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Bollettino U. M. 1.
(8) 10-B (2007), 119-158

Systems of Inclusions Involving Fredholm Operators
and Noncompact Maps.

DoroTa GABOR

Sunto. - I'n questa nota st studia lesistenza di soluzioni per un sistema di due inclusioni
con operatori di Fredholm aventi indice non negativo e multifunzioni «fonda-
mentalmente restringibili» e a valor: non necessariamente convessi. Si applica la
tecnica della mappa soluzione e, poiché le ipotesi consentono un «difetto di di-
mensione», l'indice di coincidenza, cioe un thvariante omotopico basato sulla teoria
della co-omotopia. St forniscono pot due applicazioni ai problemi ai limiti.

Summary. — We consider the existence of solutions to the system of two inclusions in-
volving Fredholm operators of nonnegative index and the so-called fundamentally
restrictible maps with not necessarily convex values. We apply the technique of a
solution map and, since the assumptions admit a ‘dimension defect’, we use the co-
mcidence index, 1.e. the homotopy nvariant based on the cohomotopy theory. Two
examples of applications to boundary value problems are included.

1. — Introduction.

In the paper we study the existence of solutions to the system of inclusions

La(x) € G(x, ),

where E., E», L', £, are Banach spaces, L :Ey — E}|, Ly : Ey — Ej, are
Fredholm operators of nonnegative index, Q C E2 x E; and F:Q ok,
G : Q — K}, are multivalued maps. Our approach is as follows: after defining the
so-called solution map Qg : Es —o Ky which assigns to any x € E» the (possibly
empty) set {y € E1 | L1(y) € F(x,y)}, we consider the coincidence problem

2) Lo(x) € O(x) := G({a} x Qp(x)).
A similar attitude has been presented in [26], [8], [31], [12] under the assumption
that E1 = Ell, Ez = E’z and L1 = idEl, Lz = 7,dE2

In [14], system (1) was studied in a full generality, however, the maps F and G
were assumed to be compact. In the present paper we apply methods from [14] in
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order to embrace much more general classes of maps, namely the so-called fuda-
mentally restrictible ones. To this end we use a topological invariant, called the
generalized coincidence index (see [25], [13] and [14]), which allows to examine the
existence of solutions to problems of the form (2). Observe that such problems admit
a«dimension defect» between domain and codomain. Therefore the usual approach
involving homology fails (this issue has been discussed in detail in [14]): instead some
methods of cohomotopy theory initiated in [23, 24, 25] have to be applied.

The studied problem admits a complementary approach. Namely one may
consider a coincidence problem of the form L(x,y) € ®(x,y), where Esx
Ey 5 (x,y)— L(x,y) == (La(®), L2(y)) € By x By and (2, 9) — (2, ) = (G(x),
F(y)) (see e.g. [27], [21], [35], [15], [2], [25], [10], [32]). It seems however that this
approach requires different hypotheses.

The paper is organized as follows. In the next section we shortly recall some
preliminaries. The considered class of maps (with examples and some auxiliary
facts) is discussed in Section 3. Section 4 is devoted to the main abstract results
and in Section 5 we give two examples of its application.

Our paper heavily relies on [14]: in fact it may be considered as its con-
tinuation. Therefore we do not repeat algebraic issues leading to the main tool of
this paper (see Theorem 4.14) which may be found in [14].

2. — Preliminaries.

All spaces considered in the paper are metric and all single-valued maps are
continuous. If V is a subset of a space, then cl V,int V, and bd V' denote the closure,
the interior and the boundary of V, respectively. If V is a subset of a Banach space,
then conv V stands for its convex hull and conv V = cleconv V. Forz € R", ¢ > 0,let
B"(z,¢) = {x € R" | ||x — 2| < &}, D"(2,¢) = cl B"(z,¢). Similarly if z belongs to a
Banach space E, then BY(z,e) = {x € E | ||x — 2|| < &}, D¥(z,¢) = el B¥(z,¢). By
0.(V) we denote the set {w € £ | ||w — || < & for some x € V}

Let £ and E’ be Banach spaces. A bounded linear map L : E — E’ is called a
Fredholm operator if its kernel Ker (L) and cokernel Coker (L) := E'/Im (L),
(where Im (L) is the image of L), are finite dimensional. The Fredholm index of L
is then defined as follows:

i(L) := dim Ker (L) — dim Coker (F) (V).

All Fredholm operators considered in this paper will have nonnegative indices.
It is easy to see that Im (L) is a closed subspace of £’ (see [16, IV.2.6]). Since both

(*) Observe that if F: R™ — R" is linear, then F is a Fredholm operator and
W) =m —n.
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Ker (L) and Im (L) are direct summands in £ and £, respectively, we may consider
continuous linear projections P : £ — Eand @ : B’ — E’,such that Ker L = Im (P)
and Ker @ = Im (L). Clearly E, £’ split into (topological) direct sums

Ker (P) ® Ker(L) = E, Im(@ ®Im(L)=FE".

Moreover, L|g,, p is a linear homeomorphism onto Im (L). By Kp : ImnL — Ker P
we denote the operator inverse to L |, p. Note also that L is proper when restricted
to a closed bounded set or, more general, to a closed set X such that P(X) is bounded.

Let X, Y be spaces. By a multivalued map ¢ : X —o Y we understand an upper
semicontinuous transformation which assigns to a point x € X a compact
nonempty set p(x) C Y. We say that ¢ is compact if cl p(X) is compact.

A compact space A is cell-like if there exists an absolute neighborhood retract
Y and an embedding ¢ : A — Y such that the set i(A) is contractible in any of its
neighborhoods U C Y. Let A be a cell-like space, Z be an absolute neighborhood
retract and i : A — Z be an embedding. Then i(4) is contractible in an arbitrary
neighborhood (in Z); therefore cell-likeness is an absolute property. Compact
convex or contractible, or R;-sets (i.e. the intersections of decreasing families of
compact contractible sets) are cell-like. Cell-like sets are acyclic; however there
are examples of acyclic sets which are not cell-like.

DEFINITION 2.1. — A proper surjection p : I’ — X is a cell-like map 1if, for
each x € X, the fiber p~'(x) is cell-like. We say that a pair (p,q), where
XL 1 LY@, is c-admissible if p is a cell-like map. A set-valued map
p: X —Y is c-admissible if it is determined by a c-admissible pair (p,q), i.e.
o) = q(p~(x)) for all x € X.

Observe that in the above definition ¢ is compact if and only if ¢ is compact.

DEFINITION 2.2, - We say that c-admissible pairs X 2or & N Y, k=0,1
(or maps determined by them) are homotopic, if there exists a c-admissible pair
X x[0,1] £ r S, Y and homeomorphical embeddingsjy : ', — I,k =0,1 A
such that the following diagram commutes:

X Po FO
47
Xx[01 £ r_—9 |y

iJ jl[ /q'

x B

() In what follows we write (p,¢) : X — Y. The domain of p and ¢ will be stated
explicitly if necessary.
() ie. amap ji : Iy — () is a homeomorphism.
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where 1,(x) = (x, k) fork = 0,1and x € X. The pair (R, S) (orthe map determined
by 1it) is called a homotopy between pairs (poy,qo) and (p1,qy1) (or between maps
determined by them).

REMARK 2.3. — Observe that (*)

(@) If 9 : X —Y is a c-admissible map, then its restriction ¢|, to A C X, is
c-admissible.

@) Iff : Y — Z is a single-valued map, then it is c-admissible (determined by
(idy, f)). Moreover, the composition f o p, where ¢ is a c-admissible map, defined
by f o p(x) := {f(y) | y € p(x)} is also c-admissible (since determined by (p, f o ¢)).

(#17) A set-valued map ¢ : X —Y given, for x € X, by ¢(x) = ¢;(x) x ¢5(x),
where ¢y, ¢y : X — Y are c-admissible maps, is also a c-admissible one. Similarly
the map w:X —oY, defined by w(x) := ¢;@) + ps(0) = {y1 + 2 | y1 € (1),
Yo € o)}, & € X, is c-admissible. In particular, if a c-admissible pair (p, q) de-
terminesamap g : X — Yandf: X — Y,thenthemapf + ¢ : X -Y, given by
f+o)@ ={f®)+y |y < o)} for x € X, is c-admissible (it is determined by
the pair (p,f o p + Q).

The well known class of set-valued maps with not necessarily convex values
consists of maps admissible in the sense of Gérniewicz, i.e. determined by pairs
(p, ) such that p is a Vietoris map (it means a proper surjection with acyclic (°)
fibers) (see [18], [17], [5], [6] and [22]). One of the main reasons to study ad-
missible pairs (and multivalued maps determined by them) in classical sense
follows from the famous Vietoris-Begle theorem (see e.g. [34]) which states
that if p:I" — X 1is a Vietoris map, then the induced homomorphism
p* : H*(X) — H*(I') is an isomorphism. It allows to define a topological degree
using homological methods. But, since we admit a «dimensional defect», this
result seems to be useless in our framework where no standard (co)homological
issues play a role. Therefore we have to consider a less general class of maps
satisfying a cohomotopy version of the Vietoris theorem due to W. Kryszewski
(see [23], [24], [25], [13]). From the viewpoint of applications, it is sufficient to
consider pairs and maps admissible in the sense of Definition 2.1, so results of
this paper are stated for them. However all these results stay true for pairs
X2 r-%Lyand maps determined by them, such that p is a Vietoris map

satisfying the additional condition: supdimp~1(x) < co (see [25], [11], [13]).
xeX
Observe that if dim I” < oo, then the above holds automatically; conversely if p is

a Vietoris map and dim X < oo, then dim I" < oo, too.

(*) One can find the proof in [14]. 3
(®) A compact space A is acyclic with respect to the Cech cohomology H* with integer
coefficients, if H*(A) = H*(pt), where pt is a one-point space.
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In order to establish hypotheses necessary to state our main results we need
some facts concerning the cohomotopy products. Here we briefly recall some
preliminaries - the details may be found in [14] (see also [36], [19]).

By a pair of spaces we always understand a pair (X, A) where X is a space and
A C Xisclosed.By [X,A; K, L]we denote the set of homotopy classes [f] of maps
f:(X,A) — (K,L),ie.f: X — K and f(4) C L. Let 7*(X,A) := [X, A; 8", 50] ®),
where S” stands for the unit %-dimensional sphere and sy = (1,0, ...,0) € R"*lis
the base point.

Let ¢ € n(X,A) and n € n"(Y, B), n,m > 0, be represented by u : (X,A) —
(S™,89) and v : (Y,B) — (8™,s¢), respectively. Then u x v: (X,A) x (Y,B) =
X xY,XxBUAXY)—(S"x8" 8" x {so} U{sp} x S™)is given by (u x v) -
(x,y) = (@), v(y)). We define

3) ¢an:=I[gomxvlen"(X,A) x (Y,B)),

where the map g : (8" x 8™ 8" x {so} U{so} x S™) — (S"*™ sy), is a quotient
projection.
The external product

®: "X, A) x "(Y,B) — #"""(X,A) x V,B)) =" X x Y, X x NUA X Y)

defined above has many properties which are useful in the considerations con-
cerning finite dimensional and compact cases (see [14], [11]). Below we mention
only a few facts, strictly connected with this paper.

REMARK 2.4. — If 2n — 1 > m >mn and 0 # ¢ € (8™, s¢), then
EaVF £0,

where V¥ is a homotopy class of the identity map in 7%(S*, sy).

If m <2n —1 we can identify the cohomotopy group #n"(S™,sy) with the
stable homotopy group I7,,_, which is finite and abelian for any m > n (see [19]).
Therefore if we regard I7;, and IT;, as 7" (S™, so) and 7'(S*, s9), where m — n = 1y,
k—1=12,2n—1>mand2l — 1 > k, then we may consider an external product
E@n of eIl and 5 € I1;,. Moreover, if £+ 0 and v is an element of I7;,
identified with v* € 7¥(S*, s¢) (k > 1), then ¢ @ v # 0.

3. — Fundamentally restrictible maps.

Let E, E' be Banach spaces. Consider a Fredholm operator L : £ — E’ of
nonnegative index i(L) = k and a set-valued map ¢ : X - £’, where X C K.

(®) We also write 7(X) := 7"(X, ).
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DEFINITION 3.1. — A nonempty closed convex set K C E' is L-fundamental
for the map ¢, if
@) gL K) N X) C K;
(ii) if for x € X, L(x) € conv (p(x) U K), then L(x) € K.

The whole space E’ and conv ¢p(X) are the simplest examples of L-funda-
mental sets for ¢.

The geometrical sense of the second condition in Definition 3.1 is as follows: if K
is an L-fundamental set for ¢, then ¢(x) must be contained out of the shadowed area.

Below we collect some properties of L-fundamental sets. Let C:= {x € X -
| L(x) € p(x)}.

PROPOSITION 3.2.

() If K is an L-fundamental set for ¢, then C C L~1(K).

(i) If K1 and Ks are L-fundamental sets for ¢, then Ki N Ko is empty or
L-fundamental for ¢. If Ky N Ky =, then the set C of coincidence points
defined above is empty too.

Gii) If K s an L-fundamental set for ¢ and P C K, then the set
K' = conv (p(L"Y(K) N X) U P) is also an L-fundamental set for ¢.

@iv) If S is an intersection of all L-fundamental sets for ¢, then

S = conv (p(L"1(S) N X)).
(v) For any Z C E' there is a set K, which is L-fundamental for ¢ and such
that K = conv (p(LY(K) N X) U Z).

ProOF. — Only the last statement needs a proof, the others are simple con-
sequences of definition.
Consider a nonempty family of sets

K ={P C E' | P is L-fundamental for ¢ and Z C P}.
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It is easy to check that the set

K=(P

PeK

is L-fundamental for ¢, Z C K and, by Definition 3.1 (i),
Z c K =conv (oL Y K)NnX)UZ) C K.

But (¢47) above implies that K’ € K, therefore, by the definition of K also K C K’,
what ends the proof. O

Observe by the way, that the set K defined above is the smallest L-funda-
mental set for ¢, containing Z.

DEFINITION 3.3. — A multivalued map ¢ : X —o E' is called L-fundamentally
restrictible, if there is a compact L-fundamental set for ¢, having a nonempty
intersection with L(X).

This definition can be written in another way as follows: «there is an L-fun-
damental set K such that el p(L~1(K) N X) is compact in E’ and K N L(X) # (».
Indeed, then K’ = conv (p(L~Y(K) N X) U {y}), where y € K N L(X), is a compact
L-fundamental set for ¢ (comp. 3.2 (iii)) and y € K’ N L(X). But if one does not
assume that £’ is a Banach space, but only a locally convex one, then the above
conditions are weaker then those in Definition 3.3.

If the set of coincidence points C is nonempty, then each L-fundamental set for ¢
has nonempty intersection with L(X) (see 3.2 (2)), but the inverse fact is not true.

REMARK 3.4. — Let E” be a Banach space and L' : £/ — E” be a continuous
linear isomorphism. Then the composition L' o L is a Fredholm operator and
W oL)y=14L). If ¢p:X ok is L-fundamentally restrictible, then L' o ¢ is
(I/ o L)-fundamentally restrictible. Indeed, it is easy to check that if K is a
compact L-fundamental set for ¢, then L/(K) is a compact (L' o L)-fundamental
set for L/ o ¢.

In fact, to define the above notions, we do not need the assumption that L is a
Fredholm operator (comp. [10]), but further we consider only such situation.
Below we enlist some examples of L-fundamentally restrictible maps.

3.5. CoMPACT MAPS. — Recall that ¢ is compact, if the set el p(X) is compact in
E'. Then the set K =conv(p(X)) is L-fundamental for ¢ and compact. If
KNLX) =0, then we take

K" = tonv (p(X) U {v}) = conv (p(L"Y(E") N X) U {o}),

where v € L(X). It is clear that K" satisfies conditions of Definition 3.3.
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3.6. L-CONDENSING MAPS. — By a measure of noncompactness in a Banach
space E’ one ussually means any function u : B — [0, oo) defined on the family B
of all bounded subsets of £’, which has the following properties:

1. u(A) = 0 & cl A is a compact set;

2. 1 is a seminorm, i.e. u(4 - @) = |Au(A) and u(A; + Az) < w(Ay) + u(Ay);

3. If A1 C Ag, then ,U(Al) < ﬂ(Az);

4. (A1 U Az) < max{u(Ay), (A2)};

5. w(conv A) = u(A) and u(clA) = u(A);

6. If the sequence of sets {4;};", is decreasing and lim;_,, u(4;) = 0, then the
set A = (N2 el 4; is compact and nonempty.

Let ¢(X) be a bounded set. The map ¢ is called L-condensing, if for any
bounded A C X, the inequality u(p(A)) > u(L.(A)) implies that cl A is compact.

We shall prove that ¢ is L-fundamentally restrictible. Indeed, for any
y € L(X) there exists an L-fundamental set K such that K = conv (p(L 1 (K)N
NX) U {y}) (comp. Prop. 3.2 (v)). Assume for the moment that K is not compact.
Then

WE) = peony (LK) NX) U{y}) = woll K NX) U {y}) <

< ulp N E) N X)) < w7 E) N X)) < wK),

a contradiction. Therefore K is compact, and since y € K N L(X), it satisfies
conditions of Definition 3.3.

3.7. L-CONTRACTIONS.. - A bounded map ¢ is an L-contraction with k > 0 with
respect to the measure of noncompactness g, if for any bounded set A C X,
wWp(A)) < ku(L(A)). For k € (0,1) it is of course an L-condensing map, hence an
L-fundamentally restrictible one.

3.8. L-LIMIT COMPACT MAPS. — Consider a family of sets:
K; := conv (p(X)),

K, = conv (p(L 1(K,_1) N X)), if there is an ordinal number a — 1,

K, = m Kj, when > a > is a limit number.
p<a

Since the sequence {K,} is decreasing, there exists an ordinal number y, such
that K, = K, 1, hence K, = Kg for all f > y. Let K := K,.

The map ¢ is L-limit compact if the set K defined above is compact and
nonempty.

It is easy to check that the set K is L-fundamental for ¢ since each K, is so,
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and that K =conve(L Y(K)NX). Moreover, if KNL(X)=(0, then also
LY K)NX = 0 and K = 0, but we know that K # (), so K N L(X) # () and ¢ is
L-fundamentally restrictible.

Observe that if ¥ = E' and L = idg, then the maps described above became
condensing, k-set contractions or limit compact ones in old well known sense
(comp. e.g. [7], [33]).

In the coincidence theory for Fredholm operators with index 0, started by
Mawhin (e.g. [28]) and continued by many authors (see [9], [2], [29], [21], [20] and
others) one considers also L-compact or L-condensing maps, but in different
sense (here we call them Lj;-compact and Lj;-condensing). Nevertheless, they
are also L-fundamentally restrictible.

3.9. Lj/-CONDENSING MAPS. — Let P, @, Kp be the respective linear operators
for L (see Preliminaries) and I’ := idg, I := idg. Assume that (I’ — Q) o p(X) is
bounded and denote by v a measure of noncompactness in £. The map ¢ is Ly;-
condensing, if for any bounded set A C X, the condition v(Kpo (I’ —Q)o
p)(A)) > v(A) implies that cl A is compact. We will prove that ¢ is L-fundamen-
tally restrictible provided X is closed and P(X) is bounded.

In order to simplify the notation let @ := Kp o (I' — ) o p. Take an arbitrary
Yo € L(X) and put xy := Kp o (I’ — Q)(yp). Consider the family of sets

A:= {Zs|Zs =conv(Z;) C Ker P, conv(P((Zs + Ker L) N X) U {xp}) C Z; and
(I — P)(x) € conv (P(x) U Zs) = (I — P)(x) € Z; for any x € X}.

A is nonempty since Z; =conv(PX)U {xy}) € 4. Moreover, observe that
Z = g,esZs # 0 since g € Z, and that Z € 4. We shall prove that

(4) Z =W :=conv [&(Z + Ker L) N X) U {x}1.

It is easy to see that W C Z. Indeed, for every set Z; € A, W C conv (&((Zs +
KerL)NX) U {xy}) C Zs, hence W C ﬁZSeA Zs.

To prove that Z Cc W, we check that W € A. At first observe that, since
W cZ,

conv (D((W + Ker L)NX) U {xp}) C conv(P((Z + Ker L)yN X) U {xp}) = W.

Moreover, if (I — P)(x) € conv[®(x) UW] for some x € X, then (I — P)(x) €
e conv[P(x)U Z], so (I — P)(x) € Z and hence x € (Z + Ker L) N X. It follows
that

D) C P((Z+KerL)nX)c W

and conv (@(x) U W) = W. Since W = conv W C Ker P, we have just proved that
W € A and finally that W = Z.
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Observe that, since (I’ — Q) o ¢(X) is a bounded set, (4) implies that 7 is
bounded and so is (Z + Ker L) N X (because also P(X) is bounded). Therefore
(Z + Ker L) N X is compact. Now it is easy to see that

K = conv [p((Z 4+ Ker L)N X) U(I' — Q)(p((Z + Ker L) N X)) U {yo}]
is compact, L-fundamental for ¢ () and K N L(X) # 0.

3.10. L-COMPACT MAPS. - A map ¢ is L-compact, if Kpo (' — Q) o ¢p(X) is a
relatively compact subset of £. Then it is obviously an Lj-condensing map,
so L-fundamentally restrictible.

3.11. (L, K,)-OPERATORS. — This notion is a generalization of so-called KC,.-
operators considered in [1]. Let A C 2E' The map ¢ is an (L., A)-operator, if for
any Z € A and any M C E’ the following condition holds:

if conv ((p(L*I(M) NX)uZ)=M, then M is compact.

By K,, K. and K. we denote the families of all n-element, all finite, and all
compact subsets of £’, respectively. It is easy to see that any (L, K.)-operator is
an (L, K)-operator, any (L, K )-operator is an (L, K,)-operator for arbitrary
n € N and any (L, KC,,)-operator is also an (L, K,;,)-operator provided m < n.

If A denotes any family from among K1, K,, ... Ky, K. and ¢ is an (L, A)-
operator, then, using Proposition 3.2 (v), one can easily check that ¢ is L-fun-
damentally restrictible.

REMARK 3.12. — Observe that any L-condensing or Lj/-condensing map ¢
(then also L-contraction, compact, L-compact) is an (L, K,) operator. Indeed, by
Proposition 3.2 (v), for an arbitrary compact set Z there is K being a fundamental
set for ¢ and such that conv (p(L.~1(K) N X) U Z) = K. Assume for the moment
that it is not compact. If ¢ is Lj-condensing, then it means that also a closed set
L~Y(K) N X is not compact. Since L~Y(K)NX C (Kpo (' — Q)K) ®Ker L) N X,

W(L7H(K)NX) < w(Kpo(I' - Q)K) & Ker L)NX) =

= W(Kp o (I' — Q)((Conv (p(L. " (K) N X) U Z)) & Ker L) N X) <

< w(Kp o (I' = @@ (p(L " K)NX)U Z)) N X) + v(Ker LN X) <
< v(@onv (Kp o (I' = QL. (K) N X) U Z)) N X) + W(P(X)) <

<v(Kpo ' — QL. (K) N X)) < WL~ (K) N X),

(" K is nonempty, because it contains .
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a contradiction. Then L~1(K) N X is compact and sois K. If ¢ is L-condensing, one
can repeat arguments from example 3.6 putting Z instead of {y}.

Finally we give an example of an L-fundamentally restrictible map, which is
not contained in any class defined earlier.

3.13.LetE = E' = and X = ¢l B"(0,1). Define L : 2 — Pand ¢ : el B"(0,1) — 2
by

1
L((xy, 22,23, ...,200,...)) = <§(m1+902),0,903,...,mn,...),
¢((x17x2ax37"'790n)--~)) - (x27x37"'axn—la~--)~

It is easy to see that e.g. K = {(0,0,0,...) |a € [—1,1]} is a compact L-fun-
damental set for ¢ and K N L(X) # (. Observe that L(BZZ(O,I)) - BZZ(O, 1) C
o(B”(0,1)) and B”(0,1) c L-Y(B¥(0,1)).

¢ is not an L-limit compact map, because any set K, contains B" (0, 1); it is not
an (L, Ky)-operator (hence also it is not an (L, IC;)-operator for v > 1, v = oo or
v = ¢), because the smallest L-fundamental set for ¢ containing B (0,1) satisfies
respective condition (see Prop. 3.2 (v) and definition of (L, K)-operator) for any
T={m} C Blz(O, 1) and it is not compact; it is not L-condensing and L;,;-con-
densing, since it is not (L, KC;) operator (see Remark 3.12).

Compact associated maps.

Denote by FDp(X, E’) the family of c-admissible L-fundamentally restrictible
maps. Below we introduce two definitions of homotopy in F Dy, (X, £”). The first
one seems to be more natural, but it does not guarantee useful properties of
homotopy (e.g. as an equivalence relation), so it has only a technical character.

DEFINITION 3.14. — Let K be a compact convex and nonempty subset of E'. We
say that maps ¢, ¢, € FDr (X, E") are (L, K)-homotopic (and denote p, ~x ¢1), if
there exists a c-admissible pair (R, S) being a homotopy between ¢, and ¢, in the
sense of Definition 2.2 and such that K is an L-fundamental set for all maps of
the form S(R1(-,t)), where t € [0,1].

DEFINITION 3.15. — We say that maps ¢y, ¢, € FDr(X,E') are L-homotopic
(and denote ¢y ~ ¢,), if there exists a finite sequence of compact convex and
nonempty sets Ky, ..., K, and maps v, ... ,y,_1 € FD(X,E") such that

Yo =K1 Y1 =K -+ ZKyy Yn-1 =K, P1-

Obviously, if two maps are (L, K)-homotopic, then they are L-homotopic.
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Moreover, a c-admissible pair of maps X x [0, 1] Erig determining a
compact homotopy is also an (L, K)-homotopy, with K = conv (S(R~1(X x [0, 1]))),
hence simply an L-homotopy.

In order to introduce a homotopy invariant for L-fundamentally restrictible
maps, let us first describe some connections with compact maps. Suppose that
p € FD.(X,E") is determined by a c-admissible pair X Lo % F and has a
compact L-fundamental set K such that K N L(X) # 0.

DEFINITION 3.16.
(i) A c-admissible pair (p,q) is K-associated with (p,q), if q: I’ — K and

mp*I(L*I(K)ﬂX) = q|p*1(L*1(K)ﬂX)‘
(ii) A c-admissible map p determined by (p,q) is K-associated with ¢.

Observe that the map @ defined above is compact. Moreover, for any
p € FDL(X,E') and its arbitrary compact L-fundamental set K such that
KNLX)#0, one can find a K-associated map. Indeed, if the pair (p,q)
determines ¢, then the nonempty set p~ (L 1(K) N X) is closed in I" and by
the Dugundji Theorem (see e.g. Th. (7.1), III [3]) the map q|p,1(L,1(KmX):
:p Y (LY (K)NX) — K has a compact extension g: I" — K. It is clear that ¢
may admit other associated maps (for the same or different L-fundamental
set). Some of their properties are described in the following two theorems.

THEOREM 3.17. — Let Ky, K; be compact sets L-fundamental for
9 € FDL(X,E") and such that L(X) N Ky N Ky # 0. Assume that ¢; is a compact
c-admissible map K;-associated with ¢ for i = 0,1. Then there is a compact
homotopy between ¢, and ¢;.

If; additionally, L and ¢ do not have coincidence points in some set X' C X,
then also this homotopy does not have coincidence points with L in the set
X' x[0,1].

ProOF. - Observe that K» = Ky N K; is a nonempty L-fundamental set for ¢.
Denote by 7; : B/ — K;, i = 0,1,2 the respective retractions (%) and by (p,qo),
(p, q1) pairs determining ¢, and ¢, respectively. Let R : I" x [0,1] — X x [0, 1],
R(w,t) = (p(w),t) and S : I' x [0,1] — £,

(1 — 4t)qo(w) + 4t(rg o @)(w), for ¢t <[0,1

2 — 4t)(rg o Q)(w) + (4t — D(ry 0 Q(w), for t e (§,1]
(B — 4t)(r2 0 Q)(w) + (4t — 2)(r1 0 Q(w), for t e (§,3]
(4 — 4t)(ry o Q(w) + (4t — 3)q1 (w), for ¢ e (3,11.

S(w,t) =

() By the Dugundji Theorem any closed convex subset of a Banach space is a retract
of this space.
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Observe that S is compact since S(I” x [0,1]) C Ky U K3, and R is a cell-like map.
Moreover the pair (R, S) is a compact homotopy between c-admissible pairs (p, go)
and (p, 1) (then it also determines a compact homotopy between ¢, and ¢, ).

Suppose now, that ¢ and L do not have coincidence points in X’ and for some
tel0,1], x € X,

L) € S(R7 (x,t) = S{w,t) | w € I',pw) = x}).
Ifte [O,i], then it means that there is w € I such that
pw) = x and L(x) = (1 — 4t)qo(w) + 4t(ry o q)(w).

Therefore L(x) € Ky, sox € L™1(Ky) N X. This implies that w € p~1(L~1(Ky) N X).
But then qy(w)=qw) and 7)o q(w)=qw), because q(w)c K;. Finally
S(w, t) = q(w), and hence x ¢ X'.

Similar arguments we can use for ¢ € (3,1].

If t € (,1], then again there is w € I, such that

pw) = x and  L(x) = @2 — 4t)(ry o @)(w) + (4t — 1)(r2 o @)(w).

Then, like earlier L(x) € Ko, so w € p~ (L 1(Ky) N X) and q(w) € K. Therefore
79 0 q(w) = q(w), what means that 7y o q(w) € q(p~(x)). But since 3 o g(w) € Ka,
we state that L(x) € conv (¢(p~1(x)) U Ky). It follows that L(x) € K; (because K»
is L-fundamental for (p,q)), and hence 73 o g(w) = g(w). Once more we get
S(w,t) = q(w), sox ¢ X'.

The same proof works when ¢ € (1,31. O

THEOREM 3.18. — Assume that (p,q) determines ¢ € FDL(X,E") and K is a
compact L-fundamental set for ¢ such that K N L(X) # 0. If ¢ is determined by
(p, Q) - a compact pair K-associated with (p, q), then ¢ ~x .

PrOOF. — Since ¢ € FDy(X,E’), one can easily check that the pair

X 0,11 & 1 x 10,115 E', where Rw, t) = (p(w),t) and Sw, ) = (1 — H)g(w)+
tq(w) is an (L, K)-homotopy between ¢ and . O

REMARK 3.19. — Observe that, if the pair (p,q) does not have coincidence
points with L in some set X', then also any map of the form x +— S(R~(x, t)), where
(R,S) is defined in the proof above, does not have coincidence points with L in X’
for any t.

In particular, if Ky and K; are compact L-fundamental sets for
¢ € FD(X,E’) such that Ky N K; = ), then none of maps K- or K;-associated
with ¢ has coincidence points with L, because then also ¢ does not have coin-
cidence points with L (comp. Th. 3.17).

The coincidence index Ind;((p,q),X) of a compact c-admissible pair
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X <& % E is defined in [25] or, in a bit different way, in [13]. We do not
repeat this construction here, but assuming, that it is given, shortly recall the
generalization of this notion for maps belonging to 7Dy, (X, £’). More details one
can find in [13] or in [10]. But we would like to stress that, because of possible
«dimensional defect», this coincidence index is an element of respective stable
homotopy group. However, if there is no «dimensional defect» between domain
and codomain, i.e. i(L.) = 0, then the coincidence index is in fact equivalent to the
fixed point index for c-admissible maps, when L = id (comp. [25]), or to index of
Mawhin in a general case (see [29], [28] and comp. Th. 3.21 (v)).

LetX C E,intX # (), and ¢ € FDr(X, E"). Assume that the set of coincidence
points C = {x € X | L(x) € p(x)} is bounded closed and contained in int X .
Take any c-admissible pair (p, q) determining ¢.

DEFINITION 3.20. - By a generalized index of the pair (p, q) we understand an
element

Ind .((p, @), X) :=Ind .((p,q), X) € II},

where (p,q) is a compact pair K-associated with (p,q), and K is an arbitrary
compact L-fundamental set for (p, q).

The correctness of this definition follows from Theorem 3.17 and the homo-
topy property of the generalized index for compact pairs (see [25], [13]).

If (p,q) is a compact pair, then it is obviously (conv g( p~1(X))-associated to
itself. Then both indices: defined above and that for compact pairs are the same.

The index defined above heavily depend on the orientations of Ker L and
Coker L, (which we have to fix at the beginning, as in the compact case). Namely,
any change of these orientations may effect a change of a «sign» of the index but
does not change its nontriviality.

THEOREM 3.21. — The generalized index defined above has the following
properties:
(i) (existence) If Ind ,((p, q),X) # 0, then C # B, i.e. there is x € X, such
that L(x) € q(p~1(x)).
() (localization) If X' C X is open and C C X', then Ind 1,((p, ), X) is well
defined and equal to Ind 1,((p, ), X). s
(iii) (homotopy invariance) If X x [0,1] — I’ = E' is an L-homotopy be-
tween pairs of maps (py, qo) and (p1,q1) (in the sense of Definition 3.15) and the

(®) We can omit the assumption that C is bounded when X is closed and P(X) is
bounded, where P is a respective projection (comp. Preliminaries).
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set {x € X | L(x) € S(R~(x,1)) for some t € [0,11} is closed bounded and con-
tained in int X, then

Ind 1.((po, q0), X) = Ind .((p1, 1), X).

(iv) (additivity) If X1, Xo C X are disjoint, have nonempty interiors and
Cc X; UXz, then

Ind .((p, ¢),X) = Ind 1.((p, @), X1) + Ind .((p, @), X2).

(v) Let E" be a Banach space and A : E' — E" be a linear homeomorphism.
Inthe space Ker A o L = Ker L the orientation is given. Fix the orientation in the
space Coker A o L. Then

Ind 4or.((p, 409), X) #0 & Indp((p,q),X) # 0.

Moveover, if the isomorphism A : Coker L — Coker (Ao L), given by A([z]) =
= [A(z)] saves the orientation, then respective indices are equal; if A does not save
the orientation, then respective indices differ in parameter (— 1).

(vi) (restriction) If q(p~ (X)) C Y and Y is a closed subspace of E' such that
dmImL +Y) > i)+ 2, then Indp((p,q),X)=Ind (p',¢),XNT), where
T:=L'ImQ+Y), p'=plvaxry ¢ =dpiaxnn ond L'=Llp:T—
—ImQ@Q +Y.

(vii) (finite dimensional restriction) If we know that q(p~'(X)) CY =
=ImQ & W, and W' is a finite dimensional subspace of Im L, then

Ind ;,((p, @), X) = Deg ((p1, L' op1 — q1),X N T,0),

where T :=L'Y), L' =Ll and p;=pl,vaxor 0 ' @XNT) =T, ¢ =
=qly1@ XQT)p’l(ch NT)— Y. By Deg we understand the stable generalized
degree defined in [25] (see also [14], [11]).

One can find the proof in [13] or in [10].

REMARK 3.22.
(i) By the generalized index of ¢ determined by (p, q) we understand

Ind 1,(p, X) := Ind 1 ((p, @), X).

This index depends on the choice of (p, q), or, more precisely, on a choice of an
L-homotopy class of pairs determining ¢.

(ii) An alternative definition of the generalized index for ¢ € F D (X, E’) is the
following:

Ind;,(p,X) := {Ind ..((p, ), X) | ¢(x)= q(pfl(ac)) and (p, q) is c-admissible}.

Or, if we widen the notion of a c-admissible map, i.e. admit ones having multi-
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valued selections determined by a c-admissible pair, we can put:
Indz(p,X) := {Ind.((p,9),X) | o) D q(p~1(x)) and (p, ¢) is c-admissible}.

If any of indices defined above is nontrivial (19, then C #0.

4. — Main result.

Let Ei, E; E', E), be Banach spaces, D be an open subset of E; and
X C D x Eq. We consider a system of inclusions:

LZ(x) S G(m7 y)a

where Ly : By — EY, Ly : E; — E}, are Fredholm operators and F': X <K/,
G : X —o E, are multivalued maps.

Observe that the operator L :Es; x E; — Ej) x E| given by L(x,y) =
= (Le(x),L1(y)) is a Fredholm one with (L) = i(l) + i(Lg). If the map
X 3 (@, y)— P(x,y) .= (G(x,y), F(x,y)) is c-admissible compact or L-fundamen-
tally restrictible, and Ind ; (&, X) is defined and nontrivial, then some additional
technical assumptions guarantee the existence of solutions to the considered
problem (comp. e.g. [25], [10]). But, as we have mentioned in Introduction, we
are interested in the another method, using a so-called solution map, which let
us to relax the main assumptions concerning the coincidence index and the
L-fundamental restrictibility (see Th. 4.15). In further considerations we use
some results concerning a similar problem with compact maps on the right
hand side proved in [14].

Let X(a) :={y € Ei1|(a,y) € X} for a € Ky and pr : E2 x E1 — E3 be the
projection.

DEFINITION 4.1.

(i) A multivalued map F : X —o B is Ly-fundamentally restrictible, ifthere is
a compact convex set K C K, being Li-fundamental for all maps of the form
F(a,-) : X(a) — K where a € pr (X).

(i) A multivalued map F : X — EY is Li-fundamentally restrictible with
respect to the second variable, if for any compact set A C pr(X) there is a
compact convex set K C E', being Li-fundamental for all maps of the form
F(a,-) : X(a) — £} where a € A.

Observe that any L;-fundamentally restrictible map is L;-fundamentally

(% It means that Indz(p,X) contains a nontrivial element.
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restrictible with respect to the second variable, but the inverse fact is not true.
One can easily get some examples of maps satisfying the above definition by
obvious modification of those given in the previous section.

Let

CF) :={(x,y) € X|L1(y) € F(x,y)} and Dy :=pr(CF")).

It is clear that C(¥') is closed in X and coincides with the graph of the solution
map Qr defined by

Dr o> ux— Qpx) ={y € E1|L1(y) € F(x,y)} C K.

LEMMA 4.2. — Qp is a multivalued map (i.e. is u.s.c. with compact values) if
and only if pr |oy : C(F) — Dp is a proper map. O

Let Py, Q1, Kp, be the respective linear operators related to L; (see
Preliminaries), Ij :iolE/1 , and P:FEy; x Ey1 — E; be given by the formula:
Px,y) = P1(y).

LeEmMA 4.3. - If the map F is Li-fundamentally restrictible with respect to
the second variable, X is closed in D x E1 and such that the set P(X) is bounded,
then pr|ogy : C(F) — Dr is a proper map. In particular Qr : Dp — Ky is a
multivalued map.

Proor. — We shall prove that for any compact A C Dp, the set
O |y 1A = {(@,y) € X|L1(y) € F(x,y)} is compact, too.

Let K, be compact and L-fundamental for maps of the form F(x, -) for x € A.
The properties of fundamental sets imply that, if Li(y) € F(x,y), then
Li1(y) € Ky, so also y € L' (Ky). Therefore (pr |C(F))’1(A) C A x LY (Ky).

Consider a sequence {(x,,¥,)} contained in (pr |C(F))71(A). Without loss of
generality, assume that the whole sequence {x,} converges to xy € Dr C D. Let
Yn = Vn + 20, Where v, = Kp (L1(y,)) C Kp, o (I} — Q1)(Kp), and z, € PX).
Then, since (I} — Q1)(Ky) is compact, there is vy € Kp, o (I} — @1)(Kp) and
2o € el (P(X)), such that yo := vy + 2¢ is the limit of some subsequence of {y,}.
Since X is closed in D x K1 , (%, ¥y0) € X.

Assume that the whole {y,} converges to ¥, i.e. {(@n,¥n)} — (@o,%0). If
¥, = L1(y,) € F(x,,y,) then, since L; is continuous, {y,, } — L1(yo), and, since F’
is ws.c., L1(yo) € F(xo,yo). Finally (x9, y0) € (pr |C<F))*1(x0) and (pr |C<F))*1(aco) is
compact. O

REMARK 4.4. — In particular, if /' is a compact map, the above lemma stays
true. Moreover, if £; = R™, B} = R™ where m' <m, X is closed and locally
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bounded over Es(*) and F is an arbitrary multivalued map, then
pr o) : C(F) — Dis a proper map.

Further on we assume that

45. F is a c-admissible multivalued map, Li-fundamentally restrictible
with respect to the second variable.

4.6. X is closed in D x K1 with nonempty interior and the set P(X) is bounded
(or, more generally, pr|og : C(F) — Dy is proper);

4.7. C(F) C intX;
4.8. int X(a) # 0 for any a € D.

Suppose that a c-admissible pair X Ll E determines F" and let a € D.
Let I'y = {(y,w) € X(@) x I'| p(w) = (a,y)}. Define maps p,: I'y — X(a),
Qo : g — E’l by
Py, w) =y,  qu(y,w) = q(w).

Observe that (p,,q.) is c-admissible, ¢(p~'(a,y)) = qa(pgl(y)) for any y € X(a)
and (pg, q,) determines an L;-fundamentally restrictible map. Note that in view
of the above assumptions, {y € X(a) | L1(y) € F(a,y)} is compact and contained
inint X(a). If Ker L; and Coker L; are oriented in an arbitrary, but fixed manner,
then Ind 1, (p4, qo), X()) is well defined. Let

Ind 7, ((p, @)@, ), X(a)) := Ind 1, (P4, gu), X(@)).
Assume that

4.9. ny = Indg,(p,¢)a,-),X(@)) # 0,

LeMMA 4.10. - Under the above assumptions, if Dy is the pathwise compo-
nent of D containing a, then Dy C Dp.

PRrOOF. — Since Qr(a) is compact, there are open bounded sets V and W, such
that
{a} x Qp(@) CV xW CclV xeW CintX.

The upper semicontinuity of Qp implies that there is » >0 such that
B (a,r) c V and Q#(Dr N B¥2(a,r)) ¢ W. We shall prove that B%(a,r) C Dp.

(*1) We say that X is locally bounded over E; if each € E» has a neighborhood N in B
such that N x E1 N X is bounded.
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The existence property of the generalized index Indz, (Th. 3.21 (i)) implies
that @ € Dp. Take an arbitrary b € B¥2(a,r), then el W C int X(b). Let

To=ITyNEWxI), I=rynEWxIrI)
Po="Dalr,, 90 = qalp,; p1="0olr, @ =l

The following diagram
AW
iol

T,
7|
AW x [0,1]— T
il
I,

\
i /

Aw-Pr__

where

I'={(y,y,) CWx I x[0,1]]| p(y) = (1 —ta+tb,y)},
R(y,y,t) = (y,t), S(,»,t) =q() for (y,y,t) € I,

Jk(%)’) = (%% k) for (?/73’) € Fkv k= 071

is commutative. Moreover, the pair (R,S) determines the L;-fundamentally
restrictible map (with L;-fundamental set K equal to a compact L;-funda-
mental set for the family of maps y— g(p~'(z,%)), where z belongs to the
(compact) segment connecting points a and b). It means that the maps de-
termined by (po, o) and (p1, ¢1) are homotopic in FDr, (W, E) (more precisely
(K, Ly)-homotopic). Observe additionally that if for some ¢t € [0,1],
Li(y) € S(R~(y,t)), then (1 — t)a +tb € Dr N BE(a,r) and y € Qp((1 — t)a + tb).
Hence y € W and the set {y € E' | Li(y) € S(R~(y,t))} does not intersect
bd W. By Theorem 3.21 (22), (7i1),

0 # Ind 1,((pa, ¢a), X(@)=Ind 1, (Pa; o), W) =

= Ind 1, ((ps, q5), W) = Ind 1, ((ps, g1), X (D).

Therefore b € Dp.

We have proved that the map a— Ind,((pq, qu), X(a)) is locally constant,
what implies that it is constant on path components of D. Hence, for any ¢ € Dy,
Ind z, (F(c, ), X(c)) = Ind 1, (F(a, ), X(a)) # 0, and by (?) Th. 3.21 ¢ € Dr. O

Additionally we assume that
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4.11. There is r > 0 and a compact c-admissible map ¥ : D¥2(a,r) —o K}, de-
termined by a c-admissible pair (w,v) such that D¥:(a,v) C D and, for
(@, y) € CF) N (SP(a,r) x E1), if wLa(w) — P(@) N (Lax) — G(e,y) # 0, then
w>0.

4.12. If x € SP2(a,r), then Ls(x) € W(x), ¢:=Indp,(u,v),D"(a,r)#0¢€
€ g, and E®ny # 0 € 1w, +idy):

REMARK 4.13. — Note that the last two assumptions are a sort of a priori
bounds condition.

If Ly is an isomorphism and a = 0, then for ¥ = 0 assumption 4.12 is ob-
viously satisfied. Indeed, observe, that

Ind 17, (Ly" ¥, D(0,7)) = Ind jgy, (0,D":(0,7)) # 0(%),

hence, by Th. 321 (v), also &= Ind,(¥,D"(0,7)) # 0. Moreover, in fact
E=dvell,so,by24,nE#0.

Assumption 4.11 takes then the form: there is » > 0 such that for any
x € SE2(0,7), if 1 — wLa(x) € T(x) := G{x} x Qr(x)), then u > 0. Sometimes it
can be checked directly, but there are also some sufficient conditions. The sim-
plest one is the following: if D = Ky, G is bounded, ie. |G(x,y)| < R and
dist({0}, L2(S?2(0,1)) > 0, then 4.11 is satisfied, provided r is large enough.
Another possibility is to consider the family of systems:

{ Li(y) € F(x,y)

(6) Ls(x) € AG(x, ).

When the set of all solutions for 4 € (0, 1) is bounded, then 4.11 is satisfied. The
same holds, when there is > 0 such that for any solution (x,y) of the system
with some 4 > 0, if ||x|| = 7, then A > 1.

If Ly is not an isomorphism, but i(Lz) = 0, then ¥ := —J o Py|pp, , ., satisfies
assumption 4.12, where J : KerLs — Im @)y is a linear isomorphism which
saves the orientation (induced on Im @ by the given one on Coker Ls). Indeed,
observe that (Lg|ge,p, +J © Py) ! : B, — Ey is also a linear isomorphism and
(La|gerp, +J 0 P2) ' 0 Ly = id, — Py : E> — E, hence

Insz('PaDEZ(OyT)) = Ind idEz—Pz((L2|KerPg +Jo P2)_1 o(—=Jo PZ)aDEZ(Oa"")) =
= Ind gy, —p,(— P2, D™*(0,7) = £ v # 0 € Io(**).
(*?) Since it is simply a fixed point index for compact admissible maps (see the

construction of the generalized index in e.g. [25] or [13]).
(1) See the construction of the generalized index for compact maps in e.g. [25] or [13].
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If additionally E), is a Hilbert space, then 4.11 is satisfied if e.g. for
(x,y) € CF) N SH2(0,7),
sup (La(@) + ¥(@),2) < |Lo(@)|”
2eG(x,y)

Let us now recall the main result of [14], which is basic for our further con-
sideration (1*%).

THEOREM 4.14. — Under assumptions 4.6-4.8, 4.9, 4.11 and 4.12, if F and G are
compact, then (5) has a solution (x,y), such that x € D% (a, ). O

As we have mentioned, by using the solution map to solve problem of the form
(5), we can reduce the assumption concerning the generalized index of maps, i.e.
we assume 4.9 instead of Ind (@, X) # 0, where @ : (x,y) — (G(x,y), F(x,y)).
Another aim of this paper is to relax also assumptions concerning the com-
pactness. In the previous section we have shown that the class of fundamentally
restrictible maps is a quite large and natural extension of compact maps.
Moreover, observe that we assume less then the map @ is L-fundamentally re-
strictible. It allows us to apply the below theorem in a bit different situations
then earlier (comp. Ex 1 in the next section and [10]).

THEOREM 4.15. — Theorem 4.14 stays true, if instead of compactness of F and
G we assume 4.5 and 4.16. G is La-fundamentally restrictible such that there is a
compact set M, Leo-fundamental for any map of the form G(-,y), which contains
Y(D(a,7) U {Lz(a)}.

REMARK 4.16. — Observe that if maps G(-,y) are e.g. Lo-condensing, (Lg)y-
condensing, (Lg, K.)-operators then G satisfies assumption 4.16, since for such
maps one can find a compact Lq-fundamental set containing an arbitrary compact
subset.

ProOOF OF THEOREM 4.15. — Observe that a € By := cl BE2(a,7) N Ly 1 (M).
Since Bjy is compact, the assumptions concerning F' imply that there is a compact
convex set K, L;-fundamental for maps of the form F(x, -), where x € By,.

Let ¢: I' — K be an extension of q|p,1(BMxL171(K))mX and F be a compact
c-admissible map determined by (p,q). Assumption 4.7 implies that for any
v € By there is ¢, > 0 such that B¥2(v, ¢,) x 0,,(Qr()) C int X. Since both Qp
and Q5 are u.s.c. with compact values (see Lemma 4.3), for v € By, one can find

(**) Remember that compact maps are fundamentally restrictible, so all previous
lemmas stay true.
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d, > 0 and J, > 0 such that
Qr(B%2(v,0,)) C 0,(Qp()) and  Qz(B"(v,5,)) C 0, (Qz)).

Moreover, for any v € By, Qr(v) = Q7(v), hence for 9, = min (g, 0y, Oy),
Qp(BE(v,9,) U QF(BEZ(U, &) C 0,,(Qr()) = O,,(25)).

Take a finite covering B¥2(v,9,,), . .., B®2(v,,9,,) of the set By, and observe that

n
dist(bd (| ) B i, 9,)), By) = 20 > 0.
i=1
Then ¢l O:(By) € Ur; B¥2(v;, $y,), Oc(By) is convex and {z} x Qz(z) C int X for
any z € O/g(BM).

Let X :=(O:By) x E)NX)U {(x,y) € D x K | (d(m)iy) € (bd (Og(BMl) X
E)nX}, where d : By — cl(O:(Byy)) is a retraction, and I := {(x,y,w) € X x
I'| pw) = (d(x),y)}. The map F : X —o K determined by (5, ), where p: I" — X,
plac,y,w) = (x,y) and §: I oK, §(x,y,w) = g(w) satisfies all assumptions of
Theorem 4.14 concerning the first map. In particular C(IA?') CintX and, since
Da = Pa Ga = Ga, obviously

Ind 7, (e, ), X(@)) # 0.

Assume that G is determined by X «— 4 > E} and let 5: 4 — M be a
compact extension of s|r,1((L£1<M)md 0.(By)xEnx)- Like earlier put A:={(x,y,0) €
X x A|r0) = (d@),y) and 7: 4 — X, #,y,0) = (@,y), $: 4 — B, 3(x,9,0) =
5(0) € M. The map G determined by (7,3) is compact and c-admissible.

We have to prove that G satisfies assumption 4.11. To this end let
x €SP a,r), y e Q;(ac) and u(Le(x) — ¥P(x) N (Le(x) — G(x,y)) # 0. We check
that u > 0.

Ifx € L2*1(M) N SE(a,r), then & € By and d(x) = x. Therefore

G, ) = 3G , ) =5({ @, )} xr '@, ) = 50 (@, ) =0 (@, ) = G, ),

and u > 0 since G satisfies assumption 4.11. R

If x € S (a,7r)\ Ly 1(M), then there are z; € ¥(x) and 22 € G(x,y) such that
W(Le(x) — 21) = Lo(x) — 29, i.e. (1 — w)Lo(x) = 22 — uz1. Assume for the moment
that u < 0. Then, since 21, z2 € M and M is convex, (1 — w)Lg(x) € 1 — wM.
Hence Lg(x) € M, a contradiction. Therefore again u > 0.

By Theorem 4.14, the system of inclusions

) Ly(y) € Fx, )
LZ(QC) S G(QC, y)a

has a solution (2, %), such that xy € D¥2(a,r). But since then Ls(xy) € M, one
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can easily see that xy € By and hence @(wo,yg) = G(xo, o) = G0, o).
Moreover, AL1(?/0) € ﬁ'(aco, yo0) C K, what means that (xy,y) € By x Lfl(K).
Therefore F(xg,10) = F(xo,y0) = F(xo,%0) and (2o, o) is also a solution of (5),
what ends the proof. O

REMARK 4.17. — As we have mentioned in Remark 4.13, if L, is an iso-
morphism and a = 0, instead of 4.11 and 4.12 we assume that for 2 € S¥2(0, )

(8) if 1—pwla(x) € T(x) = G({x} x Lp(x)), then x> 0.

Moreover, assumption 4.16 is a little bit too strong. In fact we need only the fol-
lowing one:

4.18. T is Lo-fundamentally restrictible such that there is a compact set M,
Le-fundamental for 7' which contains ¥ (D¥2(a, 7)) U {Lzs(a)}.

Then in the above proof we have to define s as a compact extension of
S|1~*1((L2*1(M)ﬂclOv(BM)xE'l)mC(F)) and G like earlier. Next we consider the map

i’(ac) = a({x} X Qg(oc)). Observe that
{x € By | Le(x) € f’(m)} = {x € By | La(x) € T(x)}.

Since for x € S¥1(a,r) and y € Q~(x), @(x, y) C i’(ac), arguments similar to those
used in the proof lead to the conclusion.

5. — Applications.

ExaMPLE 1. - Let E and E’' be Banach spaces with given measures of
noncompactness y and y’ respectively. Denote by ux and 4/ the Hausdorff
measures of noncompactness in spaces of integrable (in Bochner sense) maps
L:=L'[0,T],E) and £ := L'([0,T], E') respectively with usual norms, i.e.

T T
lulle = [ o)l pds and ol = [ ) s
0 0

Let f:[0,T]x E x E — E' be a map satisfying the following natural as-
sumptions:
(f1) fis a Carathéodory map, i.e. f(-, u, v) is measurable for all (u,v) € K x E and
f(t,-,-) is continuous for almost all ¢ € [0, T],
(f2) there is an integrable function 4 : [0, T] — [0, c0) and a continuous function
A2 :[0,T] —[0,00), such that for almost all ¢te€[0,7], and any
U1, U2,01,V2 € E,

If ¢, w1, v1) — f&E uz,vo)|lp < A@®|ur — usl| g + @||v1 — v2|l5,
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(f3) (sublinear growth) there are integrable functions m, 7 : [0, T] — [0, c0), such
that for almost all ¢ € [0, T'] and any u,v € E, |[f (¢, u, v)| < m(t) + n(t)||u]|.

Consider the following boundary value problem

9 {Ll(u’)(t) = f(t,u@®),w' @), fora.a.tec][0,T],

au(0) + bu(T) € a(u(0)),

where L : £ — L' is a Fredholm operator with nonnegative index, a,b € R and
a: E —oF is a compact c-admissible map. By a solution we understand an ab-
solutely continuous map satisfying (9) for almost all £ € [0, T'].

Similar Floquet-type problem was considered in [10]. But now we base on the
different abstract results then earlier, so the technical assumptions concerning
the map f are not the same. (comp. Th. 5.1) and Rem. 5.2.

One can write (9) as a coincidence problem in the following form
{ Li(y) = F(x,y)

Ly(x) € Gl,y),

where F: Ex L — L, Ls:E —E G:Ex L — E and

(10)

)
F(x,y) =f<-,96+ f y(s)ds, y(- ))
0

Lo(x) =a -,

T
G(x,y) = —b- (ac—i—fy(s)ds) + ax).

¢
Indeed, if (x, ) is a solution to problem (10), then u(t) = « + f y(s)ds is a solution

to problem (9).
Let P, Q@ and Kp be the respective linear maps for L; (comp. Preliminaries)

T T T
and let N = f n(s)ds, M = f m(dt, A, = f J1(s)ds, Az = SUp;ero 7y J2(D).
0 0 0

THEOREM 5.1. — Assume that f satisfies conditions (f1) — (f3) and
(f2) (1 + )| Kp| <1,
(f5) Ly 1s a linear isomorphism,
(fo) 1§11 > mazx{e, elFrINY,
Then the problem (10) has a solution.

REMARK 5.2. — Since we want to make our consideration more clear, we resign
from explaining the most general situation. Below we present another (weaker)
possible assumptions (comp. [11]).
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Assumption (f5) implies that L; and ¥ do not have coincidence points on the
boundary of some ball and that the respective generalized index is nontrivial. It
can be replaced as follows:

thereis R’ > 0 such that, if y € Ker L; and ||y||, > R/, then Q o F(z,y) # 0for
z € I and

(f3) iL1) = 0 and the Leray-Schauder degree of the map J o @ o F(0, -)|[ke, 1, 18
not equal to 0, where J : Im@Q — Im P is a linear isomorphism;

or
(f2) Deg(Q o F(0, )lger1,» B0, R) N Ker Ly, 0) # 0(*°)

Assumptions (f3) and (fs) are technical. They also can be relaxed when one
accepts more technical complications in the proof. For instance, instead of (f;) we
can assume

(f]) (4 + A9)||Kp||“™ <1,

where ||[Kp||“* := inf Z and Z is the set of all positive numbers k such that Kp is
a (k, 4, j)-contraction (*®) (comp. [1]). It is easy to check, that || Kp||“* < ||Kp|.

Then instead of (f;) we can assume that

T
() 1§ > max{exp (f ol ds), exp (| Kp[[N)}.
T
Observe that f %ds may be less then 1 if we assume (f}), but as-
0

T
. . . J Kp
sumption (f;) implies that Of %‘)Hf{l”ds > 1.

PrROOF OF THEOREM 5.1.

Step 1. Observe that F'is a continuous map. Indeed, if for (xg, o) € £ x £ and
any ¢ > 0, we take J < min (S—j11 ,ﬁ) and assume that for some (x,y) € £ x L,

0 > [|@0,40) — @, Wl = max (o — [ llyo — yll)

then
|F (2o, y0)—F (e, )|, = Hf(~,9co +f?/0(8)d87?/0(')) -f (-,x+fy(s)ds,y( - )) <
0 0 L
T t T
< f 21 ®||o—2+ f Wo(s)—y()ds|| dt+ [22@®lyo®) — y@)||pdt < A1 20+ A5 <.
0 0 E 0

(*®) By Deg we understand the stable generalized degree defined in [25].
(*% i.e. For any bounded set B C E', (Kp(B)) < ki/(B).
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Since G is the sum of a continuous single-valued map and a c-admissible one,
both F' and G are c-admissible (see Remark 2.3 (ii), (iii)).

Step 2. We prove that F' is L;-condensing with respect to the second variable
(hence L;-fundamentally restrictible with respect to the second variable).
Let Z be a compact subset of £, and V be a bounded subset of £ such that
(V) = d. Observe that
(V) = u(Kp o Ly(V)) < ||Kp||p/ (L1 (V)),
what implies that

uV)
11 (LA (V)) > .

Take arbitrary ¢ > 0, 6; > 0. Of course Z has a finite e-net while V has a finite
(0 + 01)-net. Let x; and y;, be elements of the respective nets and assume that, for
somex € Zandy €V, ||lo; — x|z < ¢ and |lyr — y||; < J + J1. Then

T
1P ) — Fee, )l = [ IF G0 — Fe,y)ol dt =
0

T t t
=f f(t,xl +fyk(8)d8,yk(t)) -f (t,x+fy(8)ds,y(t))
0 0 0

T T
gb[)q(t)ml—xHEdt +0f/11(t)

dt <
E’/

T
dt —|—f)u2||?/k(t)—?/(t)”Edt<
E 0

t
[ o —yends
0

< A1+ A1(0 + 61) + A2(0 + 91).

It means that elements F(x;, ;) form a finite (A& + A4,(0 + 01) + A2(J + J1))-net
in the set FI(Z x V). But since ¢ and J; can be arbitrary small, (11) and as-
sumption (fy) imply

u(V)

/
HF(Z x V) < (M + 42)0 < K[

< {ILy(V)).
Step 3. We prove that for any r > 0, the set {||y||. | L1(y) = F(x, ), |||z < r}is

bounded.
If x|z < r and Li(y) € F(x,y), then for almost all ¢ € [0, T']

t
Liiy)®) =f (t,x + f y(s)ds,y(t)> .
0

Hence

KpoLi(y) = Kp (f(-, 2+ [ y)ds, (- >>) :
0
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and, by assumption (f3),

y = Kp (f(-,w +fy(s)ds,y( . ))) :
0

Therefore, for any ¢ € [0, T,

t t
[Iy@isds < [ 1]
0 0

| f (sx " f y(D)dr, y(s)) ds <
0
x+fy(r)dr )ds <
0 E

t s
<||Kp| (M+N||9c||E +fn(s) (f IIy(r)IIEdr) ds) <
0 0

t
<&l [ (m<s> T (s)
0

t s
< |Kpl|M + Nzl + | K|l [ n6) (f ||y<r>|Edr> ds,
0 0

and by the Gronwall inequality

t t
[ 1y@)gds < IKe| M + Nja] ) exp (|KP|| i n(s)ds) .
0 0

It means that
Il < |Ep[|(M + Nlx|| ) exp ([ Kp[|N) < [|Kp[|(M + N7) exp (| Kp||N).
In particular, for x = 0 and L;i(y) = F(0,y),
1yl < | Kp[|M exp (| Kp[IN) < ||Kp||M exp (|[Kp[|N) +1 =: R,
and consequently
Qr(0) c B5(0,R).

Therefore Ind 7, (F(0, -), B~(0, R)) is well defined and, since by assumption (f5) the
map Kp : L — L is a linear isomorphism,

Ind 7, (F(0, ), B“(0,R)) = Ind i, (Kp o F(0, ), B“(0, R)).
It is easy to see that the map
H:clB“(0,R) x [0,1] = L
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given by
Hwy,2)=1-KpoF(0,y)

is a homotopy in the class of single-valued fundamentally restrictible maps, such
that for any 4 € [0, 1],
{y | y € Hy, )} C B°O,R).

Hence following equalities hold:

Ind 4, (Kp o F(0,-), B“(0,R)) = Ind 4, (H(-,1), B*(0, R)) =

Ind ;4,(H(-,0), B“(0, R)) = Ind ;4,(O, B*(0,R)) = 1,
where O : L — L, O(y) =0 for any y. Of course the last index is simply the
Leray-Schauder one.

We have proved that
Ind 1, (F(0, ), B“(0,R)) = 1 # 0.

Step 4. We exam properties of the map 7 (x) := G({x} x Qp(x)) (comp.
Remark 4.17). Since the respective index is nontrivial, from Lemma 4.10 it fol-
lows that 7 is defined on the whole space E.

Observe that, if y € Qp(x) and y; € Qp(x1), then for any ¢ € [0, T']

f (8, x+f y(t)dr, y(s)) —f (87 X1 +f y1(n)dr, ?/1(8))
0 0

ds <
E

4 t
[l @< 15|
0 0

4
J Il (11(8)
0

x +fy(r)dr—.%‘1 —fyl(r)dr
0 0

+22(8)||y(8)—y1(s)]| E) ds<
E

t s t
JueKe <|x—x1||E [l - y1<r>|Edr) ds -+ | [ (5) — 11 s
0 0 0

what means that

t t S
A K

[l -nlsas < [ 5 (nxomEds +f |y<r>yl<r>||Edf) ds.

0 0 0

and hence, by assumption (f;), also

t
o = w1l + [ 19) — 116 pds <
0

t s
o — @l + [ (nx — a1llgds + [ Ily@ - y1<r>||Edr) ds.
0 0
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By the Gronwall inequality, we get
t
I = anllg + [ J(s) — 1@ llgdls < [lo = |- e,
0

and consequently
T T
|| —i—fy(s)ds — X — fyl(s)dsHE <e-lx—a|g-
0 0

If S is a bounded subset of £ and x(S) = J, then y(L2(S)) = ||a||d, and by the
compactness of the map «, also y(a(S)) = 0. Then, since

T
T(S) = U{—b (x +f y(s)ds) +a@) |y e Qp(x)},
0

xeS

we know that

T
2T WIS) <y (U {—b (90 +f y(s)ds) ly € Qp(m)}) )
xeS 0

Take an arbitrary d; > 0 and assume that points x;, where [ =1, ..., n;,, are
elements of (6 4+ d1)-net in S. For each [ take y; € Qp(x;). The previous con-

T
siderations imply that elements b(x; + [ ¥,(s)ds) form an (e - ||b]|(d + J1))-net in
0

the set
T
U{—b (ac —|—f y(s)ds) |y € Qp(aﬂ)}.
xeS 0

Hence (7 (S)) < e - ||b]| and, by assumption (f),
2(T(S)) < x(La(S)).

It means that the map 7 is Lg-condensing, so Lo-fundamentally restrictible with
some compact Lg-fundamental for 7" set containing 0.

Step 5. At last we prove that there is » > 0, such that 7(bd (B#(0,7))C
int (L2(B(0,7))), what implies that for ||| g =", if 1 —wla(x) € T(x), then
u>0.

Let 7, > 0 be such that a(&) ¢ BZ(0,r;). Similarly like in Step 3,

t t
I+ [ y@dsllg <lwllp + [ 65)]gds <
0 0

ds,

t
<zl + 1K1 + | Kp | [ nts)
0 E

o+ f y()dz
0
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and, by the Gronwall inequality,

t
2 +f2/(8)d8||E < ([[ellg + |Kp[|M) exp (| Kp||N).
0

It means that, if v € T(x) and ||x||;z = 7, then

[0l < [[l|0r + || Kp||M) exp (| Kp||N) + 1.
To get the expected inclusion, it is enough to find » > 0 such that
(12) [6]|(R + || Kp[|M) exp ([|Kp|[N) + 11 < [laljr

But from assumption (fs) it follows that ||a|| — ||b|| exp (||Kp||N) > 0. Therefore,
for sufficiently large r the inequality

6]/ Kp||M exp (|Kp||N) + 11 < r(la] — [[b]] exp (| Kp||N))
is true and equivalent to (12). O
ExamPLE 2. — Consider the following problem

'(t) = g(t, z(t), 2/ (t), y(t)), fora.a.tel=1[0,T1,

y (@) = f@&,z@),y®),y @), fora.a.tel,
0 € l(x,y),

where T>0, f:[0,T]xR"xR"™ x R™ = R"™, ¢:[0,T] x R" x R" x R™ —
R", are Carathéodory functions (") and [ : C(I, R") x C(I, R™) —oRF 1<k<
m, is a multivalued map. By C(I, R?%) we understand the space of continuous
function with the standard sup-norm ||-|| and by C.(I,RY) its subspace of
constant maps. By a solution we mean a pair of absolutely continuous functions
xz: I —R", y: I — R™ satisfying (13).

Comparing it with the example from [14], one can observe that now we admit
the situation when functions on the right hand side depend on derivatives. But in
a such general situation we can not adapt the previous methods, since the re-
spective maps (*®) are not compact and do not have suitable topological proper-
ties. Moreover, we have to assume that the maps f and g are single-valued.
Nevertheless the map [ which may be viewed as the system of nonlocal boundary
value data is multivalued.

Let f, g be such that
(f1) there is an integrable function y € L'([0,7],R) and a >0 such that

f @, 2z, y, w)|| < y(t)+ ally|| for any x € R", y € R™ and almost all ¢ € I,

(*) i.e. for almost all t € I, f(&, -, -, "), g(&, -, -, ) are continuous and for all &, y,w from
respective spaces f(-,«,y,w) and g(-, x,y,w) are measurable.
(*%) Namely F' and G, see further considerations and compare [14].
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(f2) there is 0 < x; < 1, such that |[f(, @, y,w1) — ¢, x,y,ws)| < r1ljws — ws]
for any x € R", y,wi,ws € R™ and almost all ¢ € I;

(g1) there is an integrable function a € LY([0,T],R) and b > 0 such that
llg@t, @, v,y)|| < a(t) + b|x|| for any x,v € R", y € R™ and almost all ¢ € I,

(go) thereis 0 < xp < 1, such that ||g(t, @, v1,y) — g(t, x,v2, y)|| < Kal|v1 — ve| for
any x,v1,v2 € R", y € R™ and almost all t € T

Moreover assume that

(1) l1is a c-admissible map and maps bounded sets onto bounded ones,

(Il3) there is >0 such that for any x € C(,R") and any y € C(I,R™), if
0 € l(x,y), then ||y(@,)|| < r for some ¢, € I,

(13) there is R > 0 such that for all y € C(I,R™), if ||y(0)|| > R, then 0 & I(0,%)
and there is a e-admissible pair (p, ¢) determining ! such that

Deg ((pl7 q/)(07 ')7BC(O7R)7 0) # 0 S Hm—ka

where B.(0,R) = {y € C.(I, R™) | |ly|| < R} and (p',q’) is the restriction of
the pair (p, q) to C, R™) x C.(I,R™) - see Remark 2.3 (i) (*).

Additionally we assume that there is a smooth C*-function V : R” — IR, such
that

(V1) there is r; > 0 such that for any x € R", if ||| > 71, then (VV (x),x) > 0,
(V) there is 72 > 0 such that for any x,v € R", y € R™ and t € I if |jx|| > 1,
then (VV(x), g, x,v,y)) > 0,

REMARK 5.3. — Observe that

(i) In fact V is a guiding function for g, although V could not be coercitive (*°).
Guiding functions are often used to find periodic trajectories and in others
control problems (comp. [17], see also [30]).

(i) The function V:R" — R given by V() =1|x|* satisfies (V})(*.
Condition (V) means then that for all x,v € R", y € R™, t € I, if ||x|| > 72, then
(e, g(t, x,v,)) > 0, ie. gt,x,v,y) belongs to the half-space {z € R" | (x,z) > 0}.

(iii) Taking, if necessary, max{y(t), a(t)} and max{a, b, 1}, we can assume that
y(t) = a(t) > 0 and a = b > 1. Moreover, without loss of generality we may as-
sume that in (V1) and (Vs), 11 = 7s.

THEOREM 5.4. — Under assumptions (I1)-(3), (g1)-(92), (f1)-(f2) and (V1)-(Vy)
system (13) has a solution.

™ By Deg we understand the stable generalized degree defined in [25], see also [14].
(*°) V is a coercitive map if limyy o V(@) = +00.
(?Y) Such function was considered in e.g. [8] and [30].
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Before starting the proof, we write problem (13) in the form which allows us to

apply Theorem 4.15.
Let Eg = L'(I, R™) and
E, = ACU,R™), E, = L'I,R™) x R¥,

E; = AC7(R, R™), E, = LL(R,R"),
where AC(I, R™) and L1(I, R™) are spaces of the absolutely continuous and the
integrable maps, respectively, LL(R, R") is a space of maps from L'(I,R") ex-
T
tended on R by T-periodicity with the norm |[|v|5, = [ lv@®)||dt and AC7(R, R™)
0

is a Banach space of absolutely continuous 7-periodic maps from R to R" with
T

the norm ||90||E2 = maxq sup;cpo 7y 2@l [ 12'®)||dt p.
0

By 1 and p, we denote the Hausdorff measures of noncompactness in spaces
E' and EY, respectively.

Observe that Ly : E; — E given by Li(y) = (¥,0) is a Fredholm operator
with index i(L;) =m —k. Let F:Es x Ey —oE| be defined by F(x,y)=
{f(ac,y)} x U(x,y), where f(ac, y)(t) =ft, x@),yt),y' ) for any t € I. It is clear
that the problem

{y’(t) =ft,x®),y®),y' (), fora.a.tecl,

0€ellx,y)
is equivalent to
Li(y) € Fx, ).

Consider the continuous linear isomorphism Ls : Ky — EY, La(x) = &' —,
and amap G : K> x By — E}, given by G(x,y)(t) = g, x(t), '), y(t)) — «(t). Like
earlier the problem

¥ @t) = g, x@), 2 (t),y®)), fora.atecl,
{ 2(0) = x(T).
is equivalent to
La(x) = G(x,y),

and finally problem (13) is equivalent to the following one

{ Li(y) € Fx,y)

(14)
Ly(x) = G, y).

It is easy to see that the map F defined above is a c-admissible multivalued map
and the map G is a continuous (then c-admissible) single-valued map.
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Indeed, observe that f = f> 0 fi, where fi : Es x By — E}, x Ey x Ey is given
by fi(@,y) = (x,y,y) and fo: £} x Eg x Ey — Ey is given by fa(x,y,v)(?) =
f@,x(),y®),v()). It is obvious that f; is continuous and, by following Th. 5.5,
S0 is fo.

THEOREM 5.5 (comp. [37]). - If f : [0, T] x R" — R™ is a Carathéodory map
satisfying the following condition

If &, 2)]| < att) + b2l

where p, q<oo, a€ L0, T],R) and b is a constant, then the map
Ny : LP([0,T],R") — L4([0,T], R™) given by

Nr@)@) := f(t, 2())

1S continuous. O

Hence ]7 is a (single-valued) continuous map, what, with assumptions con-
cerning [, ends the proof for F' (comp. Rem. 2.3). The same arguments work for
the map G.

In further considerations we will need also

THEOREM 5.6 (comp. [4]). - Any sequence bounded in the space AC([0, T, R™)
contains a subsequence which is convergent in the space L' ([0, T], R™). O

PROOF OF THEOREM 5.4.

Step 1. We prove that F' is L;-condensing with respect to the second variable.

Let Z be a bounded subset of the space Ee x E1 and let Z1, Zs be the pro-
jections of Z on spaces Fi, Eq, respectively. Assume that Z, is compact and let
ﬂl(Ll(Zl)) =&

Take any & >0 and denote by {(z;,0)};; a finite (¢+ ¢&)-net in Li(Zy).
Consider the family of sets

Iy = {w € Ey|jlw@®) = f(t, x@), y(@),2;®), (x,y) € Z} i=1,...n,.

Any set I'; is relatively compact. Indeed, if (wj)joil is a sequence in /7, then there
is a sequence ((x;, yj))}ﬁl in Z, such that w;(t) = f(, 2;), y;(t), 2;(?)) for almost all
t € [0, T]. Moreover, (xj)fil is contained in a compact set Z3, therefore it has a
subsequence converging to xo € E» and, since (y; ;i 1 is bounded in £, by Th. 5.6,
it has a subsequence converging in £y to . It means that some subsequence of
((wj, y;));2; converges in Ej x Ey to (xo, o). Assumption (f1) and Th. 5.5 imply
that the map f; : B}, x Ey — E, given by fi(x,y) =f(,a(-),y(-),2;(-)) is con-
tinuous. Hence the respective subsequence of (wj)fil converges (in Ej) to
wo = f(,20(-),%0(-),2;(+)), and I'; is relatively compact.
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Therefore I = |Ji*, I'; is also a relatively compact set and so is I" x U(Z),

because I(Z) is a bounded subset of R,

Let (w,a) € F(Z), that is for some (x,y) € Z, a<€lx,y) and w(t)=
f@,x@),y®),y' @) for almost all t €[0,T]. Take ¢ € N, 1 <17 <mn, such that
(W', 0) — (2;,0)||p <e+e and put w=fC,2(-),y(-),2i(-)) € I';. Assumption
(f,) implies

T T
w15, = [ lwt) — w@dt = [ 1,20, y0,5/®) — £(t,200, y(®, 2Ot <
0 0

T T
[ ally® —z@lidt = [ 1y'@ - 2 ®lldt = sally’ 25, < 16+ e),
0 0

what means that

|(w, @) — (w, (1)||E,1 < r1(e + ).

We have just proved that elements of I" x I(Z) compose a x1(e + &1)-net of F(Z).
Therefore

mF2)) < iy (Ln(2),

and F satisfies assumption 4.5.

Step 2. Let X = {(x,y) € E2 x E1 | ||yll, < M}, where
M = max (R.(r+ [yl exp @), ]l + Tatr+ []l,) exp @T) ) + 1.

Obviously X satisfies assumptions 4.6 and 4.8. We have to check assumptions 4.7
and 4.9. Observe that, if (x,y) € C(F), then, in particular, 0 € l(x,y) and
y =fCxC-),y(-),y'(-)). Hence (I2) and (f1) imply that for any ¢ € [0, T'],

t t t
Iy @1 < el + [ 1,2, 951,y 6Dllds < v+ [ pds +a [ [y@)ds,

so, by the Gronwall inequality,
ly@I < (r + (|7l 1) exp (@),

and hence

T T T T
19 ||, =f Hy’(t)\ldt:f |lf(t,90(t),Z/(t),?/(t))lldtSfV(t)dt+f&|\?/(t)||dt§
0 0 0 0

IVl + Talr + ||y||;) exp (al).
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Therefore

l9llz, = maX{ sup [[y@®|, ”?/|E0} <M,
te[0,T1]

that is (x,y) € int X and 4.7 is satisfied.

Consider the map H :X(0) x[0,1]—<FE' given by H(y,A) = {if(O,y)}x
1(0,y). Observe that, if L1(y) € H(y, A) for some A € [0, 1], then I(y,0) = 0 and
y = Af(C,x(-),y(-),%'(-)). One can check in the same way as above that then
y € int X(0).

Since F(0, )|y, is Li-condensing, there is a compact set K, being L;-fun-
damental for F'(0,-) and containing the compact set cl ({0} x ({0} x X(0))) &)
. Let f:X(0)— Kn By x {0}) be a compact extension of the map
f(, ')||L;1(K)mx<0)~ Observe that X(0)>y+— F(y) .= {f(y)} x(0,y) C K is a
compact map K-associated to F(0, -)[|y,. Therefore there is a (L1, K)-homotopy
between F(0, )| x, and F' (see Th. 3.18) and, by Th. 3.21 (iv),

Ind 7, (F(0, ), X(0)) = Ind 1, (F, X(0)).

Consider amap H : X(0) x [0,1] — E given by H(y,)):= {/"f(y)} x 1(0,y). It
is a compact (then L;-fundamentally restrictible) homotopy between H(-,1) = F
and H(-,0) = ({0} x 10, -)). Moreover, if for some A one knows that L;(y) €
H(2,y), then Ly(y) € K and y € L' (K) N X(0). It follows that f(3) = £(0,%), that
is H(y, ) = H(y, /). Therefore L,(y) € H(y, /), and consequently ¥ € int X(0).
Once more Th. 3.21 (iv) implies

Ind 1, (F(0, ), X(0)) = Ind 1, ({0} x {0, -)), X(0)),
while Th. 3.21 (vi7) and assumption (I3) imply
(15)  Indg,(({0} x K0,-)),X(0)) = Deg (— (0, -), X(0) N C.([0, 7], R™)) # 0,
and 4.9 is satisfied.
Step 3. Observe that Ly is a linear isomorphism, so, in particular, a Fredholm
operator. We are going to prove that G is an Lg-condensing map.
Let Z be a bounded subset of £y and Z' = {«' | « € Z}. Obviously Z’ is con-

tained in EY, and Z is relatively compact in £}, (see Th. 5.6), i.e. 1,(Z) = 0. Since a
measure of noncompactness is a seminorm, also u,({—x | x € Z}) = 0 and

toLa(2) = po({a’ — x| @ € Z}) < o(Z) + mo({—2x | ® € Z}) = (2,
1e(Z') < pup(Lia(Z)) + 115(2),
what implies that uy(La(2)) = uo(Z).

(?2) The proof is the same as in Example 3.6, but instead of a point one have to take this
compact set.
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Similarly, if Z, := {v € E, |v(®) = g(t, @), 2' (), y@®)); (x,y) € X,x € Z}, then
U (GX NZ) x E2)) < us(Zy) + po({— | @ € Z}) = pg(Zy).

Let 15(Z") = d and ¢ > 0. Denote by zi,...2,, elements of a finite (d + ¢)-net
in Z' and consider the family of sets I';:= {g(,2(-),z(-),y(-)) | (®y) €
(Z xE;)NX}, where i =1,...,n,.

If a sequence (vy) is contained in I7;, then there are two sequences: (x;) in Z
and (y;) in £ such that v, (t) = g(t, 2, (1), 2;(t), yr(t)) for t € [0, T] and HkaE1 <M.
They are bounded in spaces Ey and E4, respectively, so contain subsequences
convergent in E), and E, (comp. Theorem 5.6). But since the map
E, x Ey> @,y)—gC,2(-),2(-),y(-)) € K is continuous, the respective sub-
sequence of {v;} converges in £, what implies that I'; is relatively compact and
consequently so is 1" := [ J“; I';.

Assume that v € Z,, that is v(t) = g(¢,x(t), 2'(¢), y(t)) for some x € Z and
y € E1. Since then ' € Z', there is z; such that |2’ —zil|p <d+e Let
D= g(,a(-),2(-),y(-)) € I';. Observe that ’

T T
lo—3ll5, = [ llgtt, 2(®),2'®, y®) — g(t,2(0), 20, yanldt < [reolle’@) - 20|t =
0 0

ez | — ZiHE”Z'

It means that elements of the (relatively compact) set I" form a x2(d + ¢)-net of Z,
and

1o(GX N Z) x E)) < p5(Zg) < wiaopio(Z") = raptn(Lia(2)).

We have just proved that G is Lg-condensing.

Step 4. At last we have to check that if (1 — w)La(x) € T(x) := G{x} x Qp(x))
T
for ||x||z, = R1, where Ry = e’(ry +7r+2 [ a(s)ds), then x> 0 (comp. Remark
0

4.13). In order to show it, suppose that there is x <0 such that
(1 — wLo(x) € T(x) and prove at first that then minye; ||x®@)|| > 7.
Observe that, if [[«(t1)|| < 71 for some t; € 1, then for 4 := {1 € (0,1)

&' (t) = Ag(t, x(@), €' @), y@®) + (1 — D)

and, consequently,

t
) = x(t) + f (Ag(s,x(s),2'(s), y(s)) + (1 — Da(s))ds.
t



SYSTEMS OF INCLUSIONS INVOLVING FREDHOLM OPERATORS ETC. 155

By (g1), since we can assume that b > 1 (see Remark 5.3) we get for all{t € [

t
o < el -+ [ (ats) + b)) + (1~ Dlfats))ds
ty

t
(16) = lfet)| + [ (Gats) + L+ b — D) ds

5

t
< Jlet)] + [ (ats) + bllats)])ds
t

Similarly, if y € Qp(x), then y'(t) = f(&, x()y®),y' ) and 0 € l(x,y). By (I2) and
(fi) (see also Remark 5.3) there is ¢, € I such that ||y({,)| <r and, since

y(t) = yt,) + f fs,2(3),y(s),y'(s))ds,
(17) Iy < Nyt + f a(s) + by ds
Hence, by (16) and (17), for all t € I,

4 4
le®Il+ ly®I < el + lyE) +f(a(8) + 0ljx(s)[)ds +f(a(8) +blly)|Dds <
t 23

T t t
(ry +r)+2fa(s)ds +fb||x(s)\|ds +fb||y(s)||ds.

By Lemma 5.7 given below, for A=1r +7r+2 f a(s)ds, p(t) = ||lx@)],
q@® = lly®l,

Ry < max{[e@)] + [y®Il} < ery 1+ 2f a(s)ds) —1 =Ry — 1.
0

The contradiction establishes minyc; [|x(®)]| > 71.
Now, since 2(0) = x(T), ||x®)|| > r for allt € I and 1 € (0,1), by (V1) and (V3)
(see Remark 5.3 (iii)), we have
T

0= V@) - V) = f (VV (@), ®)dt =

0

2 [ TV, gt a0, &' @, y@))dt + 1 - 2) [ (TV ), a@)dt > 0.

This contradiction implies that x« > 0 and then concludes the proof. O
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LEMMAS.7. — Letp,q € C(I,[0,00)), A € R, b > 0andty,tz € I. If forallt € 1

t t
PO +q) <A+ f bp(s)ds + f bq(s)ds,
t to

then, for all t € I,
P +q) < Ae” — 1

PRrROOF. - Let ht) =A+1+ f bp(s)ds + f bq(s)ds. Then for tel, pit)+
q(t) < h(t) — 1 and

1) = bp(t) + bg(t) = b(p(t) + (1)) < bh(D).

Hence, for any ¢ € 1,
% [h(®) - e7"] = K®)e ™" — bh(t)e™ = e (K'(t) — bh(t)) < 0

and consequently

0 0
ht) e < 1) 0 = 10) = A+ 1+ [ bpe)ds + [ ba(s)ds < A.
t2

Finally, h(t) < Ae”, what ends the proof. O
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