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Bollettino U. M. 1.
(8) 10-B (2007), 237-252

A Result About
C?-Rectifiability of One-Dimensional Rectifiable Sets.
Application to a Class of One-Dimensional Integral Currents.

SILVANO DELLADIO

Sunto. — Siano 7,7 : [a,b] — R*"! due mappe Lipschitziane tali che y' = +|y'|t, quasi
ovunque m [a,bl. Allora y([a,b]) & un insieme C2-rettificabile, ossia esso é incluso
(eccetto per unm insieme di misura nulla) in una unione numerabile di sottovarieta
uno-dimensionali di R*' di classe C2. Di consequenza, la proiezione del carrier
rettificabile di un grafico di Gauss generalizzato uno-dimensionale é un insieme C?-
rettificabile.

Summary. — Let ,7 : [a,b] — R¥™ be a couple of Lipschitz maps such that y' = +|y'|t
almost everywhere in [a,b]. Then y(a,b]) is a C2-rectifiable set, namely it may be
covered by countably many curves of class C% embedded in R*'. As a conseguence,
projecting the rectifiable carrier of a one-dimensional generalized Gauss graph
provides a C?-vectifiable set.

1. — Introduction.

Letf € CY(R"), F € C'(R",R") and consider the closed set
K :={x e R"|Vf(x) = F(x)}.

Observe that if x, is an internal point of K then f is of class C? within a small
ball centered at xo. Thus, in particular, the graph of f|K° is CZ-rectifiable.
Recall that a subset of a Euclidean space is said to be C?-rectifiable if H"-al-
most all of it may be covered by countably many n-dimensional submanifolds of
class C?, [1]. As an obvious consequence, the graph of f|K has to be C?-recti-
fiable provided

(1.1) LYK\K®) = 0.
Quite surprisingly, this fact does not necessarily occur without assuming con-

dition (1.1). For the convenience of the reader, we shall now present a counter-
example and retrace some steps from [1, Appendix], where such a counter-
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example is given. Let » = 1 and

(1.2) F@) =0, fQ):= f distt, B)?dt (@€ R)
0

where E is a certain Cantor-like set of positive measure. Then K = E (thus
K\K° = K has positive measure) and the graph of f|K = f|E is not C?-rectifiable,
as it follows at once from the following result:

For every ¢ € C%(R), the closed set

Co={p=flE} ={xc E| o =f)}

does not contain points of density. Thus L',l(Cq,) =0.

In order to verify such a statement, assume by absurd that a point x of
density of C, exists. Then an easy argument shows that ¢'(xy) = 0, compare [7,
Proof of Lemma 3.1], hence a positive constant ¢ has to exist such that

|f@) — f(xo)] = |p(@) — plvg) — ¢ (o) — x0)| < el — x|

for all x € C,, with |x — x| < 1. If f:=1 and F,, denotes the set which corre-
sponds to the constant ¢ according to [1, Proposition 4.5], it follows that

FyoNleo — 1,200 +1] C [wg — 1,20 + 1\C,

by (a) in [1, Proposition 4.5]. As a consequence F,, has density zero at xy, which
contradicts (b) in [1, Proposition 4.5].

By invoking [5, Remark 4.1], one can immediately get convinced that the
arguments above may be restated in the context of countably n-rectifiable sets G
generalizing the notion of Gauss map graph, namely such that

GCR"™ x8"
and
(1.3) v L Tp(rG)
is satisfied at a.e. (P,v) € G such that d(z|G)p exists and has rank n, where n
denotes the projection on the first component, i.e. 7(P,v) := P. In particular, the

set 7G has not necessarily to be C2-rectifiable and the function f defined in (1.2)
provides again an easy counterexample. Indeed, the set

(1.4) G := {(@, f@);0,1))|x € E} c R* x S

is obviously 1-rectifiable and condition (1.3) is satisfied, in that Tp(nG) coincides
with the x-axis at every P € nG. But nG is just the graph of f|E which, as we have
recalled above, is not C2-rectifiable.

Incredibly enough, for quite a long time after [1] appeared, the people



A RESULT ABOUT C2:RECTIFIABILITY OF ONE-DIMENSIONAL ETC. 239

working on this subject continued to try to prove that the image by 7 of a set G as
above had to be countably n-rectifiable of class C2. Such a (false) statement
seemed actually to be proved by Fu in the paper [9], which was followed by [5]
where a simpler proof was presented. Subsequently, a mistake was found in the
Fu’s argument, see [6] and its successive generalization [7] (see also [10] for
further details). Eventually, in a recent private comunication, Fu brought the
counterexample in [1] to our attention.

As for the bug consequently affecting the proof in [5], one can easily verify
that it is necessarily due to the preliminary result [1, Lemma 3.6]. Indeed such a
result erroneously asserts that a certain number a, involved in its statement,
depends on only the Lipschitz constant A of the tangent spaces field and more
precisely that

1

“A) =541

e.g. for the set R defined in (1.4), one has a(4) = a(0) = 1/2. Actually, if this were
true, the simple Proposition 4.6 in [5] would imply (via the Whitney extension
Theorem, invoked in [5, Theorem 3.1]) the C2-rectifiability of #G. On the other
hand, the falseness of [5, Proposition 4.6] can also be proved by a direct com-
putation based on the example exhibited in [6, § 4.2]. In fact, if f € C'(R) is the
function considered in such an example, [5, Proposition 4.6] would yield the ex-
istence of 1 > 0 such that

fle) < g, g =27

provided j is big enough. But this inequality contradicts [6, Proposition 4.3],
according to which one has

tim 7% ~ tim 3, 1) = +oo.
J & J "

The main achievement of the present work is the following result:

THEOREM 1.1. — Let be given a couple of Lipschitz maps
.71 [a,b] — RM!
and o : [a,b] — {£ 1} satisfying the equality
(1.5) Y =alyle
almost everywhere in [a,b]. Then y(a, b)) is a C2-rectifiable set.

As a consequence of Theorem 1.1, we finally get a sufficient condition for the
C?-rectifiability of 73, where G is a one-dimensional set of the type described



240 SILVANO DELLADIO

above. More precisely, in Theorem 5.1 we state that nG is C?-rectifiable, provided
G carries a one-dimensional generalized Gauss graph in R*, [2, 4].

From our point of view, the context of generalized Gauss graphs is the one
where the fallacious arguments discussed above emerged and where we expect
to find interesting applications to geometric variational problems. Theorem 5.1
represents the first step of a long term program. Future work will naturally be
devoted to extend such a result in two different directions, corresponding re-
spectively to higher dimension and higher order of rectifiability.

2. — Preliminaries I (general dimension).

Let n,k be a couple of positive integers and denote by G(n + k,n) the
Grassmannian manifold of all #-dimensional linear subspaces of R"**. If V is
a linear subspace of R™" then its orthogonal complement is indicated with
V+, while Py is the orthogonal projection mapping R"* onto V. If
V,W € G(n + k,n), then L(V,W) is the vector space of linear operators from
V to W. The graph of L € £L(V,W) is denoted by Gy..

DEFINITION 2.1. - Given an integer 1 >1, a real number >0 and
V € Gn + k,n), let us define the set

rv,0) = {Q e R™" : 1Q - PvQ| > oPvaQl'}.
REMARK 2.1. — The space V* is a subset of I";(V, d), for all J and <.

The following simple result characterizes the n-dimensional subspaces not
intersecting (except for the origin!) the cone I'1(V, ).

PROPOSITION 2.1. — Let W € G(n + k,n). Then

(2.1) WA (V,0) = {0}
if and only if there exists L € L(V,VL) such that
W=a., || <o

PROOF. — Assume that (2.1) holds. Let {wy, ..., w,} be a basis of W and set
vi::PVwi (’L:L,W,)

Let us prove that the v; are linearly independent (hence a basis of V). Indeed, if ¢;
(# =1,...,n) are real constants such that

Z CiV; = 0 ie. PV <i ciwi> = 07
i 1=1



A RESULT ABOUT C2:RECTIFIABILITY OF ONE-DIMENSIONAL ETC. 241

then, by recalling Remark 2.1, we find
> cw; e VEAW C Iy(V,6) N W = {0}.
=1

It follows that ¢; = 0 (for ¢ = 1,...,n), hence {v1,...,v,} is a basis of V. Then W
is just the graph of the linear operator L : V — V* such that

L(v;) = w; — Pyw; = w; — v; G=1,...,n).

In order to prove that ||L| < o, consider v € V\{0} and observe that, since
v+ Lv € W\{0} and (2.1) holds, then

v+ Lv & I'1(V,0).
It follows that
[v+ Lv — Py(v + Lw)| < §|Py(v + Lv)|
ie.
|Lv| < dv.

Vice versa, suppose that W coincides with the graph of a linear operator
L :V — V* such that ||L|| < J. Then consider @ € W\{0}, i.e. @ = v + Lo for
some v € V\{0}. One has

|Q — Pv@Q| = [Lv| < [|L]| |[v] < év| = d|PvQ)|
namely @ ¢ I'1(V, ). Hence W N I'1(V,9) = {0}. O

Now we shall prove the following expected result.

PROPOSITION 2.2. — Let A, u be positive real numbers and Vo,V € G(n + k,n)
satisfy

vnri(vp,A) ={0}.

Then there exists ¥ = 7(4, u, Vi, V) positive, continuous in its arguments and
such that

I'T(Vo, ) N Br(0) C I'2(V, ).
PROOF. — Lete € S 1(V), ¢ € S¥"1(V+) and define
(4 Z:PV‘]@, &0 ::PVOE, e 2:6—60:PVOL€, &1 ::8_80:PV0L£

A:=2legl —lerl?, Bi=ley-e—es e, C:=2Fel*— e[’

Then one has

se+te € I'1(Vy, )
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if and only if
|sey + tei| > Alseg + teo|
ie.
As® +2Bst + Ct* < 0.
Since A > 0, in that e ¢ I'1(Vy, 2), this inequality is equivalent to
(As + Bty — (B2 — AC)#* < 0.

It follows that

(i) if B2 — AC < 0 then I'1(Vy, 2) N [e, el = {0};
(i) if B2 —AC >0 then I';(Vy,2)N[e,¢] is the cone included in [e,¢l,
bounded by the lines

As + (B (B —AC)I/z)t —0, As+ (B (B —AC)l/z)t )

and not containing e (indeed e € V and V N I'1(Vy, 1) = {0}).
On the other hand, one has

TV, nle,el = {se+te| [t| > pus®}
hence the set
I(e,e) == {r > 0| I'1(Vo, ) N[e,el N B,(0) C I's(V, 1)}

is a compact interval, with

r(e,e) := maxlI(e,e) >0
for all (e, ¢) belonging to

K = {(e,e) € 8" (V) x 8" '(v})| B2 — AC > 0}.

Since 7 : K — R is continuous and K is compact, there exists (¢,&) € K such that

r:=1r(e8 = n}}nr > 0.
Then

I'i(Vo, ) Nle,elNBr(0) C I'o(V, 1)

for all (e,¢) € K. Now the conclusion follows by observing that

I'(Vo, ) = U I'1(Vo,)Nle,el
(e.0)eS" 1 (V)xS* (VL)
O

COROLLARY 2.1. — Let A, ., u be positive real numbers with A > J. and let
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Vo € G + k,n). Then there exists p = p(J, i, 1, Vo) > 0 such that
I'1(Vo, 2) N B,(0) C I's(V, )
for all V € G(n + k,n) such that V n I'1(Vy, 1) = {0}.

Proor. — The image of the compact ball
B:={Le LWV, V| IIL|| < 1}
through the continuous map
G:LWVy,Vy)— G +k,m), L—Gy
has to be compact. Then the function
GB) >V =70, 1, Vo, V)

has a minimizer, by Proposition 2.2. If p = p(4, 1, u, Vo) denotes the corre-
sponding minimum value, then one obviously has

I'1(Vo,2) N By(0) C I's(Gy, 1)

for all L € B. Finally, Proposition 2.1 completes the proof. O

3. — Preliminaries II (dimension one).

In this section we will deal with the special case » = 1. We begin by stating a
very simple preliminary result.
LEMMA 3.1. — Let A be a closed subset of R and
fid:A—R
be a couple of bounded functions such that
(3.1) | f@) — f@) — d@)y — x)| < Cly —
for all x,y € A, where C is a constant. Then there exists F € CY1(R) such that
FlA=f.
Proor. — The inequality (3.1) yields
|(d(@) — d)(y — @) =|d@)(y — ) +f@) — f@) + dy)c —y) + @) — @)
<|d@)y — @) +f@) — @] + |[dy) —y) + @) — f@)]
<2Cly —f*
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ie
|d(x) — d(y)| < 2Cly — x|
for all x,4 € A. The conclusion follows at once from the Whitney extension

Theorem [14, §2.3]. |

Actually the result we will need to invoke below is the following immediate
corollary of Lemma 3.1.

PROPOSITION 3.1. — Let f € CY(R) be such that
(3.2) | f@) — f@) - f@)y — )| < Cly - af

for all x,y in a bounded set M C R, where C is a constant. Then there exists

F € CYY(R) such that F|M = f|M.

PROOF. — By continuity, the inequality (3.2) holds for all 2, € M. Then apply
Lemma 3.1 with A := M and d := f'|M. O

Now we are ready to prove the following theorem.

THEOREM 3.1. — Let E be a H'-measurable subset of R*1. Assume that there
exist

Vo e Gk +1,1), Ay, >0
and a field of lines
E—-Gk+1,1), a—W,
such that
W, N I1(Vy, 4) = {0}, En(a+T2(We,1)") NBr(a) =0
forall a € E. Then E is C%-rectifiable.
PROOF. — Let 2 > J. Then, by Corollary 2.1, there exists a positive real num-

ber p = p(4, A, i, Vp) such that

I'1(Vo, 2) N B,(0) C I's(Wq, 1)
for all @ € E. Recalling the assumed condition, we get
(3.3) En(a+I'1(Vo,2)°) NBy(a) CEN(a+ I'e(Wq,1)°) NByla) =
for all @ € E, where

p:=min{p,r}.
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It follows that E is a C'-rectifiable set, by [11, Lemma 15.13]. Then, without
affecting the generality of our argument, we may assume that there exist a
function

f € C'(Vo,R") =~ CY(R,R")
and a measurable set
McVWW=R
such that
E = Gpu

and M (hence E) has density one at all of its points. Since £ is a countable union
of measurable sets of diameter less than p, we can also suppose that

E C By(a) C By(a)
for all ¢ € E. Hence
(3.4) En(a+I1(Vo,)°) =En (a+ Fe(Wy, 1)) =0

for all @ € E, by (3.3).
Now, let us consider xy,x € M and define

Py := (o, f(20)), P = (x, f(x)), 7= (1, f'(x)), Ti=—
and
4:= P — Py + (x —a0)7) = (0, f(@) — fwo) — f'(@wo)(w — x0)-
Observe that one has
(3.5) |f' ()| < A < A

by assumption and Proposition 2.1.
From (3.4), we obtain

|4 = (4- )] <p|(P — Po) - #f*
< u|P — Pof?
— (| — @o* + | f @) — fxo)P)

< + 73| — xo)?

(3.6) AR~ |4-3f < ,uz(l +22)2|m—x0|4.
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Since

_ @) — f@o) — f'@o)e — w)PLf @) _ | f o)
1+ | f/(o)? 1+ | f"(o)|

~12 2
4] 5 14|

and recalling (3.5), we find

|47 |4
- 52 72
1+ o))" 1+4

47 = |4- 2
Then (3.6) yields the inequality
1@~ f@o) @) - ap)] < u(1+ ) o - P
From Proposition 3.1 it follows that there exists F € C'*(R, R") such that

FIM =f|M.

Now the conclusion readily follows from [8, Theorem 3.1.15], according to which
F has to coincide with a map in C?(R ,Rk) except for a measurable set of arbi-
trarily small measure. O

4. — The proof of Theorem 1.1.

First of all, define the set
J = {t € [a,b]]7'®),7 1) exist,y’(t) #0}.

and observe that

H(a, bOND) < 1A (e, b)) = [ 1] =0,

[a,b]\J

Let ¢ > 0 be fixed arbitrarily. Then, by the Lusin Theorem, a closed subset J, of
J has to exist such that

y'| J, and ¢ | J, are continuous and £ 1(J\ J. ) <e.

If A denotes the Lipschitz constant of the map y, we obtain

HAGO\) < HGOND) = [[17] < Ae.
I\,

Now let J; be the set of points of density of J,. Since J, is closed, one has

J:CJ,
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Moreover
LYTNT) =0
by a well known Lebesgue’s result, hence
H (ID\2I))) < H (3J\T)) = 0.

Due to the remarks above and by the arbitrariness of ¢, we are reduced to prove
that

(4.1) YJ7) is CP-rectifiable.
The main step in proving the assertion (4.1) will be to show that if {y € J; satisfies
(4.2) Y (to) = alto)]y'(to)|e(te) ~ (hence |t(to)| = 1)
then the ratio
p(®) — 7o) — (YO — 3(t0)) - T(to)) T(t0)|
| (5(8) — (ko)) - 7(to)

exists and converges as t — . Finally, we will complete the proof by an easy
argument based on Theorem 3.1.
Consider ty € J; satisfying (4.2). We can also assume

y(to) =0

without affecting the generality of our argument. Observe that, for a.e.t € J, one
has

R(ty,t) =

0= T 1® — o) - 7o) _ (e(t) + (ko)) - ) — 7to)
t—to t—1to
Letting t tend to ¢y, at which J has density one, it follows that
(4.3) (tg) - 7'(ty) = 0.
For s € J, define
P = O - ) = DI oy

which satisfy
(44) lim p;(s) = 0, lim p,(s) = 0.
s—t) s—tg

sedg seJ

For t € [a, b] one has

(45) = [y =[oylc=[ o+ [ able
[to,t] [to,t] [to,t1NJ; [to,t1\J:
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by assumption. Since a|J, is continuous, then, for |t — y| small enough, the first
integral in the right hand side of (4.5) can be written as follows

48) [ alle="[ olto)(ly'(to)l+1()(xlto) + (s—t0)7 (to) + (5 — to)ps(s))ds

lto,t]. lto.£1J.
_ / _ ‘V/(t0)| RY: /
= a(to) [ [y (%0)|(t —to) + a1(t)]e(to) + 5 (t—to)" +o2(t)|7'(t0) +o3(t)
where
a® =Wt —to— V.0l t+ [
[to,tINJ.
. t—to)?
aa(l) := —Iy(to)l(( 20) - f s—tods) + f (s — to)p1(s) ds
[to,t1NJ, [to,t1NJ,
= —|y'(to)] f s—tods + f (s — to)py(s)ds
[to,t1\J: [to,tINJ,
and

)=/t [ -top@ds+ [ G- top©ps)ds.
[to,tINJ, [to,t1NJ,

Observe that
47 a®=ot—t), o) =ot—t),  a3t)=olt—1t)’
by (4.4) and recalling that ¢, is a point of density of J..
As for the second integral in the right hand side of (4.5), notice that
(4.8) 4(t) = f aly'|t = ot — to)
[to,t1\J:
by the assumptions. It satisfies
(49) i) — (u® - w)et) = [ oG GI(s) — (x(s) - wlto))e(to)).
[0, t1\J
Since |t(fp)| = 1, one has

7(s) — (2(s) - t(tp))t(to)

7(s) — (o) + (1 — ©(s) - 7)) 7(t0)
7(s) — (o) + ((z(to) — () - (tn))(to)
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hence
[7(s) — (2(s) - (o)) T(to)| < 2B|s — to
where B is the Lipschitz constant of 7. Then (4.9) yields
(4.10) |0'4(t) — (0'4(t) . T(t()))f(to)| < 2AB f |S — t()| ds = O(t — t())z.
[to,tI\J

Now we are ready to compute the limit of R(fy,?), as ¢t — t;. To this aim,
observe that the formulas (4.3), (4.5), (4.6), (4.7), (4.8) and (4.10) obtained
above imply

2(t) - (o) = alto)]y' (to)| (€ — to) + ot — to)
and

P(@) — (@) - 7o) t(to) = a(to) <@

— (a(o)as(®) - t(ty))t(to) — (a4(®) - () T(to)

t —to) + 02@)) 7 (to) + o(to)as(t) + aa(t) +

otty) 4 “0)' — 10’7 (ty) + alto)a2 (D)7 (to) +
+ a(to)(as(t) — (a3(®) - 1(t9))1(t9)) + a(t) — (04(?) - 7(t0))7(t0)
o) "9 ¢ — 1P )+ ot — 1)

provided |t — ?o| is small enough. Thus R(%, t) exists for ¢ in a neighborhood of ¢,
and one has

Bt — 107 ()| + ot — to)® | 7(to)]
4.11 R(ty,t) = —2 -
i o0 |/ (o)t — t) + ot — to)’ 2[y'(to)| < e

ast — to.
In order to cqmplete the proof of the statement (4.1), let us consider (for
i € N) the set 2@ of all t, € J* such that:

e one has y'(ty) = a(to)|y'(to)|t(to);
e the estimates

[t@®) — o) <1,  R(to, D) <1

hold whenever |t — | < (b —a)/i (note: the first one is verified provided
[t —to] <1/B).
Observe that

Z‘(i) I Z(i+1)( cJ)
&
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for all ©+ € N. Moreover

U 29 = {to € J; 17/ t0) = ato)]y' o) = (t0) }
ieN

by (4.11), hence
(4.12) L (J;\ U 2@) =0.
ieN
Then, given ¢ € IV, consider the uniform partition of [a, 0]

a i=a+ L — 2
J )

(1=0,1,...,9)
and define
20=2900a, a1 (j=0,...,i-1.
Then the C?-rectifiability of
E =y}
follows from Theorem 3.1, where

Vo is the line generated by t(fy), with ty € Zgi) fixed arbitrarily

W, is the tangent line to y at y(to), ¢ € Z](.i) (note: it is generated by z(ty))

and r is positive and chosen arbitrarily. By recalling (4.12), we finally end the
proof of the assertion (4.1).

5. — Application to one-dimensional generalized Gauss graphs.

In this section it is proved the result about the carrier of a one-dimensional
generalized Gauss graph announced in the Introduction. Let us recall from [2, 4]
that a “one-dimensional generalized Gauss graph (in R**1)” is an integral current
(see [8, 12, 13])

T e Il(Rk+1 % R/i+1)
such that:

(i) The carrier G of T is equivalent in measure to a subset of R Sk, ie.

HH(G\R" x §) = 0;
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(ii) If ¢ denotes the following 1-form in R*! x R**!

k+1

@,y)— > yida;
=1

and « is the usual Hodge star operator in R**!, then one has:

e T(xpl_w)=0 for all smooth (k — 1)-forms with compact support in
RkJrl % Rk+1.

e T(gp) > 0 for all nonnegative smooth functions g with compact support
in R*! x RF1.

Incidentally, we can observe that a one-dimensional generalized Gauss graph
T can have only finitely many indecomposable components. Indeed, if 2 is one of
such components, then the normal mass of X is at least 2 or 2z according to
whether 02 # 0 or 02 = 0, see [8, 4.2.25] and [3, Theorem 4.1].

We are finally ready to state and prove the result.

THEOREM 5.1. — Let T = [[G, 1, 0] be a one-dimensional generalized Gauss
graph and 7 indicate the orthogonal projection

Rk+1 % Rk+l N Rk+1, (x7 y) — .
Then the set nG is C2-rectifiable.
Proor. — Without loss of generality, we can restrict our attention to the case

when 7' is indecomposable. Then, by [8, 4.2.25], there exists an injective Lipschitz
map

I [0,M(T)] — RF! x 8
such that I"4[0,M(T)] = T. In particular G is parametrized by I” and one has
I'=nol
a.e. in [0,M(T)]. If
y: [0,M(I)] — R, ¢:[0,M(T)] — S*

denote the components of I” in R**! and S* respectively, then we easily obtain
the equality

Y =1t

a.e. in [0, M(T)], compare [4, Proposition 4.1]. Now the conclusion follows from
Theorem 1.1. O
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