BOLLETTINO UNIONE MATEMATICA ITALIANA

Sezione A – La Matematica nella Società e nella Cultura

BENIAMINO CAPPELLETTI MONTANO

Foliazioni di Legendre su varietà almost S

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **10-A**—La Matematica nella Società e nella Cultura (2007), n.2, p. 195–198. Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2007_8_10A_2_195_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Foliazioni di Legendre su varietà almost S

BENIAMINO CAPPELLETTI MONTANO

1. - Introduzione.

In questa tesi di dottorato è stato condotto uno studio sistematico delle proprietà geometriche e topologiche delle foliazioni di Legendre su varietà di contatto e su una loro naturale generalizzazione costituita dalle varietà almost \mathcal{S} . Queste ultime sono state introdotte da D. E. Blair in [1], ed in seguito studiate da molti altri autori, nell'ambito delle cosidette f-varietà. Ricordiamo che una f-struttura su una varietà differenziabile M è il dato di un campo tensoriale ϕ di tipo (1,1) verificante

$$\phi^3 + \phi = 0.$$

Dalla (1) segue in particolare che ϕ ha rango costante 2n, per qualche $n \in \mathbb{N}$. In termini di G-strutture, questa definizione equivale alla riducibilità del gruppo di struttura del fibrato tangente di M a $U(n) \times O(r)$, dove $r = \dim(M) - 2n$. Quando tale gruppo è riducibile a $U(n) \times I_r$ diciamo che M è una f-varietà con nucleo parallelizzabile. In tal caso esistono r sezioni globali di $\ker(\phi), \, \xi_1, \ldots, \xi_r$, linearmente indipendenti in ogni punto tali che $\phi^2 E = -E + \sum\limits_{a=1}^r \eta_a(E)\xi_a$, per ogni $E \in \Gamma(TM)$, dove, per ciascun $a \in \{1,\ldots,r\}, \, \eta_a$ denota la 1-forma duale di ξ_a . In particolare, $\dim(M) = 2n + r$. È noto che ogni f-varietà con nucleo parallelizzabile (M,ϕ,ξ_a,η_a) ammette una metrica Riemanniana (in generale non unica), detta metrica metrica

La condizione $d\eta_a = \Phi$ implica che $\eta_1 \wedge \cdots \wedge \eta_r \wedge (d\eta_a)^n \neq 0$ ovunque su M. L'interpretazione geometrica di quest'ultima relazione è che la distribuzione 2n-dimensionale $\mathcal{D} = \bigcap_{a=1}^r \ker(\eta_a)$ è quanto più lontana dall'essere integrabile. Si può provare, più precisamente, che qualunque sottofibrato di \mathcal{D} che risulti essere integrabile ha dimensione massima n. Ciò giustifica la seguente definizione.

DEFINIZIONE 1.1. – Sia $(M^{2n+r}, \phi, \xi_a, \eta_a, g)$ una varietà almost-S. Una foliazione di Legendre su M^{2n+r} è una foliazione n-dimensionale $\mathcal F$ di M^{2n+r} il cui fibrato tangente $T\mathcal F$ sia un sottofibrato di $\mathcal D$.

Passiamo ora ad illustrare i maggiori risultati riguardanti le foliazioni di Legendre ottenuti nella tesi.

2. – Classificazione delle foliazioni di Legendre.

Sia \mathcal{F} una foliazione di Legendre sulla varietà almost $\mathcal{S}(M,\phi,\xi_a,\eta_a,g)$. Definiamo una forma bilineare simmetrica sul fibrato tangente alla foliazione ponendo

$$\Pi(X,X') = -\sum_{a=1}^{r} (\mathcal{L}_{X}\mathcal{L}_{X'}\eta_{a})(\xi_{a}),$$

per ogni $X, X' \in \Gamma L$, dove $L := T\mathcal{F}$. In termini della metrica g e della f-struttura ϕ , Π si può scrivere come $\Pi(X,X') = 2g\left(\left[\bar{\xi},X\right],\phi X'\right)$, dove $\bar{\xi} = \xi_1 + \cdots + \xi_r$. Π risulta essere un invariante della foliazione di Legendre \mathcal{F} e consente quindi di classificare le foliazioni di Legendre nel modo seguente: una foliazione di Legendre \mathcal{F} si dirà non degenere, degenere o piatta a seconda che, rispettivamente, Π sia non degenere, degenere o si annulli identicamente. L'interpretazione geometrica di questa classificazione è data dalla seguente proposizione.

PROPOSIZIONE 2.1. – Sia \mathcal{F} una foliazione di Legendre su una varietà almost- \mathcal{S} $(M, \phi, \xi_a, \eta_a, g)$. Allora,

- -- \mathcal{F} è non degenere se e solo se, per ogni $X \in \Gamma L$, $\left[\bar{\xi}, X\right]$ ha proiezione non nulla sul fibrato normale ad \mathcal{F} ;
- -- \mathcal{F} è degenere se e solo se esiste un campo $X \in \Gamma L$, $X \neq 0$, tale che $\left[\overline{\xi}, X\right]$ abbia proiezione nulla sul fibrato normale ad \mathcal{F} ;
 - -- \mathcal{F} è piatta se e solo se $\bar{\xi}$ è un campo foliato, cioè $[\bar{\xi}, X] \in \Gamma L$ per ogni $X \in \Gamma L$.

In particolare, se ξ_1,\ldots,ξ_r sono campi foliati, allora anche la loro somma $\bar{\xi}$ è un campo foliato e quindi $\mathcal F$ è piatta. Ciò suggerisce una definizione di piattezza più forte di quella appena descritta: diremo che una foliazione di Legendre $\mathcal F$ è fortemente piatta se ciascun ξ_a è un campo foliato. Per questo tipo di foliazioni di Legendre è possibile dimostrare un teorema di tipo-Darboux, come segue:

TEOREMA 2.2. — Sia $\mathcal F$ una foliazione di Legendre sulla varietà almost $\mathcal S$ M^{2n+r} . $\mathcal F$ è fortemente piatta se e solo se ogni punto di M^{2n+r} ammette coordinate locali $\{x_1,\ldots,x_n,y_1,\ldots,y_n,z_1,\ldots,z_r\}$ tali che $\mathcal F$ sia definita dalle equazioni $\{x_i=\text{const.},z_a=\text{const.}\}$ e, per ogni $a\in\{1,\ldots,r\}$, $\eta_a=dz_a-\sum\limits_{i=1}^ny_idx_i$.

Nel secondo capitolo della tesi sono dimostrati numerosi risultati riguardanti le foliazioni Legendriane non-degeneri. Qui vengono riportati i più significativi.

Teorema 2.3. – Sia $\mathcal F$ una foliazione di Legendre non degenere di una varietà almost- $\mathcal S$ (M,ϕ,ξ_a,η_a,g) . Allora su M esiste un'altra struttura almost $\mathcal S$, (ϕ',ξ_a,η_a,g') , dove g' è una metrica semi-Riemanniana, tale che $g'|_L=\frac1{4r}\Pi$. Inoltre tale struttura è determinata in modo unico dalla condizione $h'(L)\subset L$, dove $h'=\frac12\mathcal L_{\bar\xi}\phi'$.

TEOREMA 2.4. – Sia $\mathcal F$ una foliazione di Legendre su una varietà almost $\mathcal S$ (M,ϕ,ξ_a,η_a,g) . Se $\mathcal F$ è una foliazione Riemanniana allora $\mathcal F$ è una foliazione di Legendre non degenere e la metrica verifica $g|_L=\frac{1}{4\alpha}\Pi$.

3. – Strutture bi-Legendriane e classi caratteristiche.

Una struttura bi-Legendriana su una varietà almost \mathcal{S} M^{2n+r} è per definizione una coppia $(\mathcal{F},\mathcal{G})$ di foliazioni di Legendre su M^{2n+r} complementari tra loro. In tal caso il fibrato tangente di M^{2n+r} si decompone come la somma diretta $TM = T\mathcal{F} \oplus T\mathcal{G} \oplus \mathbb{R}\xi_1 \oplus \cdots \oplus \mathbb{R}\xi_r$. È possibile associare ad ogni struttura bi-Legendriana una connessione canonica, chiamata connessione bi-Legendriana, che si rivela particolaramente utile nello studio delle foliazioni di Legendre. Più in generale tale connessione è stata definita per ogni coppia di distribuzioni di Legendre L e Q, complementari tra loro, come l'unica connessione lineare su M^{2n+r} rispetto a cui la 2-forma fondamentale sia parallela, che preservi le distribuzioni L, Q e $\mathbb{R}\xi_a$, e la cui torsione verifichi

$$T(X,Y) = 2\Phi(X,Y)\overline{\xi}$$
 e $T(E,\xi_a) = [\xi_a,E_L]_Q + [\xi_a,E_Q]_L$

per ogni $X \in \Gamma L$, $Y \in \Gamma Q$ e per ogni $E \in \Gamma(TM)$ e $a \in \{1, \dots, r\}$. Riguardo ai tensori di torsione e di curvatura di ∇ si hanno i seguenti risultati.

PROPOSIZIONE 3.1. – Con le notazioni precedenti, se L e Q sono integrabili allora la connessione bi-Legendriana corrispondente è senza torsione lungo le foglie delle due foliazioni di Legendre \mathcal{F} e \mathcal{G} definite da L e Q, rispettivamente. Inoltre, se \mathcal{F} e \mathcal{G} sono fortemente piatte allora ∇ è piatta lungo le foglie di \mathcal{F} e \mathcal{G} .

Utilizzando la Proposizione 3.1 si sono dimostrati teoremi di annullamento per classi caratteristiche di foliazioni di Legendre:

TEOREMA 3.2. — Sia \mathcal{F} una foliazione di Legendre fortemente piatta su una varietà almost \mathcal{S} M^{2n+r} . Una condizione necessaria perchè \mathcal{F} ammetta una distribuzione di Legendre fortemente piatta trasversa affine è che Pont $^j(TM)=0$ per j>n.

Teorema 3.3. – Sia $\mathcal F$ una foliazione di Legendre fortemente piatta su una varietà almost $\mathcal S$ M^{2n+r} tale che esista una distribuzione di Legendre fortemente piatta complementare al fibrato tangente di $\mathcal F$. Allora $\mathrm{Pont}^j(TM)=0$ per j>2n.

L'annullamento di queste classi caratteristiche inoltre ha comportato la possibilità di costruire *classi caratteristiche secondarie* (o esotiche) per una foliazione di Legendre (per maggiori dettagli si rinvia il lettore a [4]).

4. – Connessioni di Ehresmann per foliazioni di Legendre.

Sia (M,ϕ,ξ_a,η_a,g) una varietà almost \mathcal{S} . Si noti che per ogni $a,\beta\in\{1,\ldots,r\}$ si ha $\left[\xi_a,\xi_\beta\right]=0$ e quindi i campi ξ_1,\ldots,ξ_r definiscono una foliazione r-dimensionale di M^{2n+r} . Dal momento che $\mathcal{L}_{\xi_a}\Phi=0$, tale foliazione è trasversalmente simplettica. Se M^{2n+r} è foliata da una foliazione di Legendre \mathcal{F} , allora ci si può porre la questione se \mathcal{F} si proietti (localmente) su una foliazione Lagrangiana. Si ha il seguente teorema.

Teorema 4.1. – Sia $(M, \phi, \xi_a, \eta_a, g)$ una varietà almost S munita di una distribuzione Legendriana L. Allora L si proietta, localmente, su una distribuzione Lagrangiana L' sullo spazio delle foglie della foliazione definita da ξ_1, \ldots, ξ_r se e solo se L è fortemente piatta. Inoltre L' è integrabile se e solo se L è integrabile.

Utilizzando il Teorema 4.1 è possibile dimostrare svariate proprietà riguardanti le foliazioni di Legendre. Una tra queste è che, sotto opportune ipotesi, ogni foliazione di Legendre fortemente piatta ammette una connessione di Ehresmann. Ricordiamo che, in generale, in uno spazio foliato (M,\mathcal{F}) , una distribuzione D trasversa a \mathcal{F} è chiamata connessione di Ehresmann per la foliazione \mathcal{F} se per ogni curva "verticale" a (cioè il cui vettore velocità è tangente ad \mathcal{F}) e per ogni curva "orizzontale" a (cioè il cui vettore velocità appartiene a a), con lo stesso punto iniziale, esiste un (unico) rettangolo i cui lati iniziali siano proprio a e a. Qui per rettangolo si intende una mappa a : a (a (a) a) a de a) a verticale e per ogni fissato a0, a1 la curva a2 e a3 e verticale e per ogni fissato a4 e a5 e verticale e per ogni fissato a5 e a6 e a7 e verticale e per ogni fissato a8 e a9 e a9 e a9 e a9 e orizzontale. Le curve a9, a9 e a9 ono chiamate, rispettivamente, il a1 la verticale iniziale e finale ed il lato orizzontale iniziale e finale di a9.

Ritornando alle foliazioni di Legendre, è stato provato il seguente risultato.

TEOREMA 4.2. – Sia \mathcal{F} una foliazione di Legendre su una varietà almost \mathcal{S} compatta e connessa. Sia Q una distribuzione Legendriana fortemente piatta, trasversa a \mathcal{F} , tale che la corrispondente connessione bi-Legendriana ∇ sia tangenziale. Allora, se le foglie di \mathcal{F} sono varietà affini complete (rispetto a ∇), la distribuzione $D := Q \oplus \mathbb{R} \xi_1 \oplus \cdots \oplus \mathbb{R} \xi_r$ è una connessione di Ehresmann per \mathcal{F} .

L'esistenza di una connessione di Ehresmann comporta notevoli conseguenze per la foliazione in oggetto. Ne riportiamo alcune, supponendo di essere sempre sotto le ipotesi del Teorema 4.2.

COROLLARIO 4.3 – Due qualsiasi foglie della foliazione di Legendre \mathcal{F} possono essere unite da una curva orizzontale. Inoltre, i rivestimenti universali delle foglie di \mathcal{F} sono isomorfi ed il gruppoide di omotopia di \mathcal{F} è una varietà di Hausdorff.

RIFERIMENTI BIBLIOGRAFICI

- [1] D. E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geometry, 4 (1970), 155-167.
- [2] B. CAPPELLETTI MONTANO, Legendrian foliations on almost S-manifolds, Balkan J. Geom. Appl., 10 (2005), 11-32.
- [3] B. CAPPELLETTI MONTANO, Bi-Legendrian connections, Ann. Polon. Math., 86 (2005), 79-95.
- [4] B. Cappelletti Montano, Characteristic classes and Ehresmann connections for Legendrian foliations, Publ. Math. Debrecen, 70 (2007), 395-425.

Dipartimento di Matematica, Università di Bari e-mail: cappelletti@dm.uniba.it

Dottorato in Matematica (sede amministrativa: Università di Bari) - Ciclo XVII Direttori di ricerca: Prof.ssa Anna Maria Pastore (Università di Bari), Prof. Robert Wolak (Università, Jagiellonski, Cracovia)