BOLLETTINO UNIONE MATEMATICA ITALIANA

M. Marchisio, V. Perduca

On some properties of explicit toric degenerations

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 9-B (2006), n.3, p. 779–784.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2006_8_9B_3_779_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

On Some Properties of Explicit Toric Degenerations.

M. MARCHISIO - V. PERDUCA

Sunto. – Nella presente nota si studiano delle degenerazioni semi-stabili di varietà toriche determinate da certe partizioni dei loro politopi associati. In un caso particolare vengono date le loro equazioni attraverso un'analisi combinatorica. I dettagli, le dimostrazioni e ulteriori esempi si trovano nel preprint [7] e verranno pubblicati altrove. In un successivo articolo [4] verrà discussa una interpretazione geometrica.

Summary. — We study semi-stable degenerations of toric varieties determined by certain partitions of their moment polytopes. We investigate in a particular case their defining equations via a combinatorial analysis. Details, proofs and further examples are contained in the preprint [7] and will be published elsewhere. In a sequel paper [4] we will discuss a geometric interpretation.

1. - Background.

1.1 – Polytopes and semi-stable partitions.

In his paper [6], Hu provides a toric construction for semi-stable degenerations of toric varieties. We study the uniqueness of this construction for a toric variety X in the particular case of a semi-stable partition of its moment polytope in two subpolytopes. Adapting a theorem by Strumfels on toric ideals (Lemma 4.1 in [10] and Section 2 in [9]) to particular open polytopes, we investigate the equations of the degeneration of X as embedded variety.

Let $M \simeq \mathbb{Z}^n$ be a lattice and N its dual. We consider polytopes $\Delta \subset M$ which describe smooth algebraic varieties X_{Δ} ; Δ determines the normal fan $\mathcal{L}_{X_{\Delta}} \subset N$. Recall that convex polytopes Δ determine a toric manifold X_{Δ} together with an ample line bundle \mathcal{L}_{Δ} : $(X_{\Delta}, \mathcal{L}_{\Delta})$. If the polytope is non singular, then \mathcal{L}_{Δ} is very ample, we then have an embedding $X_{\Delta} \hookrightarrow \mathbb{P}^{\ell}$, for some ℓ [8].

Now fix a (compact) polytope Δ and suppose $\Delta \cap M = \{m_0, \dots, m_\ell\}$. Take x_0, \dots, x_l as homogeneous coordinates in \mathbb{P}^ℓ . We can define $X = X_\Delta$ as the closure in \mathbb{P}^ℓ of the image of the map

(1)
$$\varphi: (\mathbb{C}^*)^n \to \mathbb{P}^{\ell}$$

$$\boldsymbol{t} \mapsto [\boldsymbol{t}^{\boldsymbol{m}_0}, \dots, \boldsymbol{t}^{\boldsymbol{m}_{\ell}}],$$

where $\boldsymbol{t}=(t_1,\ldots,t_n)\in (\mathbb{C}^*)^n$ and given $\boldsymbol{u}=(u_1,\ldots,u_n)\in \mathbb{Z}^n$ we use the notation $\boldsymbol{t}^{\boldsymbol{u}}=t_1^{u_1}\cdot\ldots\cdot t_n^{u_n}$.

We assume that there exists a suitable finite partition Γ of Δ in subpolytopes $\{\Delta_j\}_{j=1}^k$. We will assume that the toric varieties X_{Δ_j} corresponding to each Δ_j are also smooth, moreover following [1, 6] we ask Γ to be *semi-stable*. In fact:

THEOREM 1.1. – [1, 6] If $\{\Delta_j\}_{j=1}^k$ is a semi-stable partition of Δ , then there exists a semi-stable degeneration of X, $f: \tilde{X} \to \mathbb{C}$ with central fiber $f^{-1}(0) = \bigcup_{j=1}^k X_{\Delta_j}$; the central fiber is completely described by the polytope partition $\{\Delta_j\}_{j=1}^k$.

 \tilde{X} is constructed by a lift of Δ (see below). Theorem 2.8 in [6] claims that \tilde{X} is unique: we study the uniqueness of \tilde{X} for semi-stable partitions of Δ in two subpolytopes Δ_1, Δ_2 , and we describe its defining equations. In particular, in Section 2 of [6], Hu shows that the ordering (arbitrarily fixed) $\{\Delta_1,\ldots,\Delta_k\}$ of the polytopes in Γ determines a piecewise affine function on the partition $F:\Delta\to\mathbb{R}$, which takes rational values on the points in the lattice M. F can be chosen to be concave and it is called $lifting\ function$. He therefore calls the open polytope

$$\tilde{\Delta_F} = \{(m, \tilde{m}) \in M \times \mathbb{Z} \text{ such that } m \in \Delta \text{ and } \tilde{m} \geq F(m)\}$$

an open lifting (here simply lift) of Δ with respect to Γ . There are many possible lifts of Δ with respect to Γ ; if Γ consists of two subpolytopes, then two lifts exist. By construction there exists a morphism $f: \tilde{X}_F := X_{\tilde{\Delta}_F} \to \mathbb{C}$ which realizes a semi-stable degeneration of X. As before we have embeddings $X \hookrightarrow \mathbb{P}^{\ell}$ and $\tilde{X}_F \hookrightarrow \mathbb{P}^{\ell} \times \mathbb{C}$. In particular we can define \tilde{X}_F as the closure in $\mathbb{P}^{\ell} \times \mathbb{C}$ of the image of the map:

(2)
$$\psi = \psi_F : (\mathbb{C}^*)^n \times \mathbb{C} \to \mathbb{P}^{\ell} \times \mathbb{C}$$
$$(\boldsymbol{t}, \lambda) \mapsto ([\lambda^{F(\boldsymbol{m}_0)} \boldsymbol{t}^{\boldsymbol{m}_0}, \lambda^{F(\boldsymbol{m}_1)} \boldsymbol{t}^{\boldsymbol{m}_1}, \dots, \lambda^{F(\boldsymbol{m}_{\ell})} \boldsymbol{t}^{\boldsymbol{m}_{\ell}}], \lambda).$$

Theorem 2.8 in [6] claims that the image of ψ_F , and hence X_F , is independent of the lifting function F.

We explicitly study this statement for semi-stable partitions of Δ in two subpolytopes Δ_1, Δ_2 in order to prove that the two non-compact toric varieties defined by the open polytopes $\tilde{\Delta_F}$ and $\tilde{\Delta_G}$ associated to the two possible lifting functions F, G, have the same toric ideals. To do this we adapt a Strumfels's theorem on toric ideals (Lemma 4.1 in [10] and Section 2 in [9]) to this non-compact context.

1.2 - Toric ideals.

In [9] Sottile describes the ideal I of the compact toric variety X (toric ideal) defined as the image of a map (1), following Strumfels's book [10].

Take x_0, \ldots, x_l as homogeneous coordinates in \mathbb{P}^{ℓ} . With the notation of the previous section, suppose $\mathbf{m}_j = (m_{1j}, \ldots, m_{nj}), \ j = 0, \ldots, \ell$ and consider the $(n+1) \times (\ell+1)$ matrix

$$\mathcal{A}^+ = egin{pmatrix} 1 & 1 & \dots & 1 \ m_{10} & m_{11} & \dots & m_{1\ell} \ dots & dots & dots \ m_{n0} & m_{n1} & \dots & m_{n\ell} \end{pmatrix}.$$

Observe that if $\boldsymbol{u} \in \mathbb{Z}^{\ell+1}$, then we may write \boldsymbol{u} uniquely as $\boldsymbol{u} = \boldsymbol{u}^+ - \boldsymbol{u}^-$, where $\boldsymbol{u}^+, \boldsymbol{u}^- \in \mathbb{N}^{\ell+1}$, but \boldsymbol{u}^+ and \boldsymbol{u}^- have no non-zero components in common. For instance, if $\boldsymbol{u} = (1, -2, 1, 0)$, then $\boldsymbol{u}^+ = (1, 0, 1, 0)$ and $\boldsymbol{u}^- = (0, 2, 0, 0)$ (Sottile's notation).

We therefore have:

THEOREM 1.2. - ([9], Corollary 2.3)

$$I = \langle \boldsymbol{x}^{\boldsymbol{u}^+} - \boldsymbol{x}^{\boldsymbol{u}^-} | \boldsymbol{u} \in \ker(\mathcal{A}^+) \ and \ \boldsymbol{u} \in \mathbb{Z}^{\ell+1} \rangle.$$

There are no simple formulas for a finite set of generators of a general toric ideal, but algorithms for this computation are implemented in the computer algebra system Macaulay 2 [5].

1.3 - An example: semi-stable degeneration of the twisted cubic.

To illustrate the previous section, we describe the semi-stable degeneration of the twisted cubic $X \subset \mathbb{P}^3$ determined by a subdivision of its moment polytope in two subpolytopes; the two varieties associated to the two possible lifts have the same defining equations.

The twisted cubic $X \subset \mathbb{P}^3$ can be defined as \mathbb{P}^1 embedded in \mathbb{P}^3 by cubics, that is, as the toric curve $(X_\Delta, \mathcal{L}_\Delta) = (\mathbb{P}^1, \mathcal{O}(3))$, where Δ is the polytope below

FIGURE 1. – The moment polytope Δ of the twisted cubic $X \subset \mathbb{P}^3$.

Here $M=\mathbb{Z}$, $\Delta\cap M=\{\pmb{m}_j=j,\,j=0,\dots,3\}$, X is the closure of the image of $\varphi:\mathbb{C}^*\to\mathbb{P}^3$ $t\mapsto \!\!\lceil 1,t,t^2,t^3\rceil.$

and we have

$$\mathcal{A}^+ = egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 2 & 3 \end{pmatrix}.$$

The toric ideal of X is

$$I = \langle x_0 x_2 - x_1^2, x_1 x_3 - x_2^2, x_0 x_3 - x_1 x_2 \rangle.$$

Now consider the semi-stable partition $\{\Delta_1, \Delta_2\}$ of Δ , where $\Delta_1 = [0, 1] \subset \mathbb{R}$ and $\Delta_2 = [1, 3] \subset \mathbb{R}$. This partition gives the semi-stable degeneration of X to the union of two curves $X_1 \cup X_2$, where $X_1 = (\mathbb{P}^1, \mathcal{O}(1))$ and $X_2 = (\mathbb{P}^1, \mathcal{O}(2))$.

The two possible lifting functions are

$$F(j) = \left\{ egin{array}{ll} 1 & j = 0 \ 0 & j
eq 0, \end{array}
ight. \ G(j) = \left\{ egin{array}{ll} 0 & j = 0, 1 \ j - 1 & j = 2, 3. \end{array}
ight.$$

Figure 2 shows the two lifts Δ_F and Δ_G .

FIGURE 2. – Δ_F and Δ_G .

Using the notation in (2), in local coordinates the embeddings of \tilde{X}_F and \tilde{X}_G in $\mathbb{P}^3 \times \mathbb{C}$ are $([\lambda, t, t^2, t^3], \lambda)$ and $([1, t, \lambda t^2, \lambda^2 t^3], \lambda)$. We therefore observe that \tilde{X}_F and \tilde{X}_G have different parametric equations, nevertheless it is easy to see that both of them are defined in $\mathbb{P}^3 \times \mathbb{C}$ by the equations

$$x_0x_2 - \eta x_1^2 = 0, x_1x_3 - x_2^2 = 0, x_0x_3 - \eta x_1x_2 = 0,$$

where η is the non-homogeneous coordinate in \mathbb{C} (one can do this computation by hand or he can use computer algebra systems which implement elimination theory algorithms).

2. – Main results.

The following theorem is a generalisation to our specific non-compact situation of Theorem 1.2. We use the notion of the previous sections.

Let I_F be the ideal of all polynomials in the coordinates $x_0, \ldots, x_\ell, \eta$ homogeneous in x_0, \ldots, x_ℓ and vanishing on \tilde{X}_F . In analogy with the compact case we use the notation

$$\boldsymbol{z}^{\boldsymbol{u}} = x_0^{u_0} \dots x_\ell^{u_\ell} \eta^{u_{\ell+1}},$$

with $u = (u_0, ..., u_{\ell}, u_{\ell+1}) \in \mathbb{Z}^{\ell+2}$.

Consider the $(n+2) \times (\ell+2)$ matrix

$$\mathcal{B}^+ = \mathcal{B}_F^+ = egin{pmatrix} 1 & 1 & \dots & 1 & 0 \ m_{10} & m_{11} & \dots & m_{1\ell} & 0 \ dots & dots & \ddots & dots & dots \ m_{n0} & m_{n1} & \dots & m_{n\ell} & 0 \ F(m{m_0}) & F(m{m_1}) & \dots & F(m{m_\ell}) & 1 \end{pmatrix}.$$

THEOREM 2.1.
$$-I_F = \langle z^{u^+} - z^{u^-} | u \in \ker(\mathcal{B}^+) \text{ and } u \in \mathbb{Z}^{\ell+2} \rangle$$
.

Now let G be the second lift, then we can consider the matrix \mathcal{B}_G^+ and characterize the toric ideal I_G of \tilde{X}_G as above. In general \tilde{X}_G will have a different parametrisation from the one of \tilde{X}_F , moreover the normal fans are different.

Our main result is

THEOREM 2.2. – \tilde{X}_F and \tilde{X}_G have the same equations in $\mathbb{P}^{\ell} \times \mathbb{C}$, i.e. $I_F = I_G$.

If X is the twisted cubic, we have

$$\mathcal{B}_F^+ = egin{pmatrix} 1 & 1 & 1 & 1 & 0 \ 0 & 1 & 2 & 3 & 0 \ 1 & 0 & 0 & 0 & 1 \end{pmatrix}, \, \mathcal{B}_G^+ = egin{pmatrix} 1 & 1 & 1 & 1 & 0 \ 0 & 1 & 2 & 3 & 0 \ 0 & 0 & 1 & 2 & 1 \end{pmatrix}.$$

Observe that

$$\mathcal{B}_F^+ = E \cdot \mathcal{B}_G^+$$

where E is the 3×3 elementary matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \in SL_3(\mathbb{Z}),$$

and hence $\ker \mathcal{B}_F^+ = \ker \mathcal{B}_G^+$.

REFERENCES

- V. ALEXEEV, Complete moduli in the presence of semiabelian group action, Ann. Math., 155 (2002), 611-708.
- [2] D. Cox, What is a toric variety?, Topics in algebraic geometry and geometric modeling, 203-223, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, (2003); also avalaible at http://www.amherst.edu/dacox/
- [3] W. Fulton, *Introduction to Toric Varieties*, Ann. of Math. Studies, 13, Princeton University Press, (1993).
- [4] A. Grassi M. Marchisio V. Perduca, On Some Geometric Properties of Explicit Toric Degenerations, in preparation.
- [5] D. R. Grayson M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, Avalaible at http://www.math.uiuc.edu/Macaulay2/
- [6] S. Hu, Semistable Degeneration of Toric Varieties and Their Hypersurfaces, Communications in Analysis and Geometry, 14, n. 1 (2006), 59-89; arXiv: math.AG/ 0110091, (2001), 1-26.
- [7] M. MARCHISIO V. PERDUCA, On Some Properties of Explicit Toric Degenerations, preprint, 2006.
- [8] T. Oda, Convex Bodies and Algebraic Geometry, 15, Springer-Verlag, Berlin Heidelberg (1988).
- [9] F. SOTTILE, Toric ideals, real toric varieties, and the moment map, Topics in algebraic geometry and geometric modeling, 225-240, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, (2003); arXiv:math.AG/0212044.
- [10] B. STRUMFELS, Gröbner Bases and Convex Polytopes, American Mathematical Society, University Lecture Series, 8, Providence, RI (1996). MR 97b:13034.
 - M. Marchisio: Università degli Studi di Torino, Dipartimento di Matematica Via Carlo Alberto, 10 - 10123 Torino, Italy e-mail: marina.marchisio@unito.it
 - V. Perduca: Università degli Studi di Torino, Dipartimento di Matematica Via Carlo Alberto, 10 - 10123 Torino, Italy e-mail: perduca@dm.unito.it

Pervenuta in Redazione il 31 agosto 2006