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Bollettino U. M. 1.
(8) 10-B (2007), 63-81

Partial Boundary Regularity of Solutions of Nonlinear
Superelliptic Systems.

CHRISTOPH HAMBURGER

Sunto. - Si dimostra un risultato di regolarita parziale globale per le soluzioni deboli
u del problema di Dirichlet associato al sistema superellittico non lineare
div A(x,u,Du)+B(x,u,Du)= 0, con ipotesi di crescita naturale polinomiale delle
Sfunzioni coefficienti A e B. St applica il metodo indiretto della forma bilineare e
non si fo uso di una diseguaglianza di Caccioppoli né di una disequaglianza di
Holder al contrario.

Summary. — We prove global partial regularity of weak solutions w of the Dirichlet
problem for the nonlinear superelliptic system div A(x,w, Du)+B(x,u, Du)= 0, un-
der natural polynomial growth of the coefficient functions A and B. We employ the
direct method of the bilinear form and do not use a Caccioppoli or a reverse Holder
mequality.

1. — Introduction.

We are interested in the regularity of the vector-valued weak solutions
u € W4 (Q,R") of the Dirichlet problem for the nonlinear system
(1) div A (x, w, Du)+B (2, u,Du)=0 ,

or, in components,
ZDa(A‘;(%u,Du))—kBi(oc,u,Du): 0 fori=1,...,N .
a=1

Here Q1is a bounded open subset of R",n > 2, N > 1, and Du(x)€ RY*" denotes
the gradient of u at a.e. point « € Q. The coefficient functions A and B are de-
fined on the set

3=0xRY xR""

with values in RY*" and RY respectively.
The standard hypotheses are that A(ac,u,P) be uniformly superelliptic,
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Holder continuous in (ac, u) with some exponent 0 < a < 1, and of class C' in P;
and that A (x, u, P), its partial derivative Ap (2, u, P) and B(x, u, P) have natural
polynomial growth with exponent ¢ > 2 in the variable P, i.e.

|A(x,u,P)| <e(1+|P"), |Ap(x,u,P)| <c(1+|P|"?),

2
® |B(2,u,P)| < alP|"+b .

Moreover, one assumes the smallness condition

20 suplu| <y,
Q

the constants «, y > 0 being determined by the superellipticity (*) of the system:

() Ap(w,u,P)(&6)= Y DpAi(w,u, P)EIE, > (et (g — VIR,
i,5,0,8

valid for all (x,u, P)€ 3 and & € RV

DEFINITION 1. — We say thatu € W (2, RY) is a weak solution of system (1)

if
(4) fA(ac,u,Du) Do dux :fB(x,u,Du)~(pdx
2 2

or every 9 € W (Q,RY), with sup,|p| < oo if @ # 0. In components, (4) reads
0 Q
as

f(;A?(x,u,Du)Da(pi> dx =f<zi:Bi(x,u,Du)¢i> de .

Q Q

The problem of regularity of a weak solution u € W9(Q,R") of the non-
linear superelliptic system (1) has been intensively investigated over the last 26
years. As we know (see Example 11.3.2 of [5]), we can in general only expect
partial regularity ift N > 1,1.e. Holder continuity of the gradient Du outside of a
closed set of Lebesgue measure zero. Here the optimal Holder exponent of Du is
a, the same as that of the coefficient function A (x,u, P) in the variables (x,u).

The general method of the proof is to compare the given solution » with a
solution of a linear system with constant coefficients, for which standard elliptic
estimates are available. For the direct approach, this comparison is carried out
on an arbitrary ball either under a Dirichlet boundary condition, or with the so-
called A-harmonic approximation (which is itself procured by a contradiction

(") Superellipticity is often referred to as strong ellipticity or simply ellipticity. We
reserve the term ellipticity for the weaker condition of Legendre-Hadamard.
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argument); for the indirect approach, it is shown that a sequence of blow-up
functions w,, € W'?2 (B7RN ), rescaled to the unit ball B, converges weakly to
such a solution.

Partial regularity of the solutions u € W'“(Q,R") of the nonlinear su-
perelliptic system (1) was shown, following the direct approach, by Giaquinta
and Modica [6] and by Ivert [15] for ¢ = 2, and by Tan [18] for ¢ > 2. Their
proofs are based on a reverse Holder inequality with increasing supports for
Du — Py, for any constant Py € R¥*". This reverse Holder inequality in turn
is derived from a Caccioppoli inequality by invoking the higher integrability
theorem of Gehring, Giaquinta and Modica (see [5], Proposition V.1.1, [7],
Theorem 6.6).

A direct proof of partial regularity with the optimal Holder exponent a was
given by Hamburger [9] for the system

(5) div A(m,Du) +B(x,u, Du)=0,

whose leading part does not depend explicitly on the variable u. This already
covers the general case as soon as we know that the solution u is Lipschitz
continuous on the regular set Q,, by simply writing (1) in the form (5) with the
composite coefficient function A(x,P)= A(z,u(x), P), which is Holder con-
tinuous in & € ©Q,, with exponent a.

As the higher integrability theorem is considered to be rather involved, it is
desirable to find a simpler partial regularity proof which avoids the use of a
reverse Holder inequality. It is also desirable to prove partial regularity with the
optimal Holder exponent a in one single step. Such proofs by the method of A-
harmonic approximation were supplied for the interior by Duzaar and Grotowski
[1], and for the boundary by Grotowski [8]. Indirect partial regularity proofs for
(1), which do not even employ a Caccioppoli inequality, were proposed by Yan
and Li [19] and by Hamburger [11].

The present paper has a twofold aim. First, with just a few minor amend-
ments to [11], we obtain the optimal Holder exponent a in one step (see Theorem
1). Secondly, by adapting this proof to the boundary, we show global partial
regularity for the Dirichlet problem. At the same time, we generalize the char-
acterization of the regular boundary set given in [8] (see Theorem 2).

Our indirect proof of partial regularity at the boundary employs the
method of the bilinear form, which was introduced by Hamburger [10] in
establishing convergence w,, — w in W'*(Bf ,RY ), for 0 <r <1, of a se-
quence of blow-up functions w,, € W'?(B*,R"), which is known to converge
only weakly. This technique has already been applied in the interior to solu-
tions of nonlinear superelliptic and quasimonotone systems in [11] and [12],
and to minimizers of convex, quasiconvex and polyconvex variational integrals
in [10], [14] and [13]. We show that the blow-up functions w,, are approximate
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solutions of suitable rescaled systems. This has two consequences. First,
passing to the limit as m — oo we infer that w solves a linear elliptic system
with constant coefficients. Secondly, we derive the key estimate

limsup [ 1G (Y,0): (D, D) dz < [ nG (Yo)-(Dw, Dw) iz
m—00 B+ B+

Here 7 is a cut-off function, the bilinear form G(Y) depends continuously on
Y, and the constant function Y is the limit in L? of a suitable sequence of
functions {Y,,}. We finally deduce from this estimate with the help of uniform
positivity of G(Y) that w,, — w in W%(B, RN ). In this manner we achieve
partial boundary regularity of weak solutions of the Dirichlet problem for
nonlinear superelliptic systems.

For the coefficient function A : 3 — R¥*" we shall assume the following
hypotheses, for an exponent ¢ > 2.

HYPOTHESIS 1. — We suppose that A(x,u, P) is of class C* in P, and we as-
sume that Ap is continuous and of polynomial growth

|Ap (a,u, P)| < c(1+|P|"?) .

HYPOTHESIS 2. — We suppose that A(x,u, P) is Holder continuous in (x,u)
uniformly with respect to P:

|A(x,u,P)—A(y,v.P)| < K(Ju| + |P|)(Jx — y| + |u — v])"
for all (x,u,P),(y,v,P)e 3. Here K(s) is a nondecreasing function and
O<a<l

HyproTHESIS 3. — We suppose that A is uniformly superelliptic

Ap(w,u,P)-(6.8)2 (@) (< + (g — 1)|PE (@) +F ()| %) | B )

for some i,y > 0, and all (ac, u, P) edand e RY": and for some continuous
structure functions g € C(Q), E € C(Q,R™") and F € C(Q,R"*") such that
g(x)> 0 and E (x) is invertible for all x € Q.

We also assume the coefficient function B : 3 — R has critical polynomial
growth. In order to save ourselves a separate treatment of the case B = 0, we
agree that 2aM = 0 if @ = 0 and M = oco. Of course, condition (8) for M = o is
void.

HYPOTHESIS 4. — We suppose that B(x,u, P) is a Carathéodory function, i.e.
measurable in x and continuous in (u, P). Moreover, we assume that, for con-
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stants a,b € [0, 00[ and M € [0, 0],
(6) |B(x,u,P)| < g(x) (a|PE(x)+F (x)|"+b) and 2aM < y
for all (x,u,P)e 3 with |u| < M.

REMARK 1. — (a) Hypotheses 3 and 4 are usually stated with the constant
structure functions g =1, K =1 and F =0 as (3) and (2). This structure is,
however, disturbed by the procedure of “subtracting the boundary values and
straightening the boundary.”

(b) We have therefore already written Hypotheses 1 to 4 in a more general
form that is invariant under this procedure. To see this, suppose that
u € W4 (Q,R") is a solution of the Dirichlet problem

div A (2, w, Du)+B(x,u,Du)=0 in Q
U=¢q on 0Q s

with ¢ € C1*(2,R"). We consider a boundary chart y : B¥ — y(B¥) C Q such
that w(B")C Q and y(I")C 022, which together with its inverse y ' is of class
C'“. Then the function @ = (u — ¢)oy € W4 (B* ,R") solves the Dirichlet
problem

{ div A (x, i, Dit)+B (v, @, Dit)=0 in B

w=0 on [ .
Its coefficient functions are given by
Al P)£ =5() Ay (@) 0+ 7 (@), PE@) +F (@) (B (x)).
B(x,u, P)=g(2)B(y(x),u +f (x), PE(x)+F (x))
for (x,u, P)€ BT x RY x RN*" and & € RV*", where
(7) §=|detDy| , E=(Dy)" ,F=Dpoyandf=goy .

We notice that §, £ and F' are of class C°%, and f is of class C1* on BT. It is easy to
check that if A and B satisfy Hypotheses 1 to 4 then so do A and B, with possibly
different structure constants and functions. For example, if g =1, £ =1 and
F =0 then §, E and F are given by (7).

(¢) Including the factor ¢ — 1in Hypothesis 3 yields the smallness condition in
(6), and the uniformly strict monotonicity at zero

(A(x,u, P)—A(w,u,0))-P > | PP+y|P|"

in their familiar form (forg =1, E =1 and F = 0).
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We first state a classical result concerning partial regularity in the interior
for nonlinear superelliptic systems (see Theorems VI.2.1 and VI.2.2 of [5], [6],
[15], [19], [18], [9], [11], [1]). For an extension to nonlinear quasimonotone sys-
tems, we refer to [3] and [12].

THEOREM 1. — Let A and B satisfy Hypotheses 1 to 4, with exponent q¢ > 2. Let
u € WH(Q,RN), with

(8) suplu| < M,
Q
be a weak solution of the system
div A (x, w, Du)+B (2, u,Du)=0 .

Then there exists an open set Q, C Q, whose complement has Lebesgue
measure zero, such that the gradient Du is locally Holder continuous in Q,,
with the exponent 0 < a < 1 of Hypothesis 2:

u € C**(Q,,RY) and L"(2\ Q,)=0.
Moreover, the reqular set is characterized by

Q, = {ggo c€QR: sup({uxo.rk| + |D“xoﬂ‘k|)< oo and
keN

lilzn inf f |Du — Dy, 1, |* dow = 0 for some sequence 1y, \, 0} .
B, )

We now turn to the Dirichlet problem for nonlinear superelliptic systems. Our
main result is contained in the following

THEOREM 2. — Let A and B satisfy Hypotheses 1to 4, with exponent ¢ > 2. Let
Q be of class C**, and let p € C**(Q,R"). Let u € W*1(Q,RY), with

suplu — o < M ,
Q

be a weak solution of the Dirichlet problem

div A (xc, u, Du)+B (2, u,Du)=0 in Q
U=g on 0Q .

Then there exists a relatively open set Q, C Q, whose complement has
Lebesgue measure zero, such that the gradient Du is locally Hélder continuous
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m €2, with the exponent 0 < a < 1 of Hypothesis 2:
u e CH(2,,RN) and L£"(Q\ 2,)=0

Moreover, the regular set is characterized by

Q, = {xo € Q : sup(|Uugn | + |Dthay,|) < 00 and
keN

hm 1nf ]( |Du — Dy, 1| dow = 0 for some sequence 7 \, 0}

.Q7k(90'[))

Theorem 2 improves the characterization of the regular boundary set
02N Q, given by Grotowski [8]. In the case g = 2, he showed that if xy € 9Q
and

11m1nf f |Du () —Dg(x0) —¢ v(mo)|2 de=0
Q (o)

for some ¢ € RY then xy € Q,. Here vis a unit normal field to 08, and we know a
posteriori that & = D, (u — ¢) (). It is not difficult to see that a point x € 6Q
satisfying Grotowski’s criterion lies in the characterization of Q, as stated by
Theorem 2.

The example in [4] illustrates that singularities may occur at the boundary, in
spite of smooth boundary data. Example 1.1 in [8] shows that the Holder ex-
ponent a is indeed optimal. For bounds on the Hausdorff dimension of the sin-
gular set Q\ Q, in certain cases, we refer to the interesting recent papers [16],
[17] and [2].

Acknowledgements. 1 wish to thank Lisa Beck, Paul DeStefano and Giuseppe
Mingione for reading the manuscript.

2. — A decay estimate for the excess.

In what follows, all constants ¢ may depend on the data including the
coefficient functions A and B, and on the solution u itself. The Landau symbol
o(1) stands for any quantity for which lim 0(1)=0. We write B, (x)=
{x e R" : |x — xo| < 7}, B, = B,(0), and B = By for the unit ball (we also used
the symbol B in (1)); we write B, (w9)= {x € B,(): " > 0}, B} = B, (0), and
B* = B for the corresponding half-balls; and we write /' = {x € B: 2" =0}
for the equatorial hyperplane of the unit ball. For xy € Q and r > 0, we define
the intersection Q,(x9)= B,(%9)N&2. The mean of a function f on Q,(x) is
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denoted by

fuvr = J[fdxc”(szi(xo)) [ raa.

Q,.(x0) Q,(xp)

We assume Hypotheses 1 to 4 with ¢ > 2, and we let u € W7(Q, R"), subject
to (8), be a weak solution of system (1). We define the excess of Du on Q, (xo):

Uwo,r)= § (|Du— Dugy o [*+|Du — D |") div
Q,(x0)

In view of Remark 1(b), the conclusions of Theorems 1 and 2 follow in a
routine way from the next two propositions (see [5], pp. 197-199, [7], pp. 349-352,
[9], Section 5, [8], Section 3.6).

PROPOSITION 1. — Let L > 0 and t € 10, 1[ be given. Then there exist positive
constants ¢, (L), H(L,7) and &(L,t) such that if

BT(QCO)C Q,

Ugyr| S L, [ Dy e| <L and U (o, 7)< &
then
U (w0, 7)< e172U (wo, r) +Hr™" .

PROPOSITION 2. — Let Q = BT, and let u=0o0n I'. Let L > 0 and t € 10, 1[ be
given. Then there exist positive constants c, (L), H(L,t) and (L, ) such that if
B (z0)C BY with ag € I', | Dug, ;| < L and U(zg,r)< &

then
U(zo, )< 17U (o, 7)+Hr*" .

We provide a proof of Proposition 2. The proof of Proposition 1 is very similar,
and we shall list the necessary modifications at the end of the paper.

ProOF. - We will determine the constant c; later on. If the proposition were
not true then there would exist a sequence of half-balls B;f (xm) C Bt witha,, € I
such that, setting ®)

9) U =0, Py, = Dug,, s, , j-?n = U(ﬂcmﬂ”m) )
we have
(10) |um| <L, |Pm| <L, w0,

(®) u,,, will be nontrivial in the proof of Proposition 1.
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but
(11) U (@, 1) > c12 22

m + my‘%}f N
Since (11) implies 1,, > 0, we can define the rescaled functions

_ u(ocm + ""mz) —Up — TP - 2

W (2)=

for z € B*. We notice that

Tmhm

Du (@, + 7nz) =P

(12) Dw,, ()= . ,
(13) [wadrt =0, (Dw,),,=0.
T
Then (9) and (11) become
(14) ]f \Dw, |2 dz + 192 ]f \Dw,,|%dz =1,
B+ B+
-2 2a 2

(15) a1+ mi, P < ﬂDwm - (Dwm)o,r‘ dz

B+

382 f| D, — (Dwn), | de

Bf

From (14), (13) and Lemma 1 we immediately have
(16) meHWLZ(BﬂS C, /1%72)/q||wm||wl-q(3+)§ C.
We infer from (15), (14) and (10) that
(17) Ak N, 0 and 7, \, O .
By assumption (8) on u, and (10) and (17), we also note that
(18) |um| <M, Sup|um + PP - 2+ T/m/lmwm| <M,

B+

(19) SUP|1 A Wi | < 2M +0(1) .
B+

We denote the rescaled quantity (x,u,sDu + (1 —s)P,)e 3 for 0 <s <1:
Zim (8,2)= (X + 1wz, W + PP - 2+ PidogWin, Py + $huDin,)

It follows from (16) and (10) by compactness of the Sobolev imbeddings
W1#(B*) — L*(B") and W (B") — L%(B"), and of the trace W*(B") —
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L*(0B") that, on passing to a subsequence and relabelling, we have

Duw,, — Dw weakly in L?(B*,RV*") |
Wy — W in L2(B+,RY) |
Wy — W in L2(0B*,R") ,

(20) dmDwy, — 0 in L2(B+,RN*") ;
29472/ Day,, — 0 weakly in L¢(B*,RN*") ,
WDy, — 0 in LI(B*,R") (for ¢ > 2);
(X, U, Pr) — Zo = (0,40, Po) in 3,
Zm — Zo in L2([0,1] x B+, 3) .

Since w,, is linear on I", we deduce that also w is linear on I". In details,

Wy, = —1, Py -zand w=S-zon I,
where
(21) — ), Py — S in RNV
for the orthogonal projection =(2!,...,2")= (2',...,2""1,0) of R" onto
R" x {0}.

Now suppose that we can show that w € W'?(B*,R") is a weak solution of
the following linear system with constant coefficients:

(22) div (Ap(Zo)-Dw)=0 .
Then the function W = w — S - z € W'2(B*,R") solves the Dirichlet problem
{ div (Ap(Zo)-DW)=0 in B*
W=0 on [ .
We infer from Hypothesis 1 and (10) that
[Ar(Zo)| < ¢,
and from Hypothesis 3 that (22) is uniformly superelliptic:
Ap(Zo)-(€,8)> g(xo) x| for all & € RN .
Here we have used the estimate
(23) |EE ()| > €]

for some /. > 0, and all x € BT and & € RV*". Hence, from the relevant regularity
theory applied to the function W = w — S - z (see [7], Theorems 10.5, 10.7(10.29))
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we conclude that w is smooth on B U I and

S P P
Bf B

where by (20), (13) and (14)

_ 2 o 2
(25) Duwoy = 0 and BJf \Dw?dz < hygyng]f \Dwn[2de <1 .

On the other hand, if we also know that
26) Dw,, — Dw in L2(Bf,RN*") |
2PMDw,, — 0 in LY(BF,RN™") (for ¢ > 2)

then it would follow from (15) that
ct? < f‘Dw — Dwoyf|2 dz .
Bf

If we now choose ¢; = 2¢s, we obtain a contradiction to (24) and (25). This
proves the proposition. O

LEMMA 1. — (Poincaré boundary inequality) There exists a positive constant
¢(n,N,q) such that for every w € W4 (B*,R") with i wdH"1 = 0 we have
r

f|w|qdz < cf|Dw|‘7dz .
Bt B+
ProOF. — If the lemma were not true then there would exist a sequence of
functions w,, € W14 (B*,RN ) such that

1
n—1 __ q _ q _
fwde —O,f|wm| dz—landf|Dwm| dz<m .
T B Bt
Hence {w,,} is bounded in W¢(B* RN ), and by compactness of the relevant
operators, there exists a relabelled subsequence such that

Dw,,, — Dw weakly in LY (B*,RNX"’) ’
Wy, — W in Lq(B+7RN) :
Wy — W in L9 (aB+7RN) .

We deduce, using the weak sequential lower semicontinuity of the norm, that

fwdH"‘l =0, f|w|qdz =1 and f|Dw|qdz =0.
r B+ B

These equations cannot be simultaneously satisfied. a
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The remainder of this work is devoted to showing (22) and (26), which are the
assertions of Lemmas 3 and 5 respectively.

3. — Approximate solutions of rescaled systems.

In this section we show that w,, is, to order zero as m — oo, a weak solution of
a rescaled system of inequalities.

LEMMA 2. - For g € Wy'(B*,RN), wzthsup|(p| <occifa#0, ande >0, we
have

f f Ap(Z ))-(Dwy,, Do) ds dz

B+ 0

1
<a(g—-1)(1+ e)sz 9| (P + s2nDwy, ) E + F|q72|Dme|21”m/1m|go| dsdz
B+ 0
+ a0 (1) [t ol +0 (1) I ollyne -
Here the structure functions g, E and F are evaluated at x,, + rnz, and

f=2a(q-2)/(1+a)g <1

PrOOF. — Rescaling system (1) we find

[A(Z0(1.2)) Dodz =1, [ B(Z(1,2)) pdz

for every ¢ € Wy (B*,RY), with supg. |¢| < oo if @ # 0. So it follows that

1
[ [ 4r(Z0(5.2)) - (Dw,. Dy) ds dz
Bt 0

=) f (A(Zn(1,2))~A(Z,,(0,2))) Dp de
=1, rme )-pdz

- /'{;nlj(A (xm + Tz, U + PPy - 2+ Vi fey Wi, Pm)
B+
— A (&, U, Pr) ) - Do dz = (1) + (II) .

By virtue of Hypothesis 2, we estimate term (II) as follows using (10), (16),
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(17) and the Holder inequality

(A0 < 7, K (o] + [Pl) [ (4 7l Poal + T ) 1D 2
B+

< ey 1, (L4 i 72) 9 llwne = 0 (1) @l -
We next apply estimate (6) to term (I) and we use the inequality (x +y)?<
(1+¢)a? + ¢(e)y?. This gives
M < it [ (0| (Pou + 20D, )E + F|"+b) | d2

Bt

<a(l+e) f 928 2| Dw, B\ "7 @] dz + (&) 2, v ||| 2= (1) + (i) -
i

In the case ¢ =2, we are already finished. In the case ¢ > 2, the inequality
(¢ + y)Hg (1+&)a?2 + ¢(e)y?? yields

1
@) =a(g—1)(1+e) f f 918 7n D B2 D1 B2y Jon| 0| ds d
Bt 0

1
<a(g=1)(1+2)° [ [ g (Pu-+ 82D, ) B+ F|"*|D10 B 21,0l ds d
B+ 0

+ ac (8)[‘Dwm|27am/lm|(p| dz = (a) + (b) .
B+

Noting that 0 < 8 < g/ (q — 2)< 1 we estimate

1- 2 a
(b) < G/C”Tm)vm(o”l/x/} | |Dwm ”L’I ||T7)Z/Lm¢||ﬁﬁq/(q—2)

_ a _ _ 2
< ac (A7) gl (24721 Dawl| ) N0 -

moCm m

By (17) and (16), we thus obtain Lemma 2. O

By choosing for ¢ a test function in Lemma 2 and sending m — oo, we derive

LEMMA 3. — The function w € W2(B+,R") is a weak solution of the linear
superelliptic system with constant coefficients

div (Ap(Z)-Dw)=0,

satisfying the Dirichlet boundary condition w =S -z on I'. In particular, we
conclude that w is smooth on Bt U T.

Proor. — By Hypothesis 1, there exists a continuous, bounded and concave
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function w(t), with (0)= 0, such that
(28) |Ap(Z)~Ap(Zo)| < o(|Z — ZoP) (1 +|P|*7?)

for all Z = (x,u,P)€e 3.
For ¢ € C*(B*,R"), the right-hand side of (27) is easily seen to approach
zero as m — oo. Therefore, using (28), the boundedness of D¢, the Holder and

Jensen inequalities in combination with the boundedness and concavity of w(t),
(16), (20) and (10) we obtain

f Ap(Zy)-(Dw,, Dg) dz < f f Ap(Zy)-(Dw,, Dy) ds dz

+ f f (| Zn — Zof?) (1 + 2972 Dw,e| ) | Duw,,||\ Do) ds de
Bt 0

1 1/2
+c{ f [ (2. - 20P) dsdz} 1Dl
B+ 0

_2 ) -1
+ A2/ ()ODIY Dag, )

<o(1)+co' (fﬁz — 7| dsdz) —0(1) .

We conclude by (20) that

[ 4r(Z0)-(Dw,Dp) dz <0,
Bt

and the result follows by replacing ¢ by —g. O

4. — Convergence of the blow-up functions.

We introduce some further notation. We define the set
9) = {(m,u,v,P,Q)e QxRN xRN x RN x RN . |u), |v| < M} ,
and, by virtue of (18), functions Y,, € LY(B*,)) by
Yo = (€ + "2, Un + PP - 2 + P dn Wi, Uiy Py 2Dy
By (10), (17) and (20), we notice the limit
(29) Y, — Yo = (w0, ug, g, Po,0) in L*(BT,9) .
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Next, we define a bilinear form G(Y) on RN*" by

G(Y)-(¢.¢)= [ Ap(w,u, P +5Q)(£,¢) ds

—a(g—1)(1+2) (@) —v| [|(P+5QE(@)+F ()| ds (¢ (), ¢B(x))

for Y = (x,u,v,P,Q)c ® and ¢, & € RY*". By Hypotheses 1 and 3, and since
|u —v| < 2M, the bilinear form G(Y) depends continuously on Y € ) and sa-
tisfies the growth and positivity conditions

(30) G(Y)| <e(1+|P2+1QI"?) ,
(31) G(Y)-(&&)=7 (1 +1Q )P

for some y’ > 0, and all Y = (2,u,v,P,Q)€ ¥ and & € RN,
To see (31), we note by Hypothesis 3 that

1

G(Y)-(£.8)2 Tg() [ (1 +] (P +5Q)B(@)+F (2)|" %) ds [ () [,

0

with 7 = min(x, (y — 2aM (1 + 8)2) (¢ —1))> 0 for sufficiently small ¢ > 0. We
combine this with estimate (23) and with

LEMMA 4. — There exists a positive constant c(q) depending only on q > 2
such that for all P,Q € RN we have

1

[1P+5QI2ds > c(q) (IPI" 2 +1Q1" ) .
0

Proor. — The function

1
1 _
f(x):m f|1 —890|q zdS
0

is positive and continuous for x € [0, oo, and it satisfies
1

lim £ (@)= [ 52 ds = 1

2L—00 0 qfl

Hence ¢(q)= [(i)nf[ f > 0. This immediately implies the result. O
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LEMMA 5. — For 0 < r < 1, we have the limits
(32) Dw,, — Dw in L*(Bf ,RN*") ,
(33) A2/ Dy, — 0 in LI(B,RN™) (for ¢ > 2) .

PrOOF. — We fix 0 < < 1, and we let n € C°(B) be a cut-off function with
0<7n<1,and =1 on B,. In the proof we shall make use of the fact that, by
Lemma 3, the function w and its gradient Dw are bounded on suppy N B*. We

now insert ¢ = (w,, —w + (/lgq/len +8)2)€ Wg*q (B*,RN) in (27), for which by
21)

9 =n(wy —w)+o(1)
D¢ =n(Dwy, — Dw)+(w,, —w)@Dy+o(1) .

By Hypothesis 1, (10), (16), (17), (19) and (20), this easily yields

f 0G(Y,)- (Dw,, Dw,,) dz
B+

_ffl nAp(Zn) (D, Dwy,) ds dz

B+ 0

1
—a(g-1)(1+ s)sz N TP 2 + Vo Jom W |
B+ 0
x| (Py + $2Dwy ) E + F|* %\ Dw,, B ds dz

gfflnAp(Zm)-(Dwm,Dw) dsdz+o(1) ,

where g, E and F' are evaluated at «,, + 7,,2. Similar to the proof of Lemma 3, we
have

1
[ [ nap(Z,)-(Dw,.. Dw) ds dz < [ nAp(Zo)-(Drw,, Dw) dz +o(1) .
Bt 0 B+

By (20), we thus arrive at the key estimate

M—00

(34)  timsup [ 4G (Y,.)- (D, D) dz < [ nAp(Zo)-(Dw, D) dz
Bt B+

= [ #G(Yo)-(Dw, Dw) dz .

According to (31) and the definitions of # and Y,,, we have
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(35) 7 [ (1+ 74,2 Dw, | *~2) | Doy, — Do d2
B;

gfnG(Ym)~(Dwm — Dw, Dw,, — Dw) dz
Bt

< f 0G(Yn) (D1, D) dz + f 1G (Yo)-(Dw, Dw) dz

— [ 1(G(¥o)- (D, Dw)+G (o) - (Dw, D)) d2

+ cf\G 0)|(1+ |Duw,|) dz

Since G is continuous and satisfies (30), there exists a continuous, bounded and
concave function w(t), with w(0)= 0, such that

|G(Y)~G(Yo)| < o(|Y = Yol) (1 + [PI"*+|QI")
for all Y = (x,u,v, P, Q)€ ?). So we estimate the last term of (35) as

f|G 0)|(1+ |Dw,|) dz

< cfw (1Y = Yol2) (1 + | Dawye| + 2972\ Daw, ) dz
: Cw1/2< ][‘Ym - Yof* dz> 1+ ||Dwm||L2)+C’1§3¢ 2/ (1%72)/q||DwWL‘|LQ)q71: o(1).
B+

Here we have once more applied (10), the Hélder and Jensen inequalities, the
boundedness and concavity of w(t), (29) and (16).
We now infer from (35), using (34) for the first and (20) for the third term, that

7/ lim sup f 1+ 222 Dw,,|"*)|Dw,, — Dw[* dz

mM—00

< lim sup f 0G(Y,): (D, Dw,,) dz + f nG(Yy): (Dw, Dw) dz

Mm—00

— Tim [ 9(G(Yo)-(Dw,, Dw) +G (Yo)-(Dw, Duw,.)) dz

m—0o0

<(1+1-2) [ 4G(Yo)- (Dw, Dw) dz =0,



80 CHRISTOPH HAMBURGER

and we conclude that

lim [|Dw,, — Dwdz =0, lim 272 f |\ D |72 Diwyy — D2 dz =0 .
m—o00 m—o0
B B

The last equation implies

lim 74,2 [|Dw,|"dz =0,

m—0o0
B}
and we have shown that (32) and (33) hold. O

The proof of Proposition 1 is the same as the previous proof except for the
following four major modifications (see also [11]):

(a) We replace every half-ball by its corresponding ball.

(b) We set u,, = Uy, »,- Then the first equation of (13) is no longer valid, but
instead (wm)m: 0, so we deduce (16) from (14) by the Poincaré inequality.

(c) We pass from (22) directly to (24).

(d) We set ¢ = 5(w,, —w)e Wy'(B,R") in the proof of Lemma 5.
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