1] — E}

7 7
Tinf{0<s<oo:LJf0,1]=E} y5
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Similarly, yp = r/dg. Hence
O = yg if and only if Jp = 7.

Now we can characterize those function spaces, not necessarily symmetric,
satisfying that og = y5. We work with the functions

pp®) = pg(t; Lc[0, 1], L,[0,1])  and  yp(t) = wg(t; Lo[0, 1], L,[0,1]).

THEOREM 3.6. — Let 0 < v < oo and E be a quasi-Banach function space with
L. [0,1]— E — L,[0,1]. Then a necessary and sufficient condition for og = yg
18 that the limits

m 7logp 5() and lim logy/(®)
t—oo  logt t—oo logt

exist and coincide.

Proor. — If the limits exist and are equal, using Theorems 3.4 and 3.5, we get

o = liminf log py(®) — lim log pg(®)
t—o0 10gt t—oo logt

t—oo  logt too logt &

Let us show that the converse holds. According to [3], Thm. 5.2.1, we have

.

/r

K(f5 L0, 11, L0, 1) ~ ¢ [ (f*(s))’"ds)l .
0

Hence, there is a constant C > 0 such that for any ¢ > 1,
K, x4 Lol0, 11, L,[0,1]) > C.

It follows that
J(t, 104 Liool0, 11, L, [0, 1)
llx 0t HE
1 < K(LX(OJ”);LOO[Oa 1]aLT[O7 1]) 1

HX(O,t*")HE C”X(O,H)HE C

pE®) <

Consequently, if 65 = 7, using Theorems 3.4 and 3.5, we derive

lim sup

t—o0

log pp(®) .. logyp®) _ - . . . logpp®)
-2 A | — T — 5y, =0 =1 f =25
logt = HSUP =i = 7p = 0p = lminf =05
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and

logvu® _ 5 _ 50— lim
t

. logwg(®)

< limin

lim sup mint = et

oo logt

—

inf 710g Pe®
00 1 gt

This implies that hm [log px(t)/logt] and hm [logwy(t)/logt] exist and coin-
cide. O

For the sequence case, the corresponding result to Theorem 3.6 reads:
THEOREM 3.7. — Let 0 < v < oo and let E be a quasi-Banach sequence space
with 0, — K — {. Let
pE®) = pp(t; by, b)) and  ygp®) = wg(t; b, lx).
Then a necessary and sufficient condition for og = vy is that the limits

m Lg Ps® and lim 1—0g 210
t—oo logt t—co logt

exist and coincide.
The proof is similar to that of Theorem 3.6.

REMARK 3.8. - If 0 <~ <1, assumption ¢, — E </, is satisfied by any
quasi-Banach sequence lattice £ which is r-normed, that is,

1E+nlg < el +[lnlly forall &nek,
and such that
0< in£{||e{n}||E} < sup{|lequyllg} = M < oc.
nwEN neN

Indeed, embedding E — /., is clear. As regards the other embedding, take any
¢ ={&} € 4y and any m > n. We have

HZ@QU} Z@%}H <M ZI@\ —0 as n— oo.

Jj=n+1

Hence { Z @e{]}} is a Cauchy sequence and so it should be convergent in £.
This 1mp11es that &£ e E.
We end this section by using the inclusion indices to estimate the grade of

proximity between quasi-Banach spaces. We shall first establish some pre-
liminary results.
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LeEMMA 3.9. — A bounded linear operator T € L(X,Y) between the quasi-
Banach spaces X, Y 1s strictly singular if and only if given any infinite di-
menstonal subspace M of X and any & > 0, there is a subspace {0} #N C M
such that [|T||yy <&

Here |T| y y stands for the norm of T acting from N into Y.

Proor. - If T € L(X,Y) is not strictly singular, there exists an infinite di-
mensional subspace M C X such that 7 : M — T(M) is an isomorphism. Let
T-' € L(T(M), M) be the inverse operator and choose 0 <& < 1/[T|Izq -
For any 0 # « € M, we have

1T|[p >

Ty > el
||T71||T(M),M u w
Conversely, if T € £(X,Y) is strictly singular and M is an infinite dimensional
subspace M of X, then T : M — T(M) is not an isomorphism. It follows that
either T : M — Y is not injective or 71 : T(M) — M is not bounded. In the
first case, there is 0#x € M such that Tx =0. So, for the subspace
N = (x) C M, we have N # {0} and ||T||y y = 0. In the second case, given any

¢>0, we can find ¥ € M such that ||, >—||Tx|y. Put N = (x). Then
{0} #N C M and |[T||yy < & ¢ O

In the Banach case, Lemma 3.9 is contained in [14], Thm. II1.2.1. Using
Lemma 3.9 we can easily derive an interpolation result for strictly singular op-
erators between quasi-Banach spaces.

LEMMA 3.10. - Let Y = (Yy, Y1) be a quasi-Banach couple, let Y be an in-
termediate space with respect to Y and let X be another quasi-Banach space.
Suppose that T is a linear operator. If T : X — Yy is bounded, T : X — Y7 is
strictly singular and tlLI?o py(t; Yo, Y1) = oo, then T : X — Y 1s strictly singular.

PrOOF. — Let M be any infinite dimensional subspace of X. Given any ¢ > 0,
take f > 0 such that |7y y, /e < py(t). Since T : X — Y7 is strictly singular,
there exists {0} # N C M such that || T[|y y, < py(to)¢/to. Hence, for any x € N,

we have
J (b, Te) {”T”NY Ty, }
Txl, < ————= < |2/l max 0 Ly <glle||-
Using Lemma 3.9, the result follows. O

Previous interpolation results for strictly singular operators can be found in
[5], [4], [6] and the references given there.
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REMARK 3.11. — Disjointly strictly singular operators have the same inter-
polation property. This can be checked repeating the argument of the proof of
Lemma 3.10 but using now [12], Prop. 2.1, instead of Lemma 3.9. We refer to [12]
and [6] for similar results.

Now we can establish the abstract version of Theorem 2.2.

THEOREM 3.12. — Let X, Y be quasi-Banach spaces with Ay —X — Y — Aj.
Assume that dx = Jy, oy = Jy and that the inclusion X — Y is not strictly sin-
gular. Ifthere is 0 < 0 < 1with 3y < 0 and the inclusion Ay — Aj being strictly
singular, then either

() AgCXCYC N4, or
n>0
(i) UAj 1 CXCYCA or
n<l

(i) JA,CcXCycn

n<u

o Ay for some 0 < u < 1.

PROOF. — We claim that 7y > dy. Indeed, if this would not be the case, there
would be 7y < 0 < i < Jy such that the embedding A < A; is strictly singular
and X — Ay; — A,1 — Y. Using the reiteration theorem (see [3], Thm. 3.11.5),
we have

pa (tAgy,Ay) > CHe—0/0-0)

1
S0 tlim pA,“I(t;A()’l,Al) = co. Lemma 3.10 yields that the inclusion Ay; < A, is
strictly singular and then the embedding X <« Y would be strictly singular.

Therefore oy = Vx> Oy = Tr- Since the converse inequality follows from the
inclusion X — Y, we obtain that dx = yx = dy = Jy. This implies the result. O

REMARK 38.13. — Working with quasi-Banach lattices, one can easily check that
Theorem 3.12 is still valid if we replace strict singularity by disjoint strict sin-
gularity. The proof is the same but using now Remark 3.11. Writing down the
outcome we get an abstract version of Theorem 1.6.

4. — Rank-one interpolation spaces and indices.

In this final section we work with certain intermediate spaces defined by
using bounded linear functionals, so we deal with Banach spaces exclusively.

Given a Banach couple B = (B, B1), we write T': B— B to mean that 7' is a
linear operator from By + Bj into By + Bj such that the restriction to each B; is a
bounded operator from B; into itself, j = 0,1. An intermediate Banach space B
with respect to B is said to be an interpolation space if, for any T : B— B, the
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restriction of 7' to B defines a bounded operator from B into B. It is a con-
sequence _of the closed graph theorem that there is a positive constant
C = C(B, B) such that

(4.1) IT\55 < Cmax {|Tllg, s, | Tllp, 5} forall T:B—B.

We say that an intermediate Banach space B with respect to B is a rank-one
wterpolation space, or a partly interpolation space, if (4.1) holds for all operators
T of the special form

Tx =f(x)y where f e By+B1)* and y e BynNBhB;.
This class of spaces have been considered by a number of authors. See, for

example, [8], [22] or [4]. It turns out that B is a rank-one interpolation space if
and only if there is a positive constant C = C(B, B) such that

(4.2) wp(t; B) < Cpg(t;B), forall t>0
(see [8] and [22)).

Next we combine (4.2) with the results of the previous section.

COROLLARY 4.1. — Let By, B1 be Banach spaces with By — By and let B be a
rank-one interpolation space with respect to B = (By, B1). If any of the limits

m log pp(t)  lim log yp(t)
t—o0 logt t—o0 lOgt

exists, then op = 7.

Proor. - By (4.2),

logyp®) _logC  logps®
logt ~— logt logt

Hence, if tlim [log pp(t)/log t] exists, we have

_ . logyp®) .. log pp(t)
=limsup ——— < limsup ———
’B t_,oop logt — (.o P logt
~ timinf 2828® _ 5
toco  logt
Since always dp < 75, equality follows. The other case is analogous. O

As a consequence, we get the following complements of Theorems 3.6 and 3.7.

COROLLARY 4.2. — Let E be a Banach function space with L.[0,1]— E —
L1410, 1]. If E is a rank-one interpolation space with respect to (L. [0,1], L1[0,1]),



116 F. COBOS - LUZ M. FERNANDEZ-CABRERA - A. MANZANO - A. MARTINEZ

then the following conditions are equivalent.

(i) o =yg-

(i) lim log pp(t; Loo[0,11, L1[0,1]) oacists.
t—o0 IOgt

(i) lim 08 VEG Leol0 11, L0, 1D
t—o0 IOgt

ProOF. — By Corollary 4.1, (ii) implies (i), and (iii) implies (i). On the other
hand, Theorem 3.6 shows that (i) implies (ii) and (iii). O

For the sequence case, the results reads.
COROLLARY 4.3. — Let E be a Banach sequence space with ¢ —FE — (. If E

18 a rank-one interpolation space with respect to (¢1,4), then the following
conditions are equivalent.

(i) o =g.
I ; 0 .
i) 1im 08 LEE 000 e
t—o0 IOg' t
(iii) lim log yi(t; b1, £ec) exists.
t—00 logt

The proof is similar to that of Corollary 4.2.

We finish the paper by recalling that a function [respectively, sequence]
Banach space E is a rank-one interpolation space with respect to the couple
(Lisol0,1], L4[0,1]) [respectively, (41, £,)] if E lies between the Lorentz and the
Marcinkiewicz spaces with the same fundamental function (see [8] and [21]).
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