BOLLETTINO
UNIONE MATEMATICA ITALIANA

LUIGI AMBROSIO

The Flow Associated to Weakly Differentiable
Vector Fields: Recent Results and Open
Problems

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 10-B
(2007), n.1, p. 25-41.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10B_1_25_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per
motivi di ricerca e studio. Non é consentito 1’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=BUMI_2007_8_10B_1_25_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2007.



Bollettino U. M. 1.
(8) 10-B (2007), 25-41

The Flow Associated to Weakly Differentiable Vector Fields:
Recent Results and Open Problems.

Luict AMBROSIO (%)

Sunto. - In questa nota descriviamo alcuni recenti sviluppt della teoria dei flussi as-
sociati a campt vettoriali poco regolart rispetto alle variabili spaziali, ad esempio con
regolarita di tipo Sobolev o BV. Dopo aver illustrato alcune applicazioni a leggi di
conservazione e equaziont della fluidodinamica, diamo una presentazione di tipo
assiomatico del problema, usando un linguaggio di tipo probabilistico ispirato dalla
teoria di L.C. Young. Nella parte finale discutiamo dei risultati ancora pin recenti
sulla regolarita del flusso stesso rispetto alle variabili spaziali.

Summary. — In this note we describe some recent developments of the theory of flows
associated to vector fields with a low regularity with respect to the spatial variables,
Sfor instance with a Sobolev or BV regularity. After the illustration of some applica-
tions of this theory to conservation laws and PDE’s in fluid dynamics, we give an
axiomatic presentation of the problem, based on a probabilistic approach inspired by
the work of L.C. Young. In the final part we discuss very recent results on the regu-
larity of the flow itself with respect to the spatial variables.

1. — Motivation and description of the problem.

We are interested in solving the characteristic ODE for vector fields b(¢, x)
having a low regularity (e.g. Sobolev or BV) with respect to the spatial variables.
These fields naturally show up in many PDE’s, for instance in fluid mechanics and
conservation laws, where the regularizing effects of the PDE are very mild, or
absent.

A classical example is the 2 — d incompressible EULER equation, in the vor-
ticity formulation:

d
il + V- i) =0

Wy = with vy := curl wy.

(*) Conferenza tenuta a, Torino il 5 luglio 2006 in occasione del “Joint Meeting S.I.M.A.I. -
S.M.A.L. - S.M.F. - U.M.IL. sotto gli auspici dell’E.M.S. Mathematics and its Applications”.
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Here we can canonically represent v; as V*¢, for some scalar potential ¢,; the
coupling between density and velocity then becomes A, = w;, with constant
Dirichlet boundary conditions, to account for the fact that v; has no normal com-
ponent. The fact that the transport equation with a divergence-free field preserves
(and does not improve) the L? regularity and elliptic regularity theory give

well = well = v,eW?P,

Therefore, since all implications are optimal, we can’t expect, for initial vorticities
@ in LP, a velocity better than WP,

Informally, the problem we are interested to can be described as follows: we
are given a vector field

b(t,x): [0,T] x RY — R?

and we would like to select, for L%a.e. x (here and in the sequel L% stands for the
Lebesgue measure), a solution X (¢, x) to

{ 7)) = b(t, (D))
70) =

in such a way that this selection is stable with respect to smooth approximations
of b. At the same time, we want to give some axiomatic characterization of this
selection.

Notice that this is typically a weaker requirement, compared to the statement

(ODE)

for L'-a.e. x, there is a unique solution to the ODE.

As amatter of fact, the latter uniqueness result is open in many cases in which
the former holds (e.g. b € W' with p € (d, 00)), and known only under special
assumptions (e.g. LIPSCHITZ, one-sided LiPSCHITZ, OSGOOD, ...).

The first paper where this viewpoint is introduced is DIPERNA-LIONS [63],
where the problem is solved for fields with a Sobolev regularity w.r.t. the spatial
variables and absolutely continuous divergence, with a bounded density with
respect to L

More recently, there has been some progress on several aspects of this
theory, mainly:

o fields with a BV regularity w.r.t. the spatial variables and absolutely
continuous divergence bounded below (AMBROSIO, [7]);

e the axiomatic characterization of the flow;

e the regularity of the flow X(¢,x) w.r.t. x;

o the validity of quantitative stability estimates.

In this lecture I am going to illustrate all these aspects, referring to the
Lecture Notes [11] and [12] for a more detailed presentation of the state of the
art on this subject.
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2. — Two applications.

2.1 — The Keyfitz-Kranzer system.

Let us consider the Cauchy problem (studied in one space dimension by
KEYFITZ-KRANZER [75], and more recently by BRESSAN [36])

%-ﬁ-i:i(fqm)u):o w: R x (0, +00) — R"
ot = o ’ ’ ’

with the initial condition u(-,0) = % € L™ and f smooth. Formally, p = |u| sa-
tisfies the scalar equation

o Ko B
(1) 5T ; 7, (o) = 0.

If we also assume that p = |4 € L>° N BV}, then KRUZKHOV’s theory [57]
provides us with the entropy solution, with the same regularity.

In order to obtain a solution of (KK) we can formally decouple it, considering
the scalar conservation law for p and a system of transport equations

90 o
a*‘;a—wi(fi(p)@ =0

with the initial condition 6(0,-) = 6 (here u = Op, % = 0Ju|, || = |0| = 1). Now, a
formal solution to the system, fulfilling || = 1, is given by

0,2 = 0(1X, )17 @),

where X(t,x) is the forward flow associated to b = f(p). This field is bounded,
BV, but its divergence is not absolutely continuous: indeed, its divergence is
— O p, that is not better than a measure (due to the fact that even entropy so-
lubions may develop discontinuities in a finite time).

However, we can use the PDE

LoV () =0,
to view b = f(p) as a part of the divergence-free, autonomous and BV),. space-
time field B = (p,f(p)). Using the flow associated to B we can recover, via a
reparameterization, a flow associated to b.

This is the “Lagrangian” strategy used in AMBROSI0-DE LELLIS [8] to prove
existence of solutions to (KK) when p~! € L. Later on, using a more “Eulerian”
strategy, this has been improved in AMBROSIO-BOUCHUT-DE LELLIS. [13], re-
moving the assumption p~! € L™,
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2.2 — The semi-geostrophic equation.

The semigeostrophic equations are a simplifies model of the atmosphere/
ocean flows [54], described by the system of transport equations

d
%aZP‘FU'Van = —u2+81p

(SGE) %81p+u~V81p: —uy — Gp

d
aagp—Fu-V@gp—O.

Here u, the velocity, is a divergence-free field, p is the pressure and
p:= —03p represents the density of the fluid. We consider the problem in
[0,7T] x 2, with Q bounded and convex. Initial conditions are given on the
pressure and a no-flux condition through 02 is imposed for all times.

Introducing the modified pressure Py(x) := py(x) + (¥F + 22)/2, (SGE) can be
written in a more compact form as

d 0 -1 0
(2) —VP+u-V?2P=J(VP—-x) with J:=[1 0 0].
dt 0 0 0

Existence (and uniqueness) of solutions are still open for this problem. In [23]
and [55], existence results have been obtained in the so-called dual coordinates,
where we replace the physical variable « by X = VP;(x). Under this change of
variables, and assuming P; to be convex, the system becomes

3) LoD, W) =0 with U,00) = J(X ~ VP{(X)

with a; := (VPy) (L) (here we denote by L, the restriction of L to Q). Indeed,
for any test function ¢ we can use the fact that u is divergence-free to obtain:

d d
e f oda; = f Vo(VP) - 2 VPida

R¢ R?
- f Vo(VP) - J(VP, — ) dac + f Vo(VP)V2P; - u dic
R? RY
:jV(p-J(X — VP day +IV(¢O VP) - udx
RY R¢
- j Vo U, da.

R?
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Existence of a solution to (3) can be obtained by a suitable time discretization
scheme. Now the question is: can we go back to the original physical variables ?
An important step forward has been achieved by CULLEN and FELDMAN in [56],
with the concept of Lagrangian solution of (SGE).

Taking into account that the vector field U(X) =J(X — VP;(X)) is BV,
bounded and divergence-free, there is a well defined, stable and measure pre-
serving flow X (¢, X) = X;(X) relative to U. This flow can be carried back to the
physical space with the transformation

F’t(ﬂ’/') = VP: OXt ] VPo(x),

thus defining maps F; preserving L?).
Using the stability theorem can also show that Z;(x) := VP,(Fy(x)) solve, in
the distributions sense, the Lagrangian form of (2), i.e.

(4) L 2w) = 12~ P

This provides us with a sort of weak solution of (2), and it is still an open
problem how the Eulerian form could be recovered.

2.3 — Some open problems.

One of the open problems is to extend the theory to BV fields b of bounded
compression, namely such that the continuity equation starting from p = 1 has
a bounded solution p. This requirement is weaker than boundedness of the
negative part of the divergence, and it is related to a compactness conjecture
recently made by BRESSAN. Indeed, examples of vector fields with bounded
compression and unbounded divergence are provided exactly by the Keyfitz-
Kranzer system, as the solution p of (1) is bounded, by the maximum principle
in the context of entropy solutions to scalar conservation laws. This problem is
discussed is discussed in AMBROSIO-DE LELLIS-MALY [18], and solved for SBV
velocity fields (namely, those fields b whose distributional derivative Db has no
Cantor part, i.e. has only an absolutely continuous part and a part concentrated
on hypersurfaces). Surprisingly, this finer regularity is not known even for
entropy solutions of scalar conservation laws, except for the 1-dimensional
case, where it is proved (using the Hopf-Lax formula) by AMBROSI0-DE LELLIS
in [9].

Another open problem is the regularity of solutions: this is obviously re-
lated to the regularity of the flow, that we will discuss in the final part of this
lecture.
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3. — An axiomatic characterization of the flow.

In this section we will present an axiomatic characterization of the flow that
can be used, in many specific situations, to obtain existence, uniqueness and
stability properties of the flow itself.

DEFINITION 1 [Flow associated to b]. — We say that X is a flow associated
to b if

o X(-,x) is an absolutely continuous solution of y'(t) = b(t,»(t)) in [0,T],
starting from x, for L%-a.e. ; in other words, the integral identity

t
X(tx)=x+ f b(e,X(r,x)dr Vi el0,T]
0

holds for Li-ge x € Rd;
o X(t, -)#Ld < cL* for some constant C independent of t, 1.e.

) [oxtandz <c[o@de  vpeC®D, =0
R RY
This is slightly different from the DIPERNA-LIONS axiomatization: first, only
upper bounds on the measure produced by the flow are imposed; second, the
semigroup property

X(s—t,X(t,x) =X(s,x) Ld—a.e., forall0< t< s< T

is not an axiom, but a theorem (see Remark 31 of [12] for a detailed proof). In this
connection, let us notice that at least the absolute continuity of X(t, -)#Ld is
needed to make the notion of flow invariant with respect to modifications of b in
L% negligible sets. Indeed, assume that {b # b'} is L '-negligible and that X
satifies the first condition in the definition of flow, relative to b; then, if X (¢, -)#Ld
is absolutely continuous for L'-a.e. t, by Fubini’s theorem we obtain that

X(t, 4L ({y+ bity) # b y}) =0
for L'-a.e. t, hence
L™ ({t@) : b(t, X, x) # b/, X (¢, x)}) = 0.
Again Fubini’s theorem gives that
L'({t: bt X(t,0) # b, X(t,0)}) =0

for L%-a.e. x. Hence, for any such x, the first condition in the definition of the flow
is satified with b whenever it is satified with &'.
The difference between the two approaches in [63] and [7] can be better ex-
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plained recalling the following two well-known facts:

o IfY(¢,s,x)isthe characteristic at ¢ starting from x at time s (so that X (¢, x) =
Y(,0,x)), then Y (¢, -, -) formally solve the system of transport equations

%Y(t, s, )+ b(s,x) - V,.Y(t,s,2)=0  in (0,T) x R

e The density p(t) = X (¢, )4L" produced by any choice of characteristies of
the ODE solves the continuity equation

%u(tww (bt u®) =0 in D' (0,T) x RY).

So, while in the DIPERNA-LIONS [63] approach one uses the well-posedness of
the transport problem to show uniqueness of characteristics, in the approach
developed in [7] only the continuity equation is involved, choosing suitable fa-
milies of characteristics to produce different solutions of the continuity equation.

3.1 — The probabilistic viewpoint.

Inspired by L.C.YOUNG theory [98], we consider measures in the space of
continuous maps, and invextigate the uniqueness and stability of the flow at this
level. In the context of fluid mechanics, this is also related to the study of gen-
eralized geodesics in the space of measure-preserving maps, extensively studied
by BRENIER and (see [27], [28], [29], [30]) in connection with weak solutions to the
incompressible EULER equation

d
%v—s—v-(v@v)ﬁ—Vp:O, V-v=0.

Let us introduce the following notation: we shall denote by I" the space
c(o, 17, Rd) and by e; : ' — R? are the evaluation maps,

er(y) :== () te[0,T].

The following result (see Theorem 8.2.1 in [15], and also [11]), shows that
there exists a close link between solutions of the continuity equation and mea-
sures in I” concentrated on solutions of the ODE. See also [71] for the stochastic
counterpart of this result.

THEOREM 2 [Probabilistic representation]. — Letb € L™ and let n € P(Rd xI)
be concentrated on the pairs (x,y) solutions to the ODE. Then u(t) := (e;) 4 solve
the continuity equation

% ud) + V- (bt u®) =0 in D' (0,T) x RY.
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Conversely, any solution of the continuity equation above can be represented as
(e)4n for a suitable 1.

This result allows several constructions (e.g. localizing with respect to initial
and/or final position) that are not easy to perform at the “bottom” level of the
continuity equation.

3.2 — Euxistence, uniqueness and stability properties.

In this section we illustrate the close relation between the well-posedness of
the continuity equation and the existence and uniqueness of the flow. Very re-
cently, these links have been further investigated by FIGALLI in [71] who found
the stochastic counterpart of these results: well-posedness of the Fokker-Planck
equation (corresponding, in the deterministic case, to the continuity equation) is
tightly related to a kind of “generic uniqueness” of martingale solutions to the
corresponding SDE (corresponding, in the deterministic case, to the ODE).

THEOREM 3. — Ifthe continuity equation has a unique solution in L> (L) for
any mitial datum i € L™, then the flow exists and is uniquey determined up to
Ld-negligible sets.

SKETCH OF PROOF. Existence of solutions to the continuity equation implies,
by the probabilistic representation, existence of a “generalized flow”, namely a
family of measures {7, }, « € RY, satisfying:

(@) n, is concentrated on absolutely continuous solutions to the ODE
starting from «;
(b) fd £ p(ey(y) dn,(y) di(x) < C fd o(y) dy for any nonnegative ¢ € C,(R%).
R R
The problem is to show that #, are Dirac masses for si-a.e. x. This result can
be achieved using the well-posedness of the continuity equation, thanks to the
following criterion.

THEOREM 4. — Let 1, be a generalized flow. If the continuity equation with
any witial datum g < v € L™ is well posed in L>°(L>), then n, is a Dirac mass
for v-a.e. x.

The proof (see [7], or Lemma 15 and Theorem 18 in [11]) is achieved by a kind
of dyadic decomposition of RY: if 1, happen not to be Dirac masses in a set with
positive v-measure, we find two solutions of the continuity equation with the
same initial value g <, that become orthogonal before time 7. So, using
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Theorem 4 and denoting #, = dx. »), We have recovered our deterministic flow
and proved Theorem 5.

Now, let us analyze some specific cases: it turns out that the continuity
equation is well-posed in L*°(L*°) (and therefore the whole previous theory ap-
plies) in the case of a Sobolev or BV regularity with respect to the spatial
variables, if one assumes uniform bounds on the divergence of b and |b| (under
weaker assumptions one can still hope to obtain well-posedness in smaller
function spaces for which still Theorem 4 applies).

The proof of the well-posedness in L*>*(L>) is based on a careful regulariza-
tion of the PDE

d
prd + Vg - (bwy) =0

that allows to show that all solutions are renormalized, i.e.
d

Starting from the Sobolev case studied in [63], this required several
technical refinements, by L1oNs [78], BoucHUT [33], COLOMBINI-LERNER [46],
[47], and finally AMBROSIO [7]. In the BV case the key idea has been in-
troduced in [33], of smoothing the PDE faster in the directions where b is less
regular, compared to those where b is more regular (in the case of a jump
discontinuity, for instance, the normal and the tangential directions to the
jump set, respectively). The BV regularity seems to be critical, at least for the
techniques presently known.

The flow built by the previous procedure is also stable with respect to many
approximations. Here I illustrate a typical result.

THEOREM 5. — Assume that b, — b in L. ., that

Sup bl < oo,
and assume that X;, are flows relative to by, satisfying, for some constant C,

X)(t, )L <CL*  vte[0,T], heN.

Then, if the continuity equation in L™ with the velocity field b is well posed, we
have

lim sup |Xt,x) — X (¢, x)|de=0 VR, T > 0.
h—00 B, €107

Again, the proof is achieved by looking at the convergence of the Young
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measures induced by X, whose limit induces a generalized flow, see in particular
[7], or Theorem 21 and Lemma 22 of [11].

3.3 — Other extensions and open problems

e The extension of these results from KEuclidean spaces to Riemannian
manifolds is not difficult. More problematic seems to be the extension to Non-
Euclidean geometries: for instance horizontal vector fields of the form

b(x) =) ci@X ;@)
i=1

where (X1, ...,X,,) satisfy HORMANDER’s condition and ¢; are Sobolev functions,
in the sense of FOLLAND-STEIN.

e In infinite dimensions (potentially interesting for applications to PDE’s),
very little appears to be known: the only available results, by BOGACHEV-WOLF
[26] (see also [51], [52], [53]) require exponential integrability both of the
divergence and of the spatial derivative of the field b, w.r.t. a Gaussian
measure j.

4. — Regularity of the flow w.r.t. the spatial variables.

What can we say about the regularity of the flow X (¢, -)? Recently, LE BRris-
Li1ons [76] proved, in the Sobolev case, the following differentiability property,
that we call differentiability in measure

(6) lsif(? Az + gyg) — XG0 _ W(t,x,y) locally in measure in R? x RZ

Recall that a sequence (f,,) is said to be locally convergent in measure to f in a
domain @ if the measure of all sets K N {|f, —f| > ¢} tends to 0 for all ¢ > 0 and
K C Q compact; equivalently if the truncated functions min{1, |f;, — f|} converge
to 0in L] .. Notice that the dfferentiability property above is very weak for two
reasons: first, an averaging with respect to the increment y is involved; second,
convergence occurs only in measure. This result raises in a natural way the

following questions:

e What is the nature of W ?

e Are there relations with other weak differentiability properties, as for
instance the approximate differentiability (a concept deeply investigated
in [70]) ?
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e Can we infer from (6), as it happens for approximate differentiability,
some kind of “Local Lipschitz” regularity of the flow ?

Before collecting a few answers to the questions above, let us remark that the
proof by LE BRrIs-LIoNs is based on the nice observation that the difference
quotients

(s Rt =10

are characteristics for the 2d-dimensional velocity field

bt,x +ey) — b(t, oc))

&

Bi(t.x.y) = <b(t, 2,

Therefore, a suitable extension of the theory of renormalized solutions for the
limit field

B(t,x,y) := (b, x), V:b(t, x)y)

provides the result. Here BOUCHUT’s anisotropic commutator argument [33] can
be used with success because, even though B is oly measurable with respect to x,
this lack of regularity occurs for the last d components, the ones corresponding
to the y variable.

The following result shows that, at least in the W case, with p > 1, a “local”
Lipschitz porperty of the flow holds. Here “local” should not be understood in the
topological sense but, rather, in the measure-theoretic sense, as in Lusin’s the-
orem concerning measurable functions.

THEOREM 6 (A.-Lecumberry-Maniglia, [16]). — Assume that b € Ll(Wl’p )N

loc

L>(L*>), with p > 1. Then, forany R, ¢ > 0we can find K C Bg x [0, T]such that
Ld”([O, TIxBrp\K)<e¢ and X|g is a Lipschitz function.

This result shows that the classical CAUCHY-LIPSCHITZ theory is much closer
than expected to the “weak” theory: it suffices to remove sets of small measure.
In particular all classical identities of the CAUCHY-LIPSCHITZ calculus hold, e.g.

) d _ 14 \-l7d
X, )upL _7detVX(t,ac)OX(t’ ) L%

In a joint work with MALY [17], I proved that, for a generic map f, the “LUSIN-
LipscHITZ” property described above is stronger than differentiability in mea-
sure:

lim
el0

Je+ey) — f)
€

=U(x,y) locally in measure in Rﬁ X R;.
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In turn, differentiability in measure is equivalent to

f@+ hy) — fx) — M(x)y
h

for ally € R”, for some matrix-valued Borel map M(x). Finally, M is related to U
by

— 0 locally in measure as & | 0

M)y =Ux,y) for L*-a.e. (x, ).

Now, let us come back to the proof of Theorem 6: we formally know, by spatial
differentiation of the ODE, that £|VX| < |Vb|VX], so that

log (1 + |VX(&,2)|) §f |[Vb(X(s,x))|ds.

Even though the weak theory is stable w.r.t. smooth approximations, we can’t
extend the bound above in this form even if we integrate it in space: this is due to
the fact that the concavity of the logarithm prevents the lower semicontinuity of

g.—>flog(1 + |Vg)) d.

The key idea is then to replace the gradient by a difference quotient; after an
integration and a change of variable, this leads to the estimate

t
) flog (1+TdIWdy>§ C(d)f f|Vb|ﬁdsdy.

BR B,(ﬂf) 0 BR+(7ﬁ

These integral estimates on the difference quotients of X give, in particular, the
LusIN-LipScHITZ property. The quantity |Vf |j in the previous inequality is the
maximal function of |Vf|, defined by

IVf[ @) := sup — f IV |(y) dy.

re(0,1) B )

In the proof of (7) we use the classical maximal inequality (valid at Lebesgue
points)

@) = f@l < C@| |V @) + [Vf @) le =y

and the fact that |Vf| € L?, p > 1, implies |Vf|* € L?. This inequality holds even
for BV functions, but |Vf |ﬁ fails to be integrable in general, even when f € W1,
For this reason we presently don’t know whether these results can be extended
up to the W1 or the BV case.

This approach has been further developed by CrippA-DE LELLIS [50], that
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obtained:

e A quantitative Lusin-Lipschitz property;
e A quantitative stability (and uniqueness) property, of the form
1

X' (6.2) - X2 |y < C '
[ 1) log|by — b2l 115,

Furthermore, the constant C in the bounds above depends only on the
compressibility constant of the flow (as defined by (5)) and not on pointwise
bounds on the divergence of b. Therefore these estimates provide a new con-
struction of the flow “by completion”, an approach completely independent of the
theory of renormalized solutions.
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