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Bollettino U. M. 1.
(8) 10-B (2007), 159-194

The Energy Density of Non Simple Materials Grade Two
Thin Films via a Young Measure Approach.

GIULIANO GARGIULO - ELVIRA ZAPPALE

Sunto. — Tecniche di riduzione dimensionale vengono adoperate al fine di descrivere
Uenergia di film sottili costituiti da materiali non semplici di grado due. Il ri-
lassamento e la I" convergenza conducono ad un limite definito su un opportuno
spazio di misure di Young bidimensionali. La “deformazione” relativa al modello
limite e consistente con la teoria di Cosserat.

Summary. - Dimension reduction is used to derive the energy of non simple materials
grade two thin films. Relaxation and I convergence lead to a limit defined on a
suitable space of bi-dimensional Young measures. The underlying “deformation” in
the limit model takes into account the Cosserat theory.

1. — Introduction.

In recent years a wide literature has been devoted to the study of martensitic
thin films and materials of grade two because of their many applications. For a
survey on thin structures in elasticity we refer to [14], [17], [24] and to the
monographs of [2], [13]. (Non-simple materials of grade two were first introduced
in [41], [42] and the theory developed by many authors is collected in [15]).

Dimension reduction through a I'-convergence approach has been first used
in [1] in the context of thin rods. Later I'-convergence arguments in the 3D-2D
setting have been adopted by Le Dret and Raoult in [33] and [34]. Finally we
mention [7] (among the wide literature on the topic) where the 3D-2D reduction
via I'-convergence for inhomogeneous thin films with oscillating boundaries and
for optimal design in the non linear elasticity framework has been studied. It is
also worthwhile to mention [22] and [23] where, in the thin films analysis, the
authors take into account geometric rigidity.

Analogous approaches have been used also for thin multidomains in order to
derive junction conditions in the limit (for instance see [26] in the nonlinear
setting, [27] in the context of linearized elasticity, [28] and [25] in the framework
of non simple materials).
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Very recently, in the context of thin structures a growing attention has been
devoted to the bulk interfacial energies especially in order to derive the Cosserat
theory for the equilibrium configuration. We refer to [6] and [40] where a convex
bulk interfacial energy is added to the usual free energy of the film (i.e. an en-
ergy of the kind k f |D?uPda +fW(Du)dx where Q, = wx] — ¢;¢[ represents

the thin film, u is the dlsplacement and Du and D%y are its gradient and its
Hessian tensor, respectively). Their analysis is also performed in order to avoid
“quasiconvexification” in the limit free energy. The analogous model for wires
can be found in [35] and [36]. Thin films modelled through interfacial energies
were also studied in [5], in the framework of functions with bounded Hessian.
Non convex bulk energies in the context of non simple materials of grade two
were first studied in [39] also for inhomogeneous thin films.

In the past few years dimension reduction problem for thin domains has been
approached using Young measures, in order to capture the oscillating behavior of
the minimizing sequences. A nonlinear membrane model is obtained in [10] (see
also [9]) considering a special class of Young measures which takes into account
also the bending moments.

A different method, again based on dimension reduction via I'-convergence
and still involving Young Measures has been developed in [20] and [21] obtaining
representation results for the energies of thin films and rods. This last approach
we follow here in order to determine the limit energy of a thin film described
through a non convex energy depending on second order derivatives of the
displacement.

As in [39] we consider a 3D body Q, = wx] —§, 5[ whose bulk energy is

f WD w)dz

First, as usual in dimensional reduction, we re-scale the energy in the transverse
direction by dividing through ¢, and, we extend the functionals above to the space
of 3D Young measure in such a way to each “deformation” (D*u,D(1Dgu)) we
associate the Young measure u ®v := (5( D2u.D(Dgu) )" Finally since one expects to
get a 2D model for the energy, we consider the average with respect to the third
variable. In this space we study /I'-convergence which leads us to a variational
limit of the kind:

[ [ widde,®od.,

O Sym(R2)x M3*2

defined on the space of 2D Young measures satisfying given boundary conditions
(for the notations adopted here we refer to the next section, we just recall that

— ho| ¢
Wo(h|&) = zler]lg;W<é | z)).
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We remark that the latter energy does not contradict more standard for-
mulas for the energy of thin films such as (see [39])

f Q 2 Wo(D?u, D,b)da,,

where appropriate “convexified” densities appear. Also the parametrized mea-
sure o admits as underlying “deformation” the couple (D?u, D,b) (where the first
component is the bi-dimensional Hessian of the displacement and the second
represents the Gradient of the Cosserat vector relative to the cross section (see
[13])). Furthermore, the energy provided by the Young measure approach pro-
vides more information. Its minimizers carry the description of the micro-
structure, since limits of oscillating sequences, (cf. [6]) and their baricenters
recover the minimizers of the “standard” energy above.

On the other hand, still in the spirit of [20], one may conclude, under ap-
propriate boundary data (see Remark 6.3) that the energy of a film constituted
by a non simple material is

Eu,b) = [ WoD2u, Dyb)d,.

Because of the presence of terms of the kind (D?u, Db) in the limit, we need to
introduce “HG” Young measures, thus generalizing the notion of “Gradient”
Young measures introduced in [31] and [32] (see also [38]) and exploiting the
results stated in the framework of A-quasiconvexity (see [19]).

Moreover, in order to perform our analysis we prove some relaxation results
dealing with “deformations” of the kind (D?u, Db) (see Section 5) already avail-
able in the Gradient case.

The paper is organized as follows. In Section 2 some preliminary results
dealing with Young Measures, convexity notions and I"-convergence are stated.
Section 3 is devoted to set the problem in the framework of Young Measures. In
the fourth section the asymptotic behavior of the sequences involved in the
problem is studied and the main theorems are stated. In Section 5 relaxation
results related to the limit functionals are proven. The relations with the classical
formulas are investigated in the sixth section. Finally the proofs of the main
theorems are shown in the last section.

2. — Preliminaries.
In this section we will assume that Q is an open bounded subset of R", Mtk

the set of & x k real matrices which will be often identified with the Euclidean
space R™, and assume that Sym*(R™) is the set of the s-tuples of completely
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symmetric bilinear forms on R™. When s = 3 we will adopt the symbol Sym(R™)
in place of Sym3(R™). We denote a generical element of Sym*(R™) by
H = (Hj)' = Hj,, where for i =1,,s (H"), is a symmetric M"" matrix, i.e.
H}, = Hj;, for every i,j, k. (In the reminder of this paper m will take the values 2
or 3).

Given H € Sym(R®) we consider a triple (i, &, ¢) € Sym(R®)xM>2xR? de-
fined by

Wy = Hjy i=123, 1<jk<2,
(2.1) i
1

3
ﬁik = H;C?) =~ 3, 1 S k S 2,
C; = Hég 1= 3.

In symbols the decomposition above can be written as

22) H= (}é f)

In (2.1) 2 has the same symmetry properties as H, while & is obtained by con-
sidering only the components Hl,, ie. identifying Hi, with Hi, for every
1=1,23and k=1,2.

Let E¢ be a d-dimensional real vector space, by ngr(Ed) we denote the space
of all regular function defined on E? and with unit period. M(E9) is the space of
R-valued Borel measures on E? which can be viewed as the dual of the separable

Banach space Cy(E?) under the duality

(1) = f pdu.
El

Furthermore recall that a mapping x : 2 — M(E?) is said to be weakly * mea-
surable whenever the function x — (u(x), ¢) is measurable for every ¢ € Co(E?).
The space LI(Q; M(E?) consists of all weakly * measurable mappings
w1 Q — M(E?) which are essentially bounded. This space will be endowed with
the weak * topology induced by the duality with L'(Q, Co(E?)). Therefore a se-
quence u" is weakly * converging to a limit x if and only if

(23) f (1> 9) g(@)da — f (@) g@)de Vo € Co(EN),Vg € LNQ).
Q Q

A Young measure on Q with target space E¢ is an element v of L (8, MED)
such that v, := v(x) is a probability measure for almost every x € Q.

A Young measure p € L9 (€; M(E?)) is said to be generated by the sequence
of measurable functions {u"} if

duny — uweakly * in LX(Q; M(E?).
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Every Young measure is generated by some sequence of measurable functions,
see [38].
The center of mass of a Young measure p € L3 (Q; M(E%)) is the function

@ (1, id) = f Jdu, () € L™(Q; B
Ed

It is easy to see that if u" — u weakly x in LX(Q; M(E?)) then (1", id) —
(1,,id) weakly * in L>(Q; E?).

The following result is known as Fundamental Theorem on Young Measures
(see [11]).

THEOREM 2.1. — Let D C RY be a measurable set of finite measure and let
{z,} be sequence of measurable functions, z, : D — E% Then there exists a
subsequence {z,,} and a weak * measurable map v: D — MED such that the
Sollowing hold:

i) ve >0, |vg]l pygey = [dve <1 for ace. x € D;
d

i) one has (i) ||vx]| ey =1 for a.e. x € D if and only if

lim sup £Y({[z,, > M|}) = 0;
M—oco

iii) if K C E% is a compact subset and dist(zy,; K) — 0 in measure, then
suppv, C K for a.e. x € D;

iv) if (¢) holds, then in (1i1) one may replace “if ” with “if and only if”;
V) if f: QxE? — R is a normal integrand, bounded from below, then

liminf ! @, 20y @) > ! Fa)da

where f(x) == vy, f(x,)) = [ f(x, Ddv,(A);
E‘d

vi) if (') holds and if f : QxE? — R is Carathéodory and bounded from
below, then

Tim [ £, 2, @)de = f F@)de < + oo
Q Q

if and only if {f(-,2,,(- )} is equi-integrable. In this case
fC 20,() — f in LY(Q).

In the sequel we briefly recall the notion of image of a Young measure and the
fiber product of two Young measures.
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Let (X, A, 1) and (Y, B) be measurable spaces and p : X — Y. Then the image
of the measure y under the mapping p is defined by p;u(A) := u(p~1(4)) for every
A € B. The fiber product of two Young measures v € Li(Q; M(E"Y) and
o€ Ly(Q: M(E®)) is the Young measure u € L;f(Q;M(EtS)) usually denoted
with ¢ = v ® o defined by

:ux = Uy ® O-xa
where ® denotes the usual tensor product of measures. The following theorem of

Balder and Valadier gives a sufficient condition which allows to pass to the limit
in the fiber product.

THEOREM 2.2. — Let {v,} and {o,} be sequences of Young measures in
L(Q; M(EY) and L (2; M(E®)) respectively, such that

vy — v weakly * in L;(€2; M(ED)

while

On — 0 = Oy weakly * in Ly (Q; M(E?))

for a suitable measurable function u. Then

Oy @ 0p — 0 g weakly * in Ly (Q; ME™)).

The following result will be exploited in the sequel.

THEOREM 2.3. — Let Q be a bounded open set of R* with Lipschitz boundary.
Assume that {z;} and {w;} are two bounded sequences in LP(Q).

i) If £k({zj # w;j}) — 0 then the parametrized measure generated from
the two sequences is the same.
i) If|z; — wj|ppq) — Othen {z;} and {w;} share the parametrized measure.

To our aims it is worthwhile to recall the notion of A-quasiconvexity (as it
has been introduced in [19]) and its relations with Young Measures.

Consider a collection of linear operators A® ¢ Lin(E¢,E"), i =1,,N, and
define

N Ov
Av = ZA(Z)T’ v:EYN - E°
i=1

1

N
Aw) := ZA%i € Lin(E*,E", w € EN,

i=1

where Lin(X, Y) is the vector space of linear mappings from the vector space X
into the vector space Y.
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Furthermore assume that A satisfies the constant rank property, i.e. there
exists » € IN such that

rank A(w) = r for all w € SV 1.

(where S¥-1 is the unit sphere in RY ).

DEFINITION 2.4. - A Borel function f:E®— R is said to be A-quasi-
convex if

per

fly) < f f@ + wx))dx for every w € C° (EN : EHN KerA, f wy)dy = 0,
Q Q

Recall the notion of .A-quasiconvexification, which extends to the .A-free
setting (i.e. test functions in ker.4 ) the notion of “quasiconvexification”.

DEFINITION 2.5. — Given a Bovel function f : E?—R, the A-quasiconvexi-
fication of f at v € E% is given by

Qf (W) = inf{ f F+w@)de : w e C5RY; B N Kerd, f w(y)dy = 0},
Q Q

(where Q 1is the unit cube in RY).

The next results, due to Fonseca and Miiller (see [19]) will be exploited in the
sequel.

THEOREM 2.6. — Let 1 < p < + o0 and let {v,},.o be a weakly measurable
family of probability measures on E%. There exists a p-equi-integrable sequence
{v,} in LP(Q, E?) that generates the Young measure v and satisfies Av, = 0in Q
if and only if the following three conditions hold:

i)

f f 2P dvy(2)dz < +o00;

Q rd

ii) there exists v € LP(Q, E?) such that Av = 0 and
v(x) = (vy,1d) a.e.x € Q;

iii) for a.e. x € Q and all continuous functions g that satisfy |gw)| <
CA + [v|P) for some C and all v € E? one has

(v, 9) > Qag((vg, id)).

PROPOSITION 2.7. — Let 1 < p < 400, let {u,} be a bounded sequence in
LP(Q; E%) such that Au, — 0 in W1P(Q), u,, — u in LP(Q; E?), and assume



166 GIULIANO GARGIULO - ELVIRA ZAPPALE

that {u,} generates the Young measure v. Then there exists a p-equi-integrable
sequence {v,} C LP(&; E% NnkerA such that

fvndoc :fudm, lon — Unll o — 0 forall1<qg<p
Q Q

and, in particular, {v,} still generates v.

REMARK 2.8. — Note that if A is “curl” and if v € C (E™; E?) is such that

per

Av =0 (i.e. curlv = 0) and fv(y)dy =0,
Q

(Q being the unit cube in £™) then there exists ¢ € ngr(Em; E') such that Vg = v
where d = ml, thus Definition 2.4 recovers the well-known notion of quasi-
convexity introduced by Morrey in [37]. Moreover, in the curl-free context,
Theorem 2.6 corresponds to the characterization of W!'P-Gradient Young
Measures introduced by Kinderlehrer and Pedregal in [31], (see also [32] and

[38D).

The following result, proven in [8], gives an explicit formula for relaxed
functionals in the framework of .A-quasiconvexity.

Let Q be a bounded open subset of RF and let 1 < p < +o0, and consider the
functional

F: LP(Q,EHxO(Q) — [0, +ocl,
defined by

F@w:D) = f f@)da,
D

where O(Q) denotes the collection of all open subsets of 2, and the density f
satisfies the following hypothesis

f:EY — [0, +oc[ is a continuous function such that

(2.4) 1
gl =C <fm <ca+pl)

for every v € E?, where C > 0.
For D € O(Q) and v € L1(Q; E?) N kerA define the (L” — weak) lower semi-
continuous envelope

(2.5) F,D):= inf{li}ln inf F(v,: D) : v, € LP(D:; EY), v, — v in LP(D; EY), v, € kerA}
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THEOREM 2.9. — Under assumption (2.4) and the constant rank property, for
all D € O(Q),v € LP(Q; EY) N kerA, we have

F@:D) = [ Qu fa)da.
D

The function Q4 f( - ) in the formula above is A-quasiconvex.
Theorem 2.6 allows us to give the definition below, following the approach of
[31] and [32], where Gradient Young Measures have been introduced.

DEFINITION 2.10. — Let Q be a bounded open subset of R". A weakly * mea-
surable map 0 : Q — M(Sym*(R")x M"**) is a W21P-Hessian-Gradient Young
measure (in the sequel W?1- HG Young Measure) if there exists a sequence of
maps W, v") : Q@ — R* such that (", v") — (u,v) in W2P(Q, R )xWP(Q, RF)
and S ey vy = Opeuncy @ Ovpny — 0 weakly * in L(Q, Sym*(R"M)x M"**). In
this case, the W2'P-HG Young measure 0 is said to be generated by the sequence
(D*2u™, V") and (u,v) is called an underlying “deformation” for 0.

This definition can be read in the light of Theorem 2.6, observing that W21?-HG
Young measures are in a sort of duality with suitable .A-quasiconvex functions.

We will make, first, use of HG Young Measures when A is the differential
operator defined below and 7 =k = 3.

Let Qs be the cube 10, 1[3, given a function v = (h, &) : Q3 — Sym(R3)xM3*3
we define the operator A as A := A ie.

(2.6) Ay = (A3h, ATO)

where

Adh = (ihlk ai X > ,
j ijk1=1,3

where h € C32.(Qs, Sym(R?)).
As in [19],

(2.7) {h € C22.(Qs; Sym(R®)), ASh = 0, f hdx = o}: {Dzu u € Coo(@s, R3)}.
Q3

)l

In fact, for every I =1,2,3, if A3Sh! =0 then Ry = gw for some functions
w € C°(Qs; R?) with average zero. Note that w is periodic for every 7 and j and
f h'dx = 0. Then by the symmetry of hlk w1th respect to j and k, it results

Qs
curlw =0 for every [ =1,2,3 and we conclude that h]lk = Ogi ng for some

per
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Furthermore it is easily seen that the constant rank condition is satisfied,
since for every w € S2,

kerA3(w) = {X € Sym(R?) : w;Xh, — wiXh, = 0,4, j,k,0 = 1,2, 3}

—{agwgwae P}, and dimKerAjw) = 3.

aél i
Al = 95 _ %G ,
8xk Bacj -
iJ.k=1.23

Furthermore,
(2.8) {5 € C(@s, M>) : A} =0, f Ede = o}: {D¢ tp € Co(@s, R3)},
Qs

and it is easy to see that A} is a constant rank operator and it results
KerA3(w) = {V e M3 A3V =0, 1 = 1,2,3}
= {wV] -Vl =0ij1=123} = {acwa e}

and dim KerAi’(w) =3.
It follows immediately that A% is a constant rank operator and for every
we S%

(2.9) KerA?‘(w):{(X V) e Sym(R})xM>3: (X, V)=bow®? aow),be RS,aERS},

where w®?2 stands for w @ w. For every v € Sym(R*)x M3<3, with v = (h, &), we have

(2.10) Q uf() = inf{ f Fw+w@)de: we C2 (R Sym(R})x M>*3) N KerA®,

per
Qs
f wdx = 0},
Qs

or equivalently

(2.11) Q uf (I, O)) :inf{ f f(h+D*u,E+Dp))des - p € C2(@Qs; R?), u € C(Qs, R?’)}.
Qs
2.1 — Sequential I'-convergence.

We manage our problem in the framework of a variant of I'-convergence
introduced in [18] (see also [16]), namely sequential I'-convergence, first in-
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troduced in [3]. For reader’s convenience we recall the main properties of the
sequential I"-convergence that will be used in the sequel.

Let X be a set and let (Y, 7) be a topological space and q : X — Y. Given a
sequence of functionals F, : X — RU {400} and y € Y, let us denote by

I'(g,7Y)liminf F,(y) := inf { liminf F\,(x),) : q(a,) — ¥ in 1:},
(2.12) 4 o0 L o0
I'(q, 7Y) lim sup Fyy(y) := inf{lim sup Foy (@) : () — y in r}

n—00 Nn—0o0

which are called, respectively, the sequential "~ -lower limit and the sequential
"~ -upper limit at the point y.

DEFINITION 2.11. - Given a sequence {&,} of positive real numbers we say
that a sequence F,, : X — [ — oo;+00] (sequentially) I'(q,tY)-converges to a
functional F :' Y — [ — oo, +o00] at a point y € Y, and we write

I(q,7Y) lim F,, () = F)

I'(q,zY)liminf F, (y) = I'(q, 7Y) limsup F,, (y) = F(y).

Nn—00

We say that the family of functionals F,: X — [ — oo;+oo] (sequentially)
I'(q,7Y)-converges to a functional F:Y —[—o0;4+00] to a functional
F.Y —[—o0;+oc]at apoint y € Y, and we write

I(q, )l Fly) = F(y)

if for any sequence ¢, of positive reals such that lim ¢, = 0 we have that
NnN—0o0

F(q, TY) 1;2:130 Fz:n (y) = F(y)

We say that a family of functionals I'(q,tY)-converges on a set if it I'(q,7Y)-
converges at every point of the set.

As it happens for the “classical” I'-convergence a sequence F, :X —
[ — oo; +00] sequentially I'-converges to a functional F': Y — [ — oo;+00] if
the following two conditions hold:

i) for every sequence «x, € X such that g(x,) — ¥ in 7 one has

liminf F,, (x,) > F(y);

nN—0o0
ii) there exists a sequence %,, € X such that ¢(x,) — ¥ in 7 and

lim F; (x,) = F(y).
nN—00
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DEFINITION 2.12. — The family F'; is said to be (q, tY)-equi-coercive if for any
real number M there exists a T-compact and a t-closed subset Ky of Y such that

{qx) : F(x) < M} C Ky for every e > 0.

PROPOSITION 2.13. — Let us assume that I'(q, 1Y) lin& F.=FonY andthatthe
famaily F, be (q,7Y) equi-coercive. Then it results that
i) F is t-lower semicontinuous;

il) F is t-coercive;
iii) ifx, € X satisfy lim ionf F.(x,)=1lim ionf inf F; (e.g. if x, minimizes F.) then
a) if {&,} is a sequence such that lim &, = 0 and if q(x,,) — y in T then

NnN—00
y 18 a minimizer of F on Y and lim F, (x,) = F(y);

b) there is a sequence ¢, such that lim ¢, = 0 and a minimizer y of
F on Y such that q(x,,) — y in 7

PROPOSITION 2.14. — If'Y is dual of a separable Banach space, t is the weak *
topology, and Fy, : X — [ — 0o; 4 oc] 1s (q, 7Y)-equi-coercive, then

I(g,Y) lim F, () = F@)

if and only if
i) liminf F,(x,,) > F(y) for every sequence x,, € X such that q(x,) —y in 7

NnN—00
ii) forevery sequence {ny} of positive integers there is a subsequence {ny, }

and a sequence x, € X such that

q(xy) — ¥ in T and ph_}r{\lo Fnkp (xp) = F(y).

3. — Formulation of the Problem.

For every ¢>0, let Q, = {x = (x,,x3) € RZx R :a, = (x,) € o, [r3] < £},
(a = 1,2) where w is an open, connected, bounded subset of R? with Lipschitz
boundary. For each u € W2P(Q,; R*), we denote by D, and D? the first and
second order derivatives, respectively, of « with respect to the planar variables
%4, and by D3 and D§ the first and the second order derivatives with respect to .
Finally for the mixed derivatives we use the symbol D?, or Dg’a indifferently.

Consider a bulk energy density W : Sym(R?®) — R and assume that W is
continuous and satisfies the following growth assumption

(3.1) ¢(HP —1) < WEH) < C(H|" + 1),

for some constants 0 < ¢ < C.
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We just focus on the energy I, of the body, given by

I ueW(Q,) — f W(DPu)dz,

Q

and suppose that the body is clamped on its lateral boundary dwx]—§,%[.
Equilibria correspond to the minima of the energy I, over the set of admissible
deformations
— va . >3 . — — E E
B, {ue W=P(Q; R?) : u(x) = x on 8a)><} 2 H
The behavior of the minimizers u, is studied through a suitable re-scaling in

the transverse direction which maps €, on a fixed domain Q, i.e. by considering
Ve(x) 1= u, (21, 2, ex3) we are led to the following energy functional

1

D*u EDrZzB“
1% = [w 1 d,
@ 5033“ 8—2D§u

obtained re-scaling the energy by ! and where the same notation as in (2.2) has
been used.
Accordingly, the set of admissible deformations becomes

B2 = {u € W2P(Q2; R?) : u(x) = (a1, 22, ex3) on 8wx} _%% [}

Next, consider the extended functional

Q : D 3
T = I?(w) ifve W2 (Q,R?),
+ oo otherwise.

In this setting in [39] it has been considered for any u € W'P(Q, Rg),
be LP(Q, Rg), the functional

(3.2) Ji;y(u,b) = inf { liminf J,(v,): v, € W*(Q, ), v, — w in W'P(Q, R,
1 . 3
and EDS% — bin LP(Q,R?) 3,

and the following “I"-convergence” result has been proven:

53 Jowb f Q o Wo(D?u, Dbydz,,  if (u,b) € WiP(@)x WP (w)
: e, 0) = {5,

400 otherwise
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for every (u,b) € WhP(Q)xLP(Q), and where leg'p (w) is the space of functions
u € W2P(w; R?) such that u = (261, 22,0) on dw and Wllg’p (w) is the space of func-
tions b € W'?(w; R®) such that b = (0, 0,1) on dw.

We first recall that the function  in (3.3) still represents the displacement,
while the funection b (obtained as limit of %Dgug) is the Cosserat vector relative
to the cross section w, which keeps memory of the normal to the middle surface
of the film prior to the 3D- 2D reduction.

The density Q Wy is defined as follows. For every h € Sym(R?) and
& e M3*2:

(3.4) Wo(h,&) = inf W(h : )

ceR é

Q Wy is the A-quasiconvexification of Wy, defined in (2.5), related to the
differential operator A% := (A%, .A?) given by

(3.5) A2 v = (h, &) € Sym(RZ)x M>*% — (AZh, A2E)

Ot Oht i i
A;h,: _]1__]2 and A%f: %_% .
Oxs 0wy | _ Oxe  Ox1 /.
=123, j=12 =123

REMARK 3.1. — With an argument entirely similar to that of (2.7) and (2.8), it is
easily verified that

where

(3.6) {h € C™(Qz; Sym(R?)) : A2h =0, f hdx = o} ={D%u : ue C(Qs, R},
Q2

where @2 denotes the cube ]0, 1[%. Moreover kerAg(w) = {X € Sym(Rz) : wiX}k -

WX} =0,14,j=1,2,k=1,2,1=1,2,3} ={b @ w @ w,be R*}, so dim KerA5(w)=3.

Also

(3.7) {é € C(Qa, M®*2) : A2E = 07ffdx = o}: {Da(p L € Co(Qe, R3)},
Q2

and for every w € S' it results KerAJ(w) = {V € M>*2: Ay(w)V!'=0,1=1,2,3} =
{wiV! —wV!=0,1=1,2,3,4,j=1,2}={a ® w,a € R*} and dim KerAj(w) =3.

It follows immediately that A? is a constant rank operator, and for every
we St KerA?(w) = {X, Ve Sym(RHxM32 . (X, V)=(bow®2,a@w),bec R?,
a € R*}, where w®? stands for w ® .

REMARK 3.2. — Asin Proposition 1 of [33] it can be shown that W is continuous
and satisfies the same growth conditions of order p as W does.
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Furthermore we recall that in [39] it has been proven that Q Wy is AZ-
quasiconvex and continuous.

In the sequel we extend the functional If(u) to the larger space
L2°(Q; M(Sym(R?)x M3*3)) by setting
Iw) if uwe B2 : = 0dp,, and v = Op(1Dgutr)
(38)  IMuwv = w
+oo  otherwise in L*(2; M(Sym(R?)x M?*3))

4. — The Asymptotic Behaviour.

Most of the results and the proofs contained in this section follow the
structure of the analogous one in [20] with suitable changes in notations and are
shown for reader’s convenience.

Let (H|F) be an element in Sym(R®)xM3*3. In the sequel we will exploit the
following decomposition of (H |F').

(k& d
(4.1) (H|F)._<é . e)

with & € Sym(R?), & € M3*2, d € M32, ¢ € R?, e € R?, according to the nota-
tions in (2.1).
With these notations we also consider the following projections
- 3y, 1733 2y 13x2 = —(h < |d
7T : Sym(R*)xM>*°> — Sym(R*)xM>*=, 7H|F) =7 £ e e = (h|d)
(4.2)

3 Sym(R3)x M33 — (M3 2xR3)xR3, n3(H\F):n3(? f ‘g) = (&, cle)

and by 7, and ngux the usual image measures by the corresponding projection
maps.

We denote by 9,2 the lateral boundary of @, ie. dwx]—1,1[ and by
yijg (@, R?) the set of W21#(Q; R*) HG-Young measures where the underlying
deformation (u,b) is such that (u(x),b(x)) = (x1,%2,0),(0,0,1)) on 9.2, and by
y?,ff(g, IR?) the subset of a’[‘lg (@2, R?) of the Young measures v with n‘g'v =J
(here ¢y is a vector valued Dirac mass centered at 0), i.e.

(¢}

VERQRY) = {v e VEPQR?) : miv = do}.

The following lemma establishes the equi-coerciveness of the sequence of
functionals IM.
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LEMMA 4.1. - Let &, — 0 and {(u",v")} C L(Q, M(Sym(R®)xM>*3)) be
such that

supIE/:l(y" ®v") < +o0.

Then there exist 0 € y2 b (Q, R?) and a subsequence {(u"*,v™)} such that
W @0 — 0 weakly + in L(Q, MSym(R*)x M>3)).

Moreover, denoted by (unk,@Dgunk) and (u,b) the pairs of underlying
deformations of (1™, v™) and 6 which satisfy the boundary conditions
U, () = (X1, 02, &4,03) and  (w(x), b(x)) = ((x1,%2,0),(0,0,1)), respectively, we
have

Uy, — U weakly in W2P(Q, R?) and Dsu = 0,

iDg,unk b weakly in W-(Q, R®) and Dsb =0

3nk

PROOF. - Since sup IM(u" @0") < 400, then (uf,v2) = (Op2y, @), 0D Dy, @)

where u, € W2P(Q, RS) and u,(x) = (X1, %2,,23) on dwx]— 272[ By the
growth assumptions on W (3.1), we get, for every n large enough so that
& <1

1
2 2
Diuy, . Dgﬂun
N

43) M@ ®u")—fW dx

1
2 2
&n DSa n D3u77/

&2

n

1 1
>cf <|D§un|p + 5 1D}l + 5 |D§un|p> dx —c.
° on ' &n

Thus, Poincare inequality and Rellich theorem guarantee that there exist a
subsequence {n;} and two functions u € W2#(Q,R®) and b e W'2(Q,R?)
such that

(44)  w,, —u in W2P(Q,R?) and ipgunk — bin W (Q,RY).
0
Moreover, since ¢, — 0, (4.3) implies that Dgu = 0. Hence D3u = A(x,) and so
u = A(x,)x3 + B(x,), and D,u = D,A(x,)xs + D, B(x,). In addition D3 M=0,
hence A(x,) = C. Thus u = Cx3 + B(x,) and the convergence in the trace
space gives u = (x1,x2,0) on dwx] —%,%[, that is C =0, and we deduce that
— (21, 22,0) € WoP(w, R).
Thus, up to subsequences,

u, — u weakly in W2P(Q, R?) and Dsu,, — 0 strongly in W1#(Q, R?).
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It follows that

11
(4.5) u = u(xy, x2) and u(x) = (x1,x2,0) on 6w><] 55 [

For what concerns the second convergence in (4.4), one can observe that (4.3)
also implies D3b = 0. Furthermore the convergence in the trace space guaran-
tees that b(x) = (0,0,1) on dwx] —3,1[. Hence, up to subsequences, it results
that

1 5 1
—Dsu"" — b weakly in WP(Q,R?) and 8—D§u” — 0 strongly in LP(Q, R?).
N N

Finally,
(4.6) b =0b(x1,x2) and b = (0,0,1) on dwx] —1,1[.

From (4.5) and (4.6), Theorem 2.6, applied to functional A% in (3.5), it results
nf@ = do. O

It can be observed that if 0 € 5%;55’ (Q; R?) then it can be proved that the
center of mass of 0,, does not depend on the x3 variable, but we are able to show in
Example 4.6, that in general 8, does depend also on x3. Thus we will make use of
I" convergence with respect to the weak * convergence of the averages with
respect to the third variable.

LEMMA 4.2. — If 0 is @ W21(Q, R®)-HG Young measure generated by the
sequence of (D*uz, Dv,) and n and { are the Young measures generated by
(D%u,, Dy,)(g=12) and (Ds(Dyut,), D3v,) =1 2), respectively, then

70 = n and 70 = (.
ProoF. — We sketch the proof for reader’s convenience.
It will be enough to apply the definitions and the classical integration formula
with respect to an image measure.

Indeed, since 7(D*u., Dv,)=(D,u,, D,v,) =12, for every (peCo(Sym(Rg)x
M?*2) and for every g € L'(Q), one gets

f (730, p)g(a)dow = f f 7 ( }g f ||Z ) dm;0..9(x)dw

Q Sym(R®)xM3=3

Q
- «)(ﬁ(h ¢ 'd>>dex<h < 'd)gw)dx:hn& [o@?u,, Doy
Q

& c e & c e
Q Sym(R*)x M3<3

— lim f p(D%u,, Dyv,)g(@)der = f (1, 9)g()dz.
Q Q
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This proves the first part of the statement. The other relation can be proved ana-
logously. O

REMARK 4.3. — Arguing as in Lemma 4.2 one can easily check that if {u‘} is a
bounded sequence in W>P(Q) then the Young measure generated by D Uy coitn-
cides with the Young measure generated by Djzlu6 forevery i,5=1,2, 3

REMARK 4.4. — Lemma 4.2 will be applied in the sequel to the sequence
{ (D%, D (L Dsue)) }-

LEMMA 4.5. - If 0 € L2(Q, M(Sym(R?®)x M3*3)), with 7139 o, 1S generated
by the sequence (Dzug,DvS) with underlying defownatzon (u,b), and 5 is the
Young measure generated by (Diuh,DavL), then

0 =n®0dp.

Moreover, the functions (u, b) and the center of mass of the measures 0,, and
n, for almost every x € Q do not depend on the variable xs. In particular, with an
abuse of notation, we shall write

(0,,1d) = (D*u(x,), Db(x,)), and (n,,id) = (Du(x,), D.b(,)).

PRrOOF. — From n‘j’@ = dy, and Lemmas 4.1 and 4.2 it can be easily deduced that
{(D§ ,u*, D5 yu?, D3v*)}, generate the Young measures do. Thus, the first part of
the statement follows from Theorem 2.2.

Consequently, from Lemma 4.2 it follows that

(D*u(), Db(x)) = (0,,id) = ((n, ® ), id)

= [ (E S Wamean(t ) = (weini(y o )

Sym(JRS)xM3X3

for a.e. x € Q. Hence it results D§7u =0, for 1 = 1,2,3) , and so u is linear with
respect to a3, actually of the kind u = ¢ - x5 + B(x,), analogously it results
D3b = 0 and b(x) = b(x,).

Consequently we can write that

(13, 5 1d) = (D2u(a), Db(,))-
O

ExaMPLE 4.6. — We build a measure 0 ¢ y??lgg’ (Q; Rg) such that 0 depends
also on x3. Let p(s) be the 2-periodic function equahng s — —s on [0,1] and

éﬂé‘s

-Z ° 4 25— 1 on[1,2]. Define the functions z, := ( 5p(%),0 0) It is easily seen
that 1Dsz, = (ex3p(%),0,0) — 0 and D3z, = (£p(%),0,0) — 0 in L>(; R3).



THE ENERGY DENSITY OF NON SIMPLE MATERIALS GRADE TWO ETC. 177

Moreover D3 % = 0(j=1,2,3). Furthermore

1 1
Dz, = (9023 P’ (901) 0 0) generates the Young measure 5 5 2 + 25

ol o

On the other hand it results that Ds(1Dsz,) = (ep(2), 0,0) — 0 and
Ds3(1Dsz,) = 0. Finally D3(1D1z;) = (30/(2),0,0) and it can be verified that it
weakly converges to 0 and generates a Young measure which depends on 3.
Indeed formula (2.3), applied to Q with test functions ¢ only depending on a3
gives

2 2 3

f f w(xgp(%)) (w3)dxdas — f g(x3) f p(w3)dxy das.
00

1
2
Thus considering the sequence of functions wu, := (x1,%2, ex3) + z.(x) min{1,
dist( 921} it turns out that this sequence is in B? and generates a measure

0 ¢ yz lp which effectively depends on a3.

The functlons 2, can be also used in order to show that both the sequences
D2 e and D; 1D3z5 (1,5 = 1,2,3) generate Young measures whose baricenter is 0
but which both depend on &3, say y, and v, converging to i and v respectively,
thus their fiber product dp: = ® Opip,., converges to 0 # p®v.

DEFINITION 4.7. — Let X be either Sym(R®)xM>3>*3 or Sym(R®)xM3*2. If
v € Ly (Q, M(X)) we define

AV o — M(X),

the average of v with respect to the variable xs, by

<AV§.‘1 v, (ﬂ> = <AVSU('%.0!); (0> = <U(xa,x3)v (0>d903,

b—
Dol ol

for every ¢ € Co(X).

Fubini’s theorem guarantees that the map x, — <Aviau, ) is measurable, and
since it is also essentially bounded, we can think of Av® as a mapping

AV L9(Q, X) — L (w0, X).
We also recall that this map is continuous, i.e.
V¥ — v weakly * in L) (Q, M(X)) = AV — AV weakly * in L (w0, M(X)),

furthermore Av® maps Young measures to Young measures.
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We will make also use of the average-projection mapping
(4.7) q : L(Q, MSym(R*)x M>*?)) — LX(Q, M(Sym(R*)x M>*2)),

defined by ¢ =7 o AV’ = Av® o 73, where the commutativity of composition is a
consequence of the definitions. Furthermore the continuity of the average and
the projection mapping ensure that ¢ is continuous.

We denote by 3721” (o, Rg) the subset of W>*-HG Young measures with
underlying deformation (u, b) such that (u(x), b(x)) = ((a1, x2,0), (0,0, 1)) on dw.

In the sequel we state the main theorems which hold under the continuity and
coercivity assumptions made on W in section 3. The proofs will be given in the
sequel.

THEOREM 4.8. — The functionals Iﬁ” ntroduced in  (3.8) are
(q, w*ij(w,M(Sym(R3)><M3X2))-equicoercive, according to Definition 2.12.

THEOREM 4.9. — Let I be the family of functionals defined in (3.8). Then
(g, w' L (o, M(Sym(Rz)xM?’XZ))hm M(0) = I(0)
with

f<0-x,,a W0>dxa 'Lf (RS D;(l)’p((l), Rg)

w

+o0 otherwise in L2 (w, M(Sym(R?)x M3*2)),

4.8) I(o) =

where the function Wy has been defined in (3.4).

To make precise the variational character of the limit energy we state the
following result:

THEOREM 4.10. — Let I be the functional defined in Theorem 4.9. We hawve:

i) I is weakly * lower semicontinuous and weakly = coercive; hence it
admits minimum on the space y‘g;};p (o, Rg);

i) ifu, € W2P(Q, R?) satisfies the boundary condition u.(x) = (x1, X2, &x3)
on the lateral boundary 01,Q and hm mf I (y,) = hm 1nf inf I, 2 (e if u,
minimizes I2) then

a) zf & —0 and if q(é(Dzum LD(Dyu,,) p) — o weakly x in

L (0, MSym(R%)xM?>*2)) then o is a minimizer of I on
y@w (@,R%) and lim I2(u,,) = I(o)

b) there is a sequence ¢, — 0 and a minimizer o of I on y@;ﬂ”’

(a) R%) such  that  qOpe,, ippu,)) — 0 weakly x in
L2 (w0, M(Sym(R?)x M>*2)).
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5. — Relaxation Results.

In the sequel we prove a series of results that will be exploited in the next
section and which give our /-limits as relaxed functionals of suitable ones.
With the notations of Section 3, consider the functional

a

(5.1) E(u,b) = f Wo(D?u, D b)dz,, (u, b) € WaP(w; R)x Wi (; R?).

and its relaxed one

(5.2) E(u,b) := inf { lim inf f WO(Diun,Dabn)daca 2 (U, by)

N—00

€ WP (; RO WP (@; R?), (uy, by) — (u, b) in WP (e; R®)x WP (w; Rg)}.

THEOREM 5.1. — Let E be the functional defined in (5.1) and let E be its relaxed
Sfunctional in (5.2). The following representation formula holds

Eu,b) = f Q 2 Wo(D?u, D,b)da,

for every (u,b) € Wg’p(w; R3)><Wllg’p (w; R®), where Q 2 Wo is the A-quasiconvex-
ification of Wy relative to the operator A%, namely

(5.3) QeWi((h,9)
= inf{ fWo((h + D2y, &+ Dyp)da - ¢ € CF(Q; R?), y € C(Qs, R3)}.
Q2

PROOF. — Standard relaxation arguments show that E coincides with the
functional

(54) E(u,b) = inf{liyrbn inf f Wo(D2t, Dyby)dicy : (10, by)
€ W2P(o; RHX WP (w3 R?), (u, by) — (w0, b) in WP (w; RB)x WP (w; RS)}

on the set W2 (w; R®)x Wy”(w; R?).
An argument entirely similar to that of Theorem 1.3 in [8] guarantees that the
functional £ in (5.4) can be obtained, in the same class, as

Eu,b):= inf{liin inf | WoGw,, d,)dic,, w,, dy) € LP(w; Sym(R?) x M?*?) N Ker.A?,

Wy, dy) — (D*u, D,b) in LP(w; Sym(R®)x M>*?) w, and d, are p — equi—integrable}.
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Again as in the proof of Corollary 3.2 in [8] one can avoid to use p-equi-integrable
sequences, thus obtaining that

(5.5) E(u,b):= inf{lim inf | Wo(w,, d,,) : Wy, d,,) € LP(w; Sym(R?)x M>*%) nker A%,
NnN—00

v, — (D?u, Dyb) in LP(w; Sym(R%xMSXz)}

for every (u,b) € Wa"(w; R®*)x W5 (w; R?). Remark 3.2, (5.4), (5.5) and Theorem
2.9 applied to f := W, with the differential operator A% and to v := (w, d) give the
desired representation

E(’I/L,b) :fQﬂWO(Dg%Dab)d%

for every (u,b) € Wé’p (o RS)lelg’p (w; R®). O

LEMMA 5.2, - Let {(v;,d;)} be a bounded sequence in W2P(w; R®)x
WLP(o; R?). There exists a sequence {(u;, b))} € W2P(w; R3)x WP (o; R?) such
that {(|D>u;[", |D,bj|")} is equi-integrable and the two sequences {(D*v;, D,d,)}
and {(D%u;, Dyb))} have the same underlying parametrized W*1P-measure.

ProOF. - Because of Theorem 3.8 consider first a subsequence {(Dﬁvk, D,d)}
of {(Divj, D,d;)} that generates the Young measure v,.

By Proposition 2.7 there exists a p-equi-integrable sequence {(wy,7x)} C
LP(w; Rg)pr(co; R?) N Ker.A? (where A? is the differential operator introduced
by (3.5)) such that (wy,r;) — (Diu,D,lb) in LP(w; Rg), and

fwkdac :fDiudm, lwie — D3| sy — O for all 1 < s < gq
w w

frkdx :fDabdac, 7% — Doty — O for all 1 < s < g.

w

We observe that a finite induction argument similar to that of (2.7) and (2.8)
shows that Az(vk7 1) = 0 if and only if there exists (i, Ek) € W2P(w; R3)x
WLP(w; R?) such that (Dgibk,Dai)k) = (v, 7). By Lemmas 1.1-1.3 in [29], for any
y € WP(w; Rg), s = 1,2 we may find a unique function P € COO(RZ; R?) whose
components are polynomials of degree s — 1 such that

(5.6) fDl(y—P)dxzo, 0<l<s—1,
Q

and a constant C = C(2,s,p, meas (w)) such that the following Poincare type
inequality holds

(56.7) lly — P”W&p(w;u{*’“) < C”DSVHM((U;R%-



THE ENERGY DENSITY OF NON SIMPLE MATERIALS GRADE TWO ETC. 181

Let Py, P, Qy, Q be the functions associated with ?jtk% IA);C and b respectively, and
satisfying (5.6) and (5.7). Since D2ii;, — D?u and D,b;, — Db in LP(w; Sym(R?))
and L?(w; M?*2), we have that

e — P, — u — P in W2P(w; R?),
b — Qe — b — Q in W'(a; R?),
hence
Wi := Ty — P + P — u in W2P(w; R?),
b = by — Q. + Q@ — b in WP(w; R?),

which concludes the proof.
The following lemma generalizes to our context well-known arguments for
parametrized measures generated by gradients.

LEMMA 5.3. — Let o be a bounded open set in R? with Lipschitz boundary,
and let 1 <p < oo and let {(v;,d)} be a bounded sequence in W2P(; R3)x
WP (w; R?) such that the sequence {(D?vj,D,d;)} generates the parametrized
measure 0 = {0, },c,,. Furthermore let

w = (h, &) = (D?u, D b)(x) = f (h|d)do.(hd) € Sym(RZ)x M2,

Sym(R2)x M3~3

with (fz,é) € KerA? (where A% is the differential operator in (3.5)), that is
(u,b) € W2P(; R®) xW'P(w; R®), so that (v;,d;) — (u,b) in W?P(w; R®)x
WLP(w; R®). There exists a new sequence {(uy,by)} bounded in W2P(Q; R?)x
WL (; IR?) such that {(D%uk,Dabk)} generates the same Young measure o and
(uy, —u, by, — b) € Wg’p(w)xWé’p(w) for all k. If {(|ID?vj|",|D.d;|")} is equi-in-
tegrable, so is {|D?uy|", |Dyby|"}.

ProoF. — Observe first that Lemma 5.2 guarantees the existence of a se-
quence {(uj,,b;)} C WP(w; R?) x W1P(w; R?) such that wj, — win WP (w; R3)
and b;, — bin W'?(w; R?), the sequence {(|D?u;, [”,|D,b;,|)} is equi-integrable,
and (u, b) is the underlying deformation for 6. Then recall that Theorem 2.3 entails
that {u;,,b;, } still generates 0 (but it does not preserve the boundary conditions).
Finally a standard argument, considering two sequences of smooth cut-off
functions and a diagonalization process, leads to the statement. O

The analogous of Theorem 4.4 in [38] for Gradient Young Measures follows
from Lemma 5.2 and 5.3.

THEOREM 5.4. —
inf E(u, b) = inf I(¢) = inf E(u, b)
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where E, E are the functionals defined in (5.1) and (5.2), respectively and I is the
functional in (4.8).

LeEMMA 5.5. — The functional E in (5.1) admits a minimizing sequence
{(ug, bp)} such that {(|D?uy|’, |D,by ")} is weakly convergent in L'(w).

Proor. — Let {(v;,dx)} be any minimizing sequence for E. From (4.3),
Remark 3.2, this sequence is a bounded sequence in W27 (w; R3)x W» (o R?). Let
o = {04}, denote the W1P-HG Young measure associated to {(D?vy, Ddy,)}.
By Lemma 5.2, ¢ can also be generated by some other sequence {(D?wy, D7)}
such that {|D?wy, '} and {|D,r;|"} are weakly convergent in L!(w). In particular
both the sequences have the same weak limit in W27 (w; Rg)le*p(a); R3), u, and
wy, — u strongly in Wh(w; R3) and 7, — b strongly in LP(w; R3). By Lemma 5.3
we can find {(uy, b;)} admissible for £ (in the sense of boundary data) and still
being p-equi-integrable.

Since {(vy,dy)} is minimizing

lim [ WoD20, Dodide < lim [ w2, Db

w

:f f Wo((h|d))do(h|d)d.

@ Sym(R?)x M3*2
Since Theorem 2.1 prevents strict inequality in the first two terms, {(uy, by)} is
also minimizing. O
THEOREM 5.6. — There exists a v admissible for I in (4.8) such that
I(v) = inf I(0).

Proor. — Take a minimizing sequence for £ in (5.1), {(u, b;)}, and let v be the
parametrized measure associated to {(D?uy, D,by)}. By Lemma 5.5 we may as-
sume without loss of generality that {|D?u;|"} and {|D,b;|’} are weakly con-
vergent in L(w), so that

m = mkhm E(uk, bk) = I(l))

COROLLARY 5.7. — Define

E 7b ) :5 2 : ’b c Wzap 7R3 WLp 71{3
(5.8) I(0) :{ @b o (D2u,D,b) (u,b) B (o )X B (w )

+ o0 otherwise,

where E is the functional in (5.1). Then the relaxed functional of I, with respect
to the weak * convergence of Ly (w; M(Sym(Rz)xM3X2)) 1s given by I in (4.8).
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Proor. — The thesis follows from Lemma 5.5 and Theorem 5.6. O
THEOREM 5.8. — Let v be a minimizer for 1. If

(5.9) (Dﬁu(oca),Dab(oca)) = f (h|d)dvy(h|d), for a.e. x € w,
Sym(R%)x M3x2

foru € W2P(w; R?) and b € WP (w; R?), then (u,b) is a minimizer for E in (5.2)
and

(5.10) Q 2 Wo(D2u, Dyb) = f Wo(h|d)dve(h|d) for a.e. @ € w.
Sym(R?)x M3%2

Conversely, if (u,b) is a minimizer for E and v = {02} pee 18 am admissible
W21P-HG Young measure such that (5.9) and (5.10) hold, then v is a mini-
mizer for I.

ProoF. — It is enough to observe that (u,b) is admissible, and by Jensen’s
inequality the following chain of inequalities can be written

i < B(u,b) = f Q 2 Wo(D?u, Dyb)das < f f Q 2 Wo(h|d)dv, (k| d)dz

@ Sym(R%)x M3*2

< f f Woh|d)dv,(h|d)de = I(v) = 1 = .

@ Sym(R?)x M3*2

Therefore (u,b) is a minimizer for £ and (5.10) holds true. The same reasoning
holds for the converse. O
6. — Comparison with the classical approaches.
Let Jy; be the functional introduced in (3.3).
THEOREM 6.1. — Let (u,b) € W(Q, R®*)xLP(Q, R?). Then
(6.1)  Jpy(u,b) = inf{](a) 10 € Ly (o, MSym(R:) x M>*?), (g,id)
= (Dzu(xa),Da(b(xa))u(m) = (%1, %2,0) on dw, b(x) = (0,0,1) on 860},

where inf () = +oo and the infimum is attained and Jy, is the functional
m (3.3).
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PROOF. — Let (u,b) € W?(Q, R*)x LP(Q2, R®). The infimum is attained since
from item (i) of Theorem 4.10 the functional  turns out to be weakly * coercive and
weakly x lower semicontinuous and the center of mass is continuous with respect
to the weak  convergence in L:°(w, M(Sym(R?)x M?*2)).

For convenience define the rlght hand side of (6 1) by I (u, b).

We claim that Jy, (u,b) < I (u,b). Assume that I (u, b) < 400, whence there
exists o € L (w, M(Sym(Rz)xM3X2)) such that I(¢) = I(u, b) and (u, b) satisfies
the boundary value problem (Dﬁu D,b) = (o,id), (u(x), b(x)) = ((x1, 22, 0), (0,0, 1))
on dw. Consequently (u, b) = (u(x,), b(x,)).

Since I(¢) < 400, we have that 0 ¢ yz P(w, RS), hence (u,b) € WZ"” (w, R3)x
Wlp (w,R®). The latter entails J (o (u, b) = f Q 2Wo(D?u, D,;b)di, and by (iii)

of Theorem 2.6 it results Q AZW()(DZM D b) <{a,Wy), thus J 1 (u,0) < (o) <
I (u, b).

In order to prove the converse inequality, it is convenient to observe that the
involved functionals are essentially I'-limits (cf. [39]).

Since J ;) (u,b) = F(W'P(Q, R*)xLP(2; RY) — lim J(u) there exist &, — 0,

Uy — w in W2P(Q,R?) and 1D3un —bin W”’(Q Rg) such that hm e]Ln(un) =
J (1 (u, b). Without loss of generality we may assume J,(u, b) < —|—oo, and from
the coerciveness of W (3.1), up to pass to subsequences, one can assume that

i) (Dzun,D(éDgun)) generates a W217(Q, R®)-HG Young measure y
with underlying deformation (u, b);

i) (Dgun, D, (} Dgun)> generates a Young measure o;

i) ( 3un,D3< Dgun)) — (0,0) strongly in L?, hence generates the mea-
sure dy.

Lemma 4.2 guarantees that 7,y = oo and ngy = dy, thus, by definition
y € VEL@QR).
Furthermore, applying Lemma 4.5 we obtain

y = 0o ®Jy, and (og,id) = (D%u,Dab).

Lety, := 5(D2u,l,D(,lD3un)) ando :=q(y) = Av3(ag). Consequently o € y2=1’p(w, R?)
and one has (o,id) = (Diu,Dab). Since ¢ is continuous ¢(y,) — *¢ in
L (o, MSym(R®)xM>3*2)). From (3.8), Theorem 4.9 and the fact that
Js, (un) = I}'(y,) one gets that J,y(u,b) = hth(un) = hmmfIM(Vn) > I(y) >
1(u, b), and this concludes the proof. O

For what concerns the relations between the minimizers of the two func-
tionals J, and I one can prove the following theorem.
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THEOREM 6.2. — The following propositions hold for the functionals I and J .

i) min {Jy @, 0) : (u,b) € WiP(w, R})x Wy (0, R} =
min {1(0) : ¢ € V5 P (w, R®)}.

ii) Let ¢ be a minimizer of I. If (u,b) € Wg‘p (o, Rg)xWé‘p (w, R?) is such
that (D%u, D,b) = (0y,,1d) for a.e. x, € w then (u,d) is a minimum point for J
and Q 2Wo(D2u, D,b) = (0., Wo) for a.e. x, € w.

iii) Let (u,b) a minimum point for J . If ¢ € Y51 (w, R®) which satisfies
(D%u, Dyb)(s) = (0u,,1d) and Q 2 Wo(D2u, Dyb)(xs) = (0., Wo) for a.e. &, in o,
then o is a minimum point for I.

PRrOOF. — The proof follows from the fact that Ji, and I are the relaxed
functionals of the extensions to + oo of (5.1) with respect to the strong topology of
WP (0w, R)xLP(w, R?) and the weak = of LS (o M(Sym(R?)x M>3*2)), respec-
tively. The statement follows from Lemma 5.5, Theorems 5.4, 5.6 and 5.8. O

REMARK 6.3. — With an argument similar to that proposed in section 7 of
[20] we may propose an energy density for the thin film obtained through our
asymptotic analysis. Indeed it is possible to see that W, and

Eu,b) = [ WoD2u, Db,

are the energy density and the total energy of the thin film, respectively.

To this end, one may replace the boundary data (x1,«s,x3) by considering
more general data, (say tensors (B8); = (B'|B") € Sym(R3), where B’ € Sz/m(RQ)
and B” € M?*? according to decomposition (2.4)) i.e. quadratic ones, more ex-
plicitly with no term of the kind a2 and prove the I"-convergence results above
(i.e. the analogous of (3.3) and Theorem 4.8). On the other hand one can observe
that also the analogues of Theorem 5.1 and Corollary 5.7 hold in this framework
obtaining two relaxed functionals £ B, and Ip,, respectively .

Finally one can prove that Wy is the unique continuous integrand satisfying
the growth condition in (4.3) such that I, is the relaxed functional of I, for
every such boundary data. To show this it is easily seen that if there were
another energy density Wi, such that Iz, were the relaxed functional then
[(64,, Wo — Wi)dx, = 0 for every o and for every data. By simply taking

= op pr the statement follows.

Hence the energy functional / determines a unique energy density W.
This selection is not provided by the classical relaxation formulas in the
Sobolev framework, i.e. with Q ,.Wy: indeed, in general, there exists an in-
finite number of functionals W; than can represent Ep, for every “quadratic”
boundary data B;.
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7. — Proofs of the main results.

LEMMA 7.1. — Let 0 ® &y be a W212(Q, R®)-HG Young measure. Then Avic is
a W22 (w, R*)-HG Young measure, and (Av>c,id) = (0(, ), id) for a.e. & € Q.
Conversely, for every W2LP(w,R®)-HG Young measure @, there exists a
W2Lr(Q, R*-HG Young measure o ® dy such that @ = Avio.

PROOF. — In order to show that Avs is a W21Lp(, RS)-hessian—gradient
Young measure it is possible to adopt the characterization given from Theorem
2.6. Indeed it is sufficient to show that

@ [ | |h|d[? dAViaa(h|d)dxa < 400, where by (k|d) we denote an
@ Sym(R?)x M3*2
element of Sym(R?)x M>3*2 according to (2.1), (4.1) and (4.2);

(i) (AV? 0,id) = (D?u, D b)(w,) and (u,b) € W?P(w, R*)x W' (0, R?);
(iii) for a.e. x € Q and every continuous function f, such that |[f(v)| <
C( + |[v[?) for some C > 0 and every v € R? one has

(AV 0.f) > Q of ((AV?, 0,id)),

where A2 is the operator introduced in (3.5).
In order to see that property (i) holds one can observe that by Definition 4.7

f f Ih|dJP AV o] d)de, = f f f R d|P G, 2, (Rl d)ditadacs

@ Sym(R%)x M3*2 @ 1 Sym(R?)x M3x2
h dlP h d
-[ S RN L L PR
c | e E ¢ | e

Q Sym(R¥)xM3=3
To prove (ii) it is worthwhile to observe that if (u, b) € W2P(Q, R¥)x WP(Q; R?) is
an underlying deformation for o®Jj, then Lemma 4.5 guarantees that
u = cag+ u(x,), b = blx,) for some constant ¢, and (o, 4y)1a) = (Dgu(aca), D b(x,)).
Hence it follows that

(7.1) (AV? 6,1d) = [ (Gp, 2y, 1)ty = (DPu(ae,), Dyb(,)),

S~

-2
which is (ii).

For each function ¢ : Sym(R%)xM?2 — R, define ¢* : Sym(R*)xM33 — R,
in such a way that

(7.2) g'H|F) := g(h|d),

for each H := (}é S) and F' := (d|e).
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Assume that f: Sym(R®»)xM?2 — R is a continuous function such that
[f(h|d)| < C(|(R|dD)[” +1).
Let U C R? be a bounded open set such that |9U| = 0, then we recall that

[raid + 02¢Dyndz, > @ raia)ul,
U

for every ¢ € C3(U;R?) and y € C}(U;R®) and for every h e Sym(R*) and
d € M*%, where A® is the operator defined by (3.5) and Q pf is the A-quasi-
convexification introduced in (5.3) but relative to the function f.

Considering the function f above and its extension f* to Sym(R®)xM3*3 in
the sense of (7.2), it can be observed that

(7.3) Q s (HH|F) > (Q 2f ) (H|F)

for every (H|F) € Sym(R*)xM?*3, and where Q e (f?) is the A®-quasiconvex-
ification of f* given by (2.6). Indeed it results

Qs (fHH|F) = inf{ f fUH + D*®,F + D¥)da : & € C2(Q3; R?), ¥ € CL(®; R3)}
o8

1

2 f
= inf{ f dacgf (h + ng% d+DW)dx, : e Cg(Qg; RS), Ye Cé(Qg; Rg)}
Qu

1
2

P
zfQAzf(h, d)drz = Q 2f (h,d) = (QAzf)”(H|F).

1

-2

where it has been used the fact that ¥(x,,x3) and ®(x,,x3) € Cg(Qa; R?) and
ClQq; RR3) for every a5 € ] — LI

By (iii) of Theorem 2.6 applied to the W?!*-HG Young measure ¢ ® dy, and
from (7.2),(7.3), (7.1) it results that

1

adofy=[ [ folddo. . hiddz

—1 Sym(R?)xM3*2

: hoe | d hee|d
i
[ ] f(é ¢ | e>da(”“’x3)®50<é ¢ | e)dxg

-1 Sym(R®)xM3x3

1

2
<O-(xa,x3) & 50afﬁ>d'%'3 Z f QA3 (fﬁ)(<0-(xa,x3) & 50; 1d>)d.’)€3

Il
b—
Dol ol

rol—

: D2u(x,) 0 | Dgb(x,)
_ i a
—fLQﬁ(f)( 0o oo )dacg
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- f <QAzf)”<D P Da%“”)dmg

1

_ f Q of (D2ulie,), Dbw)des = Q of (AV? o,id)),

l\«l»—-

which completes the proof of (iii).

Finally, concerning the last part of the Theorem, consider 7 a W21?(w, R?)-
HG Young measure. Obviously x4 = i ® dy turns out to be a W21?(Q, R®)-HG
Young measure. Moreover, clearly Av®(1) = &, and this completely proves the
theorem. O

The next result relates the spaces y?)jg (£; R?) and )igw (w; R?).
LEMMA 7.2. — It results
AVYEI@Q RY) = 21 (0 RY) @ 0.

PrOOF. — Let 4 € y%lg (©2; R?). Then Lemma 4.5 entails 0 = o ®d, for a
suitable g. Let ¢ € Co(Sym(R3)><M3X3) then by Definition 4.7

oo [ b od b d
wviog=[ [ go(é . e)dawg)@ao(i D e )i

1 Sym(R®)xM33

3 ¢
h 0 d h 0 d
00 | O ’ 0 0 | O

1 Sym(R%)xM3»2
[

Lo | d
— f | )dAvi o(h|d)
0 0 g

: 0 |
Sym(R2)x M3x2

9
_ f h & | d)dAVi 0®5O(h < | d) = ((AV3,,0) ® Jo, p)
c | e ‘ é Y | €

Sym(R?)x M3%2

Hence Av:(6®dy) = (Av0) @y, and the statement follows applying Lem-
ma 7.1. U

REMARK 7.3. — From Lemma 7.2 it follows the very useful equality
qVEID(Q: R) = Y2 (0; RP),

where ¢ is the mapping defined in (4.7).
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7.1 — Proof of Theorem 4.8.

Since Ly (w; M(Sym(RQ)xM?’XQ)) is the dual of the separable Banach space
LY (w; Co(Sym(RZ) xM3*2)) the proof follows from the following result.

ProrosiTION 74. - If {&,} is a sequence such that &, — 0 and if {0,} C
L2(Q; M(Sym(R?) xM3*3)) satisfies

sup Iﬁf(@") < 400

then there exists a subsequence {n;} and a Young measure o € L (w;
MSym(R®)xM?*2) such that q0"*) — ¢ weakly * in L(w; MSym(R?)x
M*2)) and o € V57 (Q; R).

PRrROOF. — Clearly Lemma 4.1 guarantees that there exists a Young
measure He)isz (Q;R® and a subsequence {0"} such that 0™ 20 in
L2°(Q; MSym(R?)x M*3)). Let ¢ := q(0). From the continuity of ¢ it easily
follows that ¢(0"™) = ¢ in Lf;(w;M(Sym(Rz)xM?’ﬁ)), which proves the first
part of the statement. Finally, Remark 7.3 ensures that ¢ )/?)’ul)’p (o Rg). O

7.2 — Proof of Theorem 4.9.

Let {¢,} be a sequence of positive real numbers such that &, — 0. Since, by
Theorem 4.8 the sequence {I}M} is L3 (w; M(Sym(R*) x M**?))-weakly coercive,
Proposition 2.14 applies.

First we claim the existence a recovery sequence for a suitable subsequence
{IM} ie. for every oe)®'P(w;R% one can determine a sequence
U e W2P(Q; Rg) with (%) = (%1, 22, &,,23) on I', such that the projection of
the averages with respect to a3 of the associated Young measures

o = 5(02 L pDgu) converge to o weakly * in L°(w; M(Sym(R?)x M?*2)), and
M/u% 3UL;

limsup I (¢") = I(0).
k—o0
Let (u,b) € W2P(o; R®)x WP(w; R?) such that u = (1,22,0) and b = (0,0,1)
on Jdw.
By virtue of Lemma 5.2, there exists a sequence {(u;,b;)} C W2P(e; R®)x
W'P(w; R?) such that

s, — u in W?P(w; R?) and by, — b in W(e; R?)

and the sequence {(|D§u§7. ", |Dyb,, ")} is equi-integrable. On the other hand (u, b)
is the underlying deformation for ¢ and {u., b, } still generates o, but they do not
preserve the boundary condition.
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Applying lemma 5.3 one can construct w,, and p,, such that |D2w8l |” and
|Daps;, P are also equi-integrable and {(D? We, s Dapy; ) } still generates o.

By (3.4) and a measurable selection argument (see [11], proposition 2.2.7), it
follows that there exists a sequence of measurable functions {z;}, 21, : v — R?
such that

Wo(D2wy, (), Dupyy, () = min{W(D2w,, (@), Dups, (@), 2(00), 2 € R}
= W(Dingk (®a), Dapy, (0), 21(20)) for ae. x, € w.
From the growth condition on W it results that
Wo(Diw;, , Dups, ) = W(D2w, , Dupy, k) < W(D2w,, , Dps; ,0)
< el + Dap, P +1)
and
Wo(Dow;, , Dupy, ) = WD2wy, , Dapy, , 2k)
> c(|D2w,, | + [Dapy, P+ |2l — 1) > e(|D2wy, [P + [Dapy, [P — 1)

almost everywhere, and therefore the sequence Wo(D*w,D,p%) is equi-in-
tegrable. Moreover the continuity of Wy and Theorem 2.1 entail

(74) im [W(DZ0,,00), Doy, @), 2x(wa)des =tim [Wo(D2aw,, @0), Dapy, (@),
Q [0}

_ f f Woh|d)do,, (h|d)dz,.

@ Sym(R%)x M3*2

Furthermore, again from (4.3) it follows that also {2} are p-equi-integrable.
Set vy, == Wy, and let w;, and by, be functions in Cj*(w; IR?) such that

_ 1 - 1
2k = will, < 2. IPg, —(0,0,1) = bell, < &
and let ¢,, a subsequence of {¢,} such that
(7.5) [, Dag ||, — O, || Dzwka — 0, and ||&,, D? bk||p — 0.

Next, define by, := (0,0, 1) + b;.. Then
(7.6) b; =(0,0,1) and iy = (0,0,0) on Ow, b, and wy, are p — equi-integrable,

and we claim that

(@7) dim [ [W(D2o, Dobr, )

k—o0

— W(D V. + Snkﬂch by + ;’” ngﬁ)k,Dabk + &n, 23D Wy, wk>] dx = 0.
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Indeed the sequences {(D2vy, Dyby,20;)} and {(D2vy, + e, x3D%by, + &, 2* D?py,
Dby, + ey,23D w0y, wr)} generate the same Young measure and, being p-equi-
integrable, (4.3) ensures that the sequences

W(D “Vg, Dby, W) and W(Davk—i—gmng bk—i—ank 23D2wk,D by, + en, 3Dy wk,wk>
are p-equi-integrable as well.

Again by Theorem 2.1 follows (7.7).

Let us define

g, 3) 1= Vp(Xy) + &n, 2305 (0,) + 25 5 £ 510 ()-
Thus (7.7) and (7.4) guarantee that
9 1 1
khm WD oWy — Da3uk,82 Diuy, |da
— 00 N
w
= klgrolo (D Vi + Snk.’)CgD b + Sm ;DzwkaDabk + snkochawk, ?/Uk> dx

— lim [ W (D20, Dubywi)do = f f Wo(h|d)doy, (hd)dzz,.
) O Sym(R?)x M3*2
Moreover it is easily seen that, from (7.5)
we — u in W2P(Q; R?’),iDguk — bin W'P(2; R?) and
Ny
u(e) = ulw,), b(x) = b(x,) and ug(x,, x3) = (X1, T2, £,,%3) ON JX (% %)
which, in turn, entails

0" = (Ope, o, W) = 0@ weakly « in L (2 M(Sym(RHxM*)

and
q(0") — q(o ®dp) = o weakly  in L (w; M(Sym(R?)x M>*2)),

where the last convergence follows from the continuity of ¢ and from Remark 7.3.
This proves the claim.

To conclude the proof it remains to show the liminf inequality for the se-
quence IM Let 0" € L (w; M(Sym(R®)x M>3*3)) be a sequence such that ¢(0")
weakly * converges to ¢ in L (w; M(Sym(R?)x M>3*2)), we must prove that

lim inf IM(0") > I(0).
N—00 "
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Without loss of generality one may also assume that the left hand side of the
inequality above is finite and that the lower limit is indeed a limit. Then
sup,, Igl’l(ﬁn) < +o0. i

Hence, by Lemma 4.1, there exists 0 ¢ y@j}; (Q; R?) and a subsequence 0"

such that 0" — 0 weakly * in L2°(¢2; M(Sym(R?)x M3*3)) and the corresponding
underlying deformations u,, and (u,b) which satisfy the boundary conditions
U, () = (g, &, 203) and (u(x), b(x)) = ((w1,22,0),(0,0,1)) are such that

1
Uy, — u weakly in W2P(Q; R?) and — Dsu,,, — b weakly in W'P(Q; R?).

Ny

Hence by Remark 7.3 we see that o € q()oiz’l’p (K; RS)) = V2P (w; RS).
L0
Finally, by (3.8), (3.4), the definition of 7; in section 4, Definition 4.7, (4.7)

liminf IM(0") = lim IM(@") = lim | W Dzun‘,iDaDgun‘,iDzun dx
n—oo  on k—oo k—ocg o Eny, ’ 812746 S

> limsup | Wy (Diunk,giDaDgunk)dx = 1i’£n inf | (70", Wo)da
k—o0 0 N —00 5

1

= hlin inf ( f(f[u 0", Wo)dﬁ&g) dxg = hlzn inf <AV8 Ty o, Wo)da,

2

= lim inf [(q(0"),, Wo)da, > f (s Wobdi

w

where in the last inequality it has been used Theorem 2.1.
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