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Bollettino U. M. 1.
(8) 9-B (2006), 749-776

The Kodaira Dimension of
Siegel Modular Varieties of Genus 3 or Higher.

ERIC SCHELLHAMMER

Sunto. — Consideriamo lo spazio dei moduli A, (n) delle varieta abeliane (non princi-
palmente) polarizzate di genere g > 3 con polarizzazione coprima e struttura di livello
n completa. Basandoct sull analist dei building di Tits di [S], diamo un limite inferiore
esplicito per n che ¢ sufficiente affinché lo spazio dei moduli compattificato sia di tipo
generale, se un’ulteriore condizione esplicita viene soddisfatta.

Summary. — We consider the moduli space Apo(n) of (non-principally) polarised abelian
varieties of genus g > 3 with coprime polarisation and full level-n structure. Based
upon the analysis of the Tits building in [S], we give an explicit lower bound on n that
is sufficient for the compactified moduli space to be of general type if one further
explicit condition is satisfied.

1. — Introduction.

J
For positive integers dy,...,d,_ define d;; := ] d) where the empty pro-

duct equals 1. A polarisation of type (1,dq,... ,](cnlll;g,l) is called coprime if
ged (d;, d;) = 1for all i # j. Let 4= diag(1,dy, dya, ..., dyg1), A = (PA g). Let
L := 7% c Y and denote the lattice dual to ¥ with respect to the bilinear form
(2, y) == axAly by &".

Recall that the paramodular groups without, with canonical or with full level
structure can be defined as follows:

Tpora = {M € SL2g, Q)|MAM = A}

g =AM € I'pa|M|g g =idlgv o} and

Fpolﬁd(n) = {M S Fpolﬁd‘M =1 modn}

When it is obvious which polarisation we refer to we simply write "o, I” ;egl and
I'poi(n), respectively. All these groups act on the Siegel upper half space ©, by
(A B

CD) .1 (A7 + B)Ct+ D).
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The quotient spaces A, Ag’g’l and A, (n) are the moduli spaces of Abelian
varieties with fixed polarisation of the given type without, with canonical or with
full level structure, respectively.

The Kodaira dimension of these spaces is defined via their compactifications. To
obtain these we use the method of toroidal compactification introduced in [AMRT].
Several of these spaces have been thoroughly investigated. For principal polar-
isations, the work of Freitag, Igusa, Mori, Mukai, Mumford, Tai and a number of
other authors gives an almost complete picture which of these spaces are rational,
unirational or of general type. The only space where the Kodaira dimension could
not yet be determined is A, i. e. the case g = 6 without level structure.

For g = 2 and a polarisation of type (1, p) we know that A, is of general type
for all primes p > 73 by recent work of Sankaran and Erdenberger. Several
other results are known for polarisations of type (1,¢) with small . Furthermore,
Hulek showed in [H] that A 5(n) is of general type for n > 4 when ged (n,?) = 1.

However, the analysis of moduli spaces of genus 3 or higher appears to be
more complicated. Tai showed that for g > 16 all these spaces are of general
type, but not much is known for lower g. In this paper we want to give a result
concerning the cases g > 3, which for g > 16 is weaker than the result by Tai but
closes the gap 3 < g < 15.

THEOREM: Let g > 3 and let (1,d1,d12, ..., d14-1) be a coprime polarisation
with dyg—1 # 2. Then Apa(n) ts of general type, provided ged(n,diy—1) =1,
n >3 and

(29 + Ddzy—2
(g +1)20-3

where ]Lq = (dl, .. .,dgfl), Lg = (dgfl, . ,d]) and

C'(L(wy,...,x51) = a1 max{l \/_ 212152;{ Hmi }}

We prove the appropriate behaviour of h°(K*) by relating it to the line bundle
L of modular forms of weight 1 and then using Hirzebruch proportionality. For
this relation we need a cusp form with respect to /"p,i(n), which we denote by ¥
and construct from the Sp (2¢, /)-cusp form given by the product of all even theta
values. The space Aq(n) is given a toroidal compactification and on this ¥ can be
extended to the boundary. The weight of 7 and its order of vanishing on the
boundary are calculated by analysing the maps used to construct it.

When describing toroidal compactification, our notation is based on [HKW,
Section 3C]. In particular, P(F) C Sp(2¢g,R) is the stabiliser of a rational
boundary component F', P'(F') is the centre of the unipotent radical of P(F") and
P.(F) := P'(F)N I its relevant lattice part, where I" is any of the above groups.

min{C"(L,), C'(Lz)}



THE KODAIRA DIMENSION OF SIEGEL MODULAR VARIETIES OF GENUS 3 OR HIGHER 751

2. — Vanishing on the boundary.

In a toroidal compactification the boundary is composed of several different
parts which correspond to rational polyhedral cones in the closure C of the cone
of positive definite, symmetric g x g matrices. The (open) boundary components
of codimension 1 correspond M to 1-dimensional cones (i. e. rays) in C.Ifthe ray
is generated by a matrix of rank 1 (which implies that it lies on the boundary
C\C) we call the corresponding rational boundary component a corank-1
boundary component.

These corank-1 boundary components play a crucial part in determining the
order of vanishing of a cusp form on all of the boundary. In the principally po-
larised case this is shown using the result by Barnes and Cohn in [BC].

For the non-principally polarised case this theorem unfortunately cannot be
established; in fact, there is a counterexample which we will give in Example 2.8.
Nevertheless, a generalisation of the result by Barnes and Cohn provides a
weaker bound which may be used instead.

Following the paper [BC] we generalise their theorem 3 to some more gen-
eral lattices which correspond to the non-principally polarised case. We first
recall some notation.

NorATION 2.1.
Letf(x) := A % and h(x) := xB ' be two quadratic forms with real symmetric
matrices A and B, and define their inner product as (f,2) := tr(AB) := ) a;;b;;.
(¥

For positive definite f denote by M(f) its arithmetic minimum, i. e. the minimum
of f(x) with integral x = 0. If I is a lattice of matrices, we shall write f € L. to
denote that f can be given as above with A € L.

The theorem by Barnes and Cohn is used in the context of moduli of princi-
pally polarised abelian varieties in form of the following

THEOREM 2.2.

Let f be a real positive definite n-ary form and denote by 1.° the lattice of all
positive definite or positive semi-definite integral forms and by 1, C L0 the
sublattice of forms of rank 1. Then

min (f, k) > min (f,h).
hel.2\{0} helq
Furthermore, there always exists a form of rank 1 realising this minimum.

ProoF. — This is an immediate consequence of [BC, Theorem 3]. ]

(%) This is not a 1-to-1-correspondence, since we have to consider several copies of C.
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The main connection between extending pluricanonical forms to a toroidal
compactification and this corollary is [AMRT, Chapter IV, paragraph 1,
Theorem 1]. The precise correspondence between the vanishing on the corank-1
boundary components and on the rest of the boundary is (%):

COROLLARY 2.3.
Suppose ® = S, and I = Sp (29, 7). Let y be an automorphic form of weight
g + 1) with respect to I', 0 = A dt; j 2% e QN(@BQ/F)@Z, and let ég/FO be the

i<y
smooth part of a toroidal compactification of ©,/I". Then

1 vanishes on all
g extends to S,/ T i < ¢ rational corank-1 boundary components

of order at least .

PRrOOF. — The proof of this statement can be found in [AMRT]. But although
the theorem as stated here is only valid for the principally polarised case, the
proof for the non-principally polarised case differs from this one only in the
substitution of Theorem 2.2 by a generalisation. Therefore, we want to sketch the
proof in order to show how the reduction to forms of rank 1 can be achieved.

Since we have a principal polarisation, (P'(F))" consists of integer matrices for
all rational boundary components F. Therefore, according to Theorem 2.2, the
minimum of (f, h) with f € (P'(F))" overallh € P'(F) N C(F) is obtained for a form
h of rank 1, where C(F') is the self-adjoint cone corresponding to F. For any such &
we can find a corank-1 boundary component F'; < F' with h € P'(F) NC(F).
Because the coefficients aff of the Fourier-Jacobi expansion are the same for every
pair F' = F; we can now bound the minimum over all # for all F' by the minimal
order of vanishing on all rational corank-1 boundary components. ]

2.1 — Non-principal polarisations.

Theorem 2.2 depends heavily on the fact that we consider the minimum over
all integral forms k. However, this is only the case if we apply it to principal
polarisations. Otherwise the matrix of the bilinear form 7 is no longer simply an
element of Sym(g, 7) but of a sublattice. To make things precise we define the
relevant lattices as follows.

DEFINITION 2.4. — Tits Lattice
In [HKW, Paragraph 3D] a standard rational boundary component corre-
sponding to the lattices of rank g is defined and denoted by F©. (This is yet

() See also [T, Theorem 1.1].
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independent of I".) By the T'its lattice we mean the lattice L. = P'(F©) N C(F©)
where we identify the containing space P'(F©) with the space of symmetric
matrices as in [HKW, Paragraph 3D]. If the type of the polarisation is given by
(1,ds, ... ,di4—1) and we have no level structure we also write L(1,ds, ..., d14—1).

REMARK 2.5.

The definition of the Tits Lattice only considers the standard corank-g
boundary component. However, [S, Theorem 5.3] tells us that this is no re-
striction since for square-free, coprime polarisations all corank-g boundary
components are conjugate under the action of 77.

DEFINITION 2.6. — Characteristic values of a lattice.

e Let L C Sym(n, 7) be a sublattice of the lattice of symmetric matrices and
define the subsets 1.° ¢ L. and L.t ¢ LL.? of positive semi-definite (including
the zero matrix) and positive definite matrices, respectively. Let L.; C L be
the subset of rank 1 matrices.

e If L. is of maximal rank, define two characteristic values for the lattice,
namely the greatest common divisor of all (non-zero) determinants

u(L) :==max{i € N|VB e L" : Jdet(B)}

and the least value v that makes sure that all matrices vC are members of the
lattice

(L) :== min{1 € N|VC € Sym(n, Z), C positive semi-definite : C e L.°}.

LEMMA 2.7.
The Tits lattice of a polarisation of type (1,dy,...,d1,_1) without level-
structure 1s

7 a7 ... diwaZ
d17, d17, 1w 17,

La,...,dig1) = {M € 1: ' . ! : ' |M symmetm’c}
dina? dipwa”Z ... diwa”

and it has the characteristics u(L) =[] d?"i and v(I) = dy.,—1.

Proor. — From [HKW, Paragraph 3D] we know
1S :
PE) = {(7)IS € Sym(g, R)} ~ Sym(g, &)
for the standard rational boundary component F®. This isomorphism maps a

matrix M € P'(F©) onto its upper right quarter. Since P'(F©) = P'(F®) N I'yy
we are only interested in the symmetric g x g matrices satisfying the conditions
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on the upper right quarter of the matrices in I"p. [S, Lemma 3.4] gives the
condition claimed. u

Now we want to give the aforementioned counterexample to the inequality in
Theorem 2.2:

ExaMPLE 2.8.
Let L. = .(1,17) and
14

f(ac)zac(3 17) e e LY.

17 17

We claim that minyer, (f,#) = 3. To show this, define ¢ to be a rank 1 form
realizing the minimum and let the form be given by the matrix g‘z 2‘2 ) For
ho € L; we need 17|ab and 17 |b2. Since the rank of ko is 1, we cannot have
a=0=0.If a =0 or b = 0 we obtain

(f,ho>:tr<fho>:%b2:4 or (f,ho) = tr(fho) = 3a% = 3,

respectively, since 17 divides b? and the minimality of k. Hence, hml[n (f,h) <3.
€l

Now assume that ab # 0 and tr(fhg) < 3. Since Ay is positive semi-definite, we
have a?,b> € N and hence a,b € R. Fix a € R and define

2 2
fu) == tr(fhy) = 3a® ——8ab+—b2 —( —za)2 17a
Then f, has no zeroes and assumes its mlmmum over R at b = 2“ Smce the
assumption that f,(1a) = Za? < 3leads to a® < 2 and we have seen that a® € I\,

this leaves only 10 possible Values for a.

Ifa = £1, £+ 2 then the condition ab € 177 leads to b = 170’ with b’ € 7. Easy
calculation shows that f,(170) = 3a% —28ab’ +68b2>3. If a =+ 2, +v3,£ V5
the condition ab € 177 leads to b = 17ab’ with b’ € 7. But now f,(17ad’) =
a?f1(170') > 8a® > 3. Hence, miny,, (f, h) > 3, which shows the claim.

On the other hand, for the rank 2 form & with matrix (167 })Z) we calculate
(f, h) = tr(fh) = 2, so obviously

. < o
rhné{l(f’h)—2<3 ;gr}(f,h)
which shows that the inequality of Theorem 2.2 cannot be established for the

non-principally polarised case with p = 17.

2.2 — Barnes and Cohn generalised.

A generalisation can be achieved if one allows a factor in the inequality which
depends on the characteristic values of the given lattice as follows:
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THEOREM 2.9.
Let f be a real positive definite n-ary form where n > 2. Then

min (f, 1) > VYL o,
helt o(l)  hely

Proor. - It is easy to derive (f,h) > " \"/ w(LO)M(f) for all positive definite
forms f,h with h e L™ in the manner of [BC, Corollary 1]. We obtain
(f, k) > V3 3/ u(L)M(f) in the same way as in [BC, Theorem 2]. Now, we chose
of rank 1 such that (f, hy) = M(f) and obtain

min £ > V3 uLM(f) = V3 u(L)(f, ho)

V3w V3w .
= W(fa u(L)hgy) > W%}{? (f,h)

since v(IL)hg € 11 from the definition of v(I.) and the fact that sy has rank 1. W

COROLLARY 2.10. — (1, t)-polarisation.
Lett e N,t >3 and L. = 1L.(1,%). Then

3

min (f,h) > \ﬁ min (f, k).

helh\{0} 1 T helq f

ProOF. — This follows from Theorem 2.9 using the values given in Lemma 2.7.
|

Unfortunately, for a general lattice of higher dimension it is not as easily
possible to compare the two minima. Nevertheless, for the special case of Tits
lattices we can obtain the following theorem:

THEOREM 2.11.
Let f be a real positive n-ary form with n > 2 and let L. = L(1,dy, ..., d14 1)
Then

(1) min (£.7) > V3 min (f,1) and
hellt n—1  hel
n Hd%
i=1
2) min (f, h)>C(L)m1n(f h) where
hel2\{0}

c) —mln{l min v3 }

2<r<n
\/Hdl
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Proor. - If & is positive definite, we may use Theorem 2.9 with the values
given in Lemma 2.7 to obtain

n—1
\/gn dn_l
min (f,h) > ———— min (f, h) = min (f, k)

hel* -1 hely =1 hely

which proves (1).

The value C(L.) is constructed from terms that give valid bounds for the
different possible cases 7 := rank(h) = 1,...,n. The first term, which is 1, ob-
viously covers for % of rank r = 1. The term for » = » has already been estab-
lished in (1).

For positive semi-definite & of rank » with 1 < » < n, we proceed along the
lines of Theorem 3 in [BC].

We can give & as h(x) = wBx where B is a rational singular matrix; the
equation Bx =0 hence has a rational solution x # 0. Multiplying by a sui-
table rational number, we obtain a primitive integral vector v = (vy,...,v,)
with Bv = 0. According to Lemma 6.1 we can find an integral unimodular
matrix T of the form

* dy diz ... dige U1

* x dp o2 V2
T =

* - * dn72 Vp—2

* A * Vp—-1

* .. * Vn

We now replace f and & by T7'f and Th, respectively; this leaves M(f)
and (f,h) unchanged. The matrix B of h is replaced by the matrix TBT
and, since Bv =0, the integral form % has been replaced by an integral
form in the n — 1 variables «y,...,%, 1. Furthermore, the special form of T
guarantees that 7BT < .. We may clearly repeat this procedure until Z(x)
is expressed as a positive definite integral form in the variables x,...,x,.
Let

ey, ... %) = h(x) = hxq,...,%,0,...,0),

fley, ... e =f(,...,2,0,...,0).

Then f, & are positive definite forms in 1 variables, and % is integral. Clearly we
have M(f) > M(f) and (f, k) = (f, k). With respect to the sublattice



THE KODAIRA DIMENSION OF SIEGEL MODULAR VARIETIES OF GENUS 3 OR HIGHER 757

7 diwaZ 0 ... 0

L= div1Z ... dipaZ 0 : NLcL
0 0 0
0 0

(which contains .) we may therefore use (1) to obtain

Cmin G>— minG R

hel. of rank r L=l hely
[1d;
i=1

Hence, we have
_ _ _ _ LicL
G =G = min G > L5 min S Y5 in (s,
e’ I ely

7el, Lr=1 kel o =1 ;
I1d; [d
=1 i=1

This construction supplies all the other terms in C(I.) and thus ends the proof.
|

£

REMARK 2.12.
Theorem 2.11 can now be used as a substitute for Theorem 2.2. This leads to
the following generalisation of Corollary 2.3:

THEOREM 2.13.

Assume a (non-principal) polarisation (1,dy, ..., d1g—1) and let L be its Tits
lattice. Suppose D = S, and let I' = Iy or I = I'poi(n) with ged (n,d1,y—1) = 1.
Furthermore, let y and w be as in Corollary 2.3. Then

0 x vanishes on all
g extends to D /T <= ( rational corank — 1 boundary components
of order at least I/C(LL. ).

3. — How to get from A, to Ay, (n).

Our main goal is to investigate the Kodaira dimension of .A;,,(r). Our method
needs a non-trivial cusp form with respect to /"p,(n) which we do not yet have.
However, the product y of all even theta constants is a cusp form (*) with respect

() See [F, p. 42, Satz 3.3]
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to Sp (2g, 7). Denote its weight by w, and its order of vanishing on the cusp of A,
by v,. How can we use y to construct a cusp form on (A,e(n))*?

3.1 — Maps, cusps and branching.

We have the following situation:

(A’ (Apoi (1))’

19| U T3

(Ae)’ (Apor)’

where by A" we denote Mumford’s partial compactification of .A. This is con-
structed from A by adding only the corank-1 boundary components. Note that
this construction is well defined since it does not depend on a fan and that all
these maps exist due to the inclusion relations of the corresponding groups.
What do we know about the partial compactifications of these spaces? First of
all, we know () that (.Ag)’ has only a single cusp which we shall call Cy.
In (Ap,) there are several rational corank-1 boundary components which we

shall denote by C1, . ..,Cy. Fixiin1,. .., and denote the irreducible components
of the reduction of 7;C; by Cg, ..,C C (Afovl)'. To each Cji we can associate a

unique (°) primitive vector in 7% that generates the corresponding isotropic space.
By abuse of notation, we also denote this generator by C’. Let Cifg’l(i) be a set of
vectors that is a full system of representatives for these boundary components.
Denote the order of branching of 7; in C by m (%, j) and that of 7z by ma(i, ).
We know that I i)eovl is a normal subgroup of I, and so 7 : Afg’l — Apor is a
Galois cover. The Galois group I'g := I'pe/ Fifovl operates transitively on C}fovl(i), 80
that for any fixed 7 the order of the stabiliser Stab;,(C) :={g € I G‘ g(C) =C}is
the same for all C € Cif’ovl(i). If —1 & I'¢ (from [B] we see that this is implied by
di.g-1 > 2), it can be given by
1|
@]
Furthermore, the values mg(%, j) are the same for all C € C
denote them by mg(?). So we have

750 = 3 mali, HCI = ma(i) S CL.
J J

3) |Stab,(C))] =

lev

pOl(i) and we can

(*) See [HKW, Part I, Lemma 3.11]
(®) Up to multiplication with —1.
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3.2 — Modular forms.

From [S, Corollary 3.7] we know that I° i)eovl C Sp(2g,7) and hence y is also a
cusp form with respect to I” ifovl On C-g it vanishes of order ord(y, Cé) = v,m1(1, j).
Define y*™ to be the symmetrisation of y with respect to the Galois group I'¢
constructed as in [H]. This is a cusp form with respect to I” levf weight

pol
Wsym = |I'g|w,. We may choose any one cusp CZ-1 and have
VC € Coi@) : ord(z¥™,C) = ord(z™™, C)).
To be precise, we have

ord( Y™, CH = > ord(r,a (CH) = Y [Stabr,(Clord(y, C})

ael’ Clec (i)

6| - el .
- Z |CleV(i)|val(?”]) = v}{ |Clev(’L)| Z ml(lvj).
Clecpt ol pol "Vl crecien

For easier notation define

MyG) =Y G, ).

e~
Clec )

In fact, y™™ is also a cusp form with respect to /'y,1. To make clear which group
we are referring to we use the notation 7 in case of this second group. On (Apol)’
we now have

||

(D) C (D)

ord(7, C;) = ord(y¥™, C})/ma(i) = v, M;(9).

3.3 - Vanishing on higher codimension.

So far we are able to control the order of vanishing on the corank-1
boundary components of a compactification of A,. This compactification may,
however, be singular. Assume we are given a /", -admissible collection of fans
2 and obtain the corresponding compactification (Ap,)*. According to [Nami,
Theorem 7.20] and [Nami, Theorem 7.26], there exists a refinement > of the
collection X, which is also I'p,-admissible, such that the corresponding com-
pactification (A1)~ is stack-smooth. By this we mean that all fans are basic and
hence no singularities arise from the toroidal construction but are only in-
troduced by the group action. Furthermore, we also get that the map
(Apo)”™ — (Ape)” is a blowing-up and hence (A1)~ is constructed from (Apo)”
by inserting new boundary divisors. These also correspond to rays in the clo-
sure C of the cone of symmetric, positive definite matrices, as do the corank-1
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boundary components, but here the rays are generated by matrices of rank
strictly greater than 1.

We are now ready to proceed to the map n3. Assume that the level » is such
that 73 is branched of order 7 along all boundary components. For any cusp C in
the pullback 7;C; we then have

4) ord(7,C) = nord(y, C;) = nv, Ll

* ma()|Cio (D)

M ().

Now we use the generalised Barnes and Cohn Theorem 2.11 on (Ap,(%))” which
states that 7 vanishes on all of the boundary at least of order ord(y, C)C(IL). On
the other hand, ¥ is a modular form of weight w; = |I'¢lw, with respect to
I'po1(n) C I'pgl. This leads to the following equation for (Ayq(n))™ :

wX‘FG|L = ord(;_(, C)C(L)D + Deff

where L is the divisor corresponding to the (Q-)line bundle (%) of modular forms

of weight 1 on Ap,(n), D is the boundary divisor of (Aye(1))” and Deg is some

effective divisor that we do not need to specify more precisely. This implies
wy| gl

D ==Gag, ooyl T Der:

Assume now that n > 3 such that I'yq(n) is neat. For any smooth toroidal
compactification of .A;,,(n) we obtain

K=(@+1)L-D

w,| gl

=9+ =S, o0m

L+ Dig.

We know from Mumford’s extension of Hirzebruch proportionality (see [M,
Corollary 8.5]) that 7hO(L¥) ~ k299+D. We can therefore conclude that
RO(K®) ~ hO(LF) ~ k299+D and hence that the Kodaira dimension is maximal if
the coefficient of L is positive. This means we want

ord(y, C)C(LL) > %
v, | Fa|My(DC(L)  w,| g
®) "m@en® g+l
w, M (@) Co (i)
(g + Do, M(H)C(L)

—n >

(®) For n > 3 this is in fact a line bundle.
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4. — Branching of the maps.
4.1 — Maps between toroidal varieties.

THEOREM 4.1. — Maps of toroidal varieties.

Assume we are given two arithmetic subgroups I'y C I's of Sp (29, 7) and a
collection of fans X that is admissible for both groups. Let A = (SyI)". Then
we have a map n : A} — A;. Furthermore, for a corank-1 boundary component
F' the order of branching of = on F is given by the index [P}, (F) : Py (F)].

ProoF. — The existence of n follows easily from [O, Theorem 1.13] since
N = P’F1 (F) = /Sp(Zg,”Z)(F’) NIl C P’Sp (zg,z)(F) NIl = P’FZ(F) =N

where [N : N'] < oo due to the choice of I';. We can glue the maps ¢, since Xis
admissible.

Sinee F has corank 1, the groups P/r,f (F") forj = 1,2 are 1-dimensional lattices.
To ease the notation, we only consider the case F' = F, but the construction goes
through the same for all other rational corank 1 boundary components. For Fy,
the quotient maps ¢;(F) are given by

= a -1 =
N P B L s
/ (71,17 712, -- 7Tg,g) = (t]7 T125---5T1g, T/)

where v = (ty,0)mus2 and t; = €2*11/k for some k; € N, j = 1,2. Now we have a
map

t1 (e .

Xi(Fy) —  Xo(Fy)
7
Tmn = Ty, forall (m,n)# (1,1)

This map extends naturally to the boundary {0} x CY~! x Sy-1 of O x Sy_;.

Obviously, the order of branching of 7 in {0} x (9! x S, 4 is %
Now we have to consider the quotient maps g;

Xi(Fo) — X j(F) % Xy j(Fo)P}, (Fo) — A;.

According to [HKW, Proposition 3.90 and Proposition 3.91] the group P”(F,) can
be identified as the group consisting of the block matrices

e m n
0 A B|eGL@+1,R)
0 C D

where (‘é g) eSp@2g—1),R), ee R and m,n € R, The action of its
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generators

1 0 0 e 0 0 1 m
gi=10 A B, go=(0 1 0 and ¢g5=10 1
0 C D 0 0 1 0 0

on 7= (11,19) € (971 x Sy-1 is given by

¢}(0) = (01(Cr2 + D) ', (A1 + BYCr2 + D))

= o 3

|

95(7) = (118, T2)
g5(0) = (11 + m12 + N, T2).

vy

Now suppose that ¢ = g{gs94 € P"(Fy) is an element that operates like the
identity on all of the boundary. Obviously, its action on the second component is
determined by the submatrix M := (‘g g) and hence we need to have M = + 1.
If M = 1, the factor g/ leaves 7 invariant, and otherwise changes its sign. It is
easy to see that in both cases m = n = 0 and ¢ = + 1, where ¢ = 1 if and only if
M = 1. Hence, the only elements of P”(Fy) that operate like the identity on all of
the boundary are in fact 1 € P"(Fy) and —1 € P"(Fy). The same remains true if
we intersect P"(Fy) with the appropriate group I';. But since —1 operates tri-
vially on all of C7 x &,_4, this shows that the maps g; are not branched along the
boundary divisor.

We obtain that the order of branching of n:.A] — A; on the rational
boundary components of corank 1 is also given by kl = [P’r2 F): P’r1 ). [ |

4.2 — The geometry of (Aifv — Ay) and (A pol — Apol)-

We shall now focus on the geometry of the maps = : Aifovl — A, and
o : A ol — Apol. In particular, we shall state a lemma on the order of branching
for these maps in each corank-1 boundary component of (AL

LEMMA 4.2. — Order of branching.

For a rational corank-1 boundary component F C (Aifg’l) the orders of
branching of the maps between the partial compactifications ny : (Aifv — (A
and my : (A — (Apo)) are given by

my(C) := [Psp(zg /)(C) P[vlev @] and
mz(C) := [P} (C): P, e @],

respectively, where P.(C) := P'(F) NI C PF) is the relevant lattice part of the
stabiliser of F with C = V(F).
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Proor. - This is a specialisation of 4.1. |

Let us now give the general outline of how we want to perform this calculation
in both cases. We do the calculations that are the same for all cases over the
rationals, and only then intersect with the four different groups.

The group Sp (29, Q) has only a single corank-1 boundary component, namely
Co=(0,...,0,1) € 7%, and for this cusp [HKW, Paragraph 3D] shows that

P, = P’Sp@g’Q)(Co) = {((ﬂ) i) where S = diag(0,...,0,s) and s € Q}

From this information we calculate the groups P,(C) for the other
I' C Sp(2g,Q) and any cusp C as follows: Since all cusps are conjugate with
respect to Sp (2¢, Q), we can always find a matrix M € Sp (2¢, Q) such that

(6) C =CoM.
This implies

P(C) = Plyo oy ©NT = (M 'P,M)N T

which leads to the following lemma:

LEMMA 4.3.
mi(C) = [M'P,M N Sp(Qg,Z) : M~'P,M N '] and
ma(C) = [M'P,M N Iyt : M 'P,M N r};yl].

Note that the matrices Q' € Py, 5, ,,(C) have the form Q" = @ + 1 where

a1 0S
@ Q=M (00)M.

To intersect the group Py, », ,,(C) with I" we only need to consider the conditions
imposed on @ by the appropriate lemma from section [S, 3].

It is easy to see that the inverse of a matrix M = (‘; {;’ ) € Sp (2g, Q) is given
by M~ = (_t‘; j;ﬁ) where a, 8,7, € Q9. Split the vector representing the
cusp into two vectors of length g such that C = (cq, c2). Then equation (6) implies
that ¢; and cy are the last rows of the matrices y and J, respectively. Since the
matrix S has only one non-zero entry s € Q we see that

®) N DTS
Q—S<_tC1) C1,C2).

We shall now give the explicit calculation in the two cases separately. Note that
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the classification of the cusps in [S]is done with respect to the conjugate groups

Iy = Ry R~ and I'% = RISIR ™ where R := diag(1,...,1,1,dy, ..., dyg ).
Lemma 4.4. — Branching of .

For a cusp C} = (D1y-1,D24-102,...,04,0,Doy 10412, .., a2) € Afovl given

lev

pol the order of branching of 7; : Ai)eovl — A, is given by

with respect to I
ml(CJi) = ged (D1g-1,Day-10z, . .., Dy_1041,0,)°.

ProoF. — Recall from [S, Lemma 4.1] that any cusp can be represented in the
form given in the statement. Since we want to work with /" 01 " rather than with 7%

pol
we have to multiply by R and obtain
C];R = D1y-1,D24102,...,04,0,d1 D2y 10412, ..., d141029).
In case this is not a primitive vector we divide by k& := ged (D141, .. ., d1g—102¢) to

obtain as representative C of the cusp.

We define @ as in (7) and can now proceed by asking when @ + 1 is in
PLC) = P’Sp (zg_Q)(C) NI forI'=8SpQ@g,7Z)or I' =T ;%‘1’, respectively.

When taking the intersection of P/Sp @ ))(C) with Sp (2¢, 7) the only condition
is that the matrix @ be integer. The first entry of the g + 1st row is given by
Gg+1,1 = —D%:g_lkfzs. Substitute ¢ := —q, 11 € 7. With this substitution, the
diagonal elements of the lower left quarter of @ give rise to the necessary con-
ditions #( D“L Y2 e for i=2,...,9. Some straightforward calculation shows
that these are also sufficient. Hence

) D 2
€) QeSp@Rg,7) <« te (gcd(D 1fia1) : ) 7.
1:9—103)i=

.....

Sinee ¢ pol C Sp (2g, 7) we also get this condition for P’ i (C) but in addition
we have to consider [S, Lemma 3.6]. The conditions of the upper right quarter of
Q lead to the necessary conditions t € ("9““ Y7, for all i = 1,...,9 — 1. Again,
these imply all other conditions on € and hence lead to

D1y z .
ere «— te< 9= )4 - D? .7
Q pol ng (ng lazang lag+z)z 1,...9 Lg-1
Combining this with equation (9) gives m;(C) = ged (D;— 1al)7 1.9 88 claimed.
|
LEMMA 4.5. — Branching of .
For a cusp Cj - (Dlzg—lvDZ:g—1a27 ey Qg 07D2:g—la/g+l7 a2g) € Ai?(:ll gl'l)@’n
with respect to Il)%vl the order of branching of me : Aifovl — Apol 18 given by

ma(C)) = Dyy1.



THE KODAIRA DIMENSION OF SIEGEL MODULAR VARIETIES OF GENUS 3 OR HIGHER 765

PROOF. — Since I''¢Y pol 18 a normal subgroup of I, the map n induces
a Galois covering. ThlS means that we may restrict the investigation
of the cusps C¢€ (ALeOVI)’ for any j to the primitive vector CY=
(Dlzgfla Dz;g,laz, e 7Dg,1ag,1, 1, 0, 0, 0)

As before we define M and @ by (6) and (7), respectively. Again, we obtain
conditions on @ by intersecting P’SIO (2g7(g)(C) with I".

Since ¢z = 0, according to (8) the only non-zero entries of @ are in the lower
left quarter. [S, Lemma 3.6] states that for @ + 1 € I iﬁ}’] these entries need to be
integers. In particular, qz;, =s-1-1=s € 7. Since now s'c;¢; is obviously an
integer matrix we obtain the equivalence

Q+1lely <« scZ

For @ + 1 € I'yq we consider [S, Lemma 3.4] where for the lower left quarter
we find the condition

1 1 1
7 27 =7 L
dl dl dl
1 1 1
sty € 47 D) dr s i
1 1 1
7 ST =7 7
di” dis dig-1

The condition on the top right matrix entry reads qg414 = sD14—1 € Z and hence
we know that s € D — 7, is a necessary condition. Some straightforward calcu-

lation shows that it i 1s in fact also sufficient. Therefore,

ma(C}) = [P}, (C) : Ple (C] = [Dll ,
g—

Z : Z:| = D1;g71

which completes the proof. |

4.3 — Branching of Apa(n) — Apol.

LEMMA 4.6.
Assume ged (n,dy.g_1) = 1. Then ni3 : Apoi(n) — Apql is branched of order n on
all corank-1 boundary components.

Proor. — Let D be a corank-1 boundary divisor. Denote the stabilisers of the
corresponding isotropic line in the groups I, and I',q(n) by Stab fpol(D) and
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Stabj. (D), respectively. Since D has corank 1, these stabilisers are one-di-
mensional lattices and can therefore be given by Staby (D)~FkiZ and
Stabj. l(n)(D) k7. Since I’ pol(1) C r ol by definition, we know that k1 |ko. Since
ged (n diy-1) = 1, the congruence condition imposed by I’ pol() implies that
ko/k1 = n for every such pair of lattices. But this index is exactly the order of
branching, which proves the claim. ]

5. — General Type results.

Before we can proof our main theorem, we only need two more things: First,
we need a way to restrict the scope to square-free polarisations, i. e. polarisa-
tions of type (1,dx, ..., d1,y—1) where all d; are square-free. The following lemma

will make this precise.

LeMMA 5.1. — Square-free .

Let(1,e1, ..., e14-1) be the type of a polarisation where e; = dis§ and all d; are
square-free. Then (1,dy,. .., dy, 1) is the type of a squcwe—free polarisation. Let
S :=diag(1,s1,...,S19-1), T = o s L) and U = ) Then we have

T7 Fpol,eT C Fpol,d» T ii;]]eT c Fif(:i,d
and
U_lfpoLeUC I:pol#dz U~ IFII)%EUC F;)%‘lld

ProOF. — We use the description of the groups given in [S] and define D(4,)
and D(4;) accordingly.

Let us begin with the relation 711" pole I C I'pora. Denote the matrices for the
two polarisations by 4, := diag(1,e1,...,e1,4—1) and 4y := diag(1,dy, ..., d14-1).
We have 4; =S '4,S~1. Furthermore, for M € [D(4,) we obtain by simple
computation that ST1MS € D(4,). Therefore,

(10) S7HD(4,)S € D(4y).
For I'poie, [S, Lemma 3.4] tells us

7 g1 D(4e) D44 S
1 N
T Fpol.eT c ( S> (AQID(Ae) AQID(Ae)A6> ( S_1>

B < S71D(4,)S (ST1D()S)(S14,871)
— \(84,18)(S1D(4,)S) (84, S)STD(4,)S)(S14,S1)

a0 [ DUy DU
A7 0(49) A7V D)4
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Since on the other hand /"y, C Sp(2g, Q) and 7, T7! € Sp(2g, Q), we may use
[S, Lemma 3.4] to conclude

D4y DUpq

-1
T IpoeT C (AdlD(Ad) A7 D(Ug) 44

)ﬂSp 29, Q) = I'pola-
For the relation 7717 iﬁ;’l,eT cr i)egid we first note that the first relation we
proved implies that

—1 -l —1
T F;:LQT cT Fpol,eT C Fpol,d7

so that we only need to show the additional conditions imposed by [S, Lemma
3.6]. This lemma states that the matrices M € T-1I" if(;iET are those matrices of
I'yo1. that have the form

S-1 te S _[Slie U
e (7 (o) () (3 s nor

where e = (1,e1,...,e14-1). Since ¢;s71 = d;s; for all i = 1,...,¢ — 1 this means
th

1,

t
M e (Ssb)(S,bS)®Z+l C <

with D = (1,dy,...,d14-1). Hence, all these matrices also satisfy the conditions of
re g

The other two relations follow from these by conjugating with R as in the
previous section. n

Second, we need two number theoretic functions for counting the rational
boundary components.

DEFINITION 5.2. — Generalised phi function and Sigma functions.
Let n,k € N and a € C. Define

o) = |{(1,...,2) € Z§/|gcd @1,....0,m) =1} and o) := Zd“.
dn

The function ¢, is known as the Euler phi function which we also denote by ¢.
The function o is known as the function 7 that gives the number of divisors.

LeEmMA 5.3.
The functions ¢, and a, are multiplicative.

PRroOF. — A generalisation of [Nath, Theorem 2.7] can be used to show this
for ¢,. For g, this is some straightforward computation. ]

We shall now combine the facts collected so far to prove our main theorem.
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THEOREM 5.4. — General type for general genus.

For any genus g >3 and coprime di,...,dg_1 € N with dig1 #2, the
modult space Apq(n) of (1,dy, . .., di.g—1)-polarised Abelian varieties with a full
level-n structure is of general type, provided ged (n,d1y—1) =1,1n > 3 and

> (29 + 1)d2:972 mln{ dl dgfl }
@+ D23 O, dg1) CL(dg1. -, dn)

where

C(L(y, ..., 25-1)) = ming 1, min{ V3 }

2<r<g | fr-1
([ 1T
i=1

Proor. — First of all, if di.;; = 1 we are in the principally polarised case and
much weaker bounds than the one given are already known. Hence, we may as-
sume dy.41 > 2.

Since we have n > 3 we know that I",,(n) is neat and hence operates without
fixed points. This implies that the quotient by P” introduces no singularities, and
since (A1)~ is stack-smooth we know that (Aye(n))™ is smooth.

Furthermore, we may assume the d; to be square-free. Otherwise, we may write
d; = s?ei where the e; are square-free. Then, according to Lemma 5.1, we can con-
Jjugate I",4 () such that it becomes a subgroup of 1" .(12). This means that we have
a rational map 7y : (Apela())” — (Apole(n))” and after some blowing-up this map
becomes a morphism. By this morphism each form on (A (1))~ gives rise to a form
on asuitable blow-up of (A1 ¢(1))” which implies that, if we can show general type for
the (square-free) polarisation e, we also have general type for the polarisation d.

We consider the construction given in section 3. For Ay, we know from [F,
p. 42, Satz 3.3] and [M2, Theorem 2.10] that we have a cusp form y of weight
w, = (29 + 1)2¢2 that vanishes of order v, = 2%5.

The map 73 needs to be branched of order n. According to Lemma 4.6 this is
implied by the condition ged (%, d1,,—1) = 1. We can now calculate a bound for the
level n by the construction described in section 3, which gives

L wme@®|Cpi(d)
(g + Do, M1D)C(L)

11

(At this point we need the fact that the polarisation is coprime.) Let us now
calculate this value explicitely.
From [S, Lemma 4.5] we know that the cusps of A, are given by vectors of
the form
Ci = Drg-1,D24-1,...,Dy-1,1,0,...,0).

Let us consider such a cusp and the set Ci)eg{(i) consisting of the primitive vectors
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of the form

C: = (Dlzg—laDZ:g—la27 LT 07D2:g—1ag+27 o 7a2g)
with 0 < ag, ag < Dyg—1 for k=2,...,¢g. From Lemma 4.4 and Lemma 4.5 we
know that

2

my(i, j) = ged (Dyy—1,D2y_102,...,ay)" and mg(i) = Dyy1.

Define By|dy for k=1,...,9—1 by B2 = mi(, 7). This definition is unique
because the d; are coprime. We now have

(12) Bl:gfl = ng (Dl:g713D21g71a27 s ,ag)~

We count these vectors using Lemma 6.2: let both the d; and ¢; of the lemma be
equal to D; and let the b; of the lemma be equal to B;. Then we obtaln that the
number of (g — 1)-tuples (ag, ..., ay) satisfying equation (12) is H Pg-i( B7)

On the other hand, C7 is a primitive vector, so we have =

1= ng (Dlzg—lyDQ:g—lCLQa ce 70“97 07D2:g—1ag+27 cee aa2g)
= ged (Bryg-1,D2g_10g42, . . ., 02g)
and Lemma 6.2 (this time by letting also the c; of the lemma to be equal to B;)

states that we have a choice of H 9, (B -;)g’j values for the (g — 1)-tuple
(@g+2, ..., az). So all in all J=1

J o olev 2 T DI\ D;
{C] € Co@) G, ) = B2, Y| = H(pgﬁi<§>n(pg‘j(3j)<§j >
97
— H(pg _i(D; )< )

where we use the property that the d; and hence the D, are square-free for the
multiplicativity of the functions ¢,_;. Taking the unweighted and weighted sum
over all B;|Dy, we therefore get

. D
Cra@l =3 > H% 105

Bl\Dl g 1\Dg 1J=

9-J

g-1
D]

= (ngng(D») > > I

B1\D1 By 1|D, 1]:1 ]
g-1

( H 0-D) il > (7 (0,00 > By )

Jj=1 Bj|D; 47 Jj=1 B|D;

-1
= H 9y-iDj)ag—i(Dy)

j=1



770 ERIC SCHELLHAMMER

and analogously

| DY e
Mi@=73 ... > H% J(D7)(§) Blg 1 =10 @) 5 BT

B |D; By 1|Dy1 j=1 J j=1 J=1 B;|D;

<.

= ﬁfﬁm@j)[(n Z( 7)9 N 20;2) > Dy1By

7 1 B ‘D Bg—l‘Dg—l

g-2

_H{pg ](D)l Tg—2Dg- 1<H0g —j-2(D; ))01(Dg -

Inserting this into condition (11) (using ma(?) = D1,4—1) the product of the Py_j
cancels and we are left with

-1

Dyg1- H )]
Wy

>
(g + o, C(L)
’ D?g 2Dy-101(Dy-1) H 0g—j—2(D;)
Jj=1

g-1
[ 04-5D))
j=1

Wy

" (g + 1, C0)

g-2
D1y 201(Dy—1) [] 04—j—2(D))
-1

and since a,,(D) = 3" B**" < 3" B°D® = D%g,(D) this is implied by
BD BD
g2
[1 04-j-2DPDF - 04 g-1)Dy-1)
w, -1

" GT D00

g—2
Dyy—201(Dy—1) [ 04-j—2(D;))
=1

Wy

RV l)vXC(L)D Lg-2-

This condition has to hold true for all valid Dy|d; which obviously gives the
condition

w)(dl:972 _ (29 + 1)29_2d1:g72 _ (29 + 1)d1:972
G+ 1w, CL) g+ 12%5C(L) (g + 1)293C(L)

(29 4+ Ddyg—2

n >

r—1 '
(g+1)29-3 min{ min v3 /] di, 1}
2<r<g i=1
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Finally, we may use the symmetry given in [BL] to obtain the other term of the
statement. [

To conclude this paper, we give the bound for some special kinds of polar-
isations as corollaries:

COROLLARY 5.5.
For any genus g >3 and deN, d>3, the moduli space Apu(n) of
,...,1,d)-polarised Abelian varieties with a full level-n structure is of general
type, provided ged (n,d) =1, n > 3 and
"> 29 +1 p
(g +12073V/3

The same bound for the level applies for the moduli space of (1,d,...,d)-po-
larised abelian varieties with a full level-n structure.

If the polarisation is of type (1,...,1,d,...,d) where 1 <i<g—1 1is the
number of 1’s, the bound s

29 4+1 . —
n>————————dmin{1, {/dmir{lig-i}},
(g + 12033 ¢ )

Proor. — These statements follow easily from Theorem 5.4 by explicitely
determining the minima. |

g-1

REMARK 5.6.

To make this result more accessible, we give a table for the lower bounds for n
in the case of polarisations of type (1,...,1,d). Note that we have disregarded
the condition ged (d,7) = 1 to make make the pattern more obvious.

g\d|3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3 /3445566 7 7 7 8 8 8 9 9 9 10 10
4 13 3 44556 6 6 7 7 8 8 8 9 9 9 10
513334455 6 6 6 7T 7T 7 8 8 9 9 9
613333 445 5 5 6 6 7T 7T 7 8 8 8 9
713333444 5 5 b 6 6 6 7T 7 7T 8 8
813333344 4 5 5 5 6 6 6 7 7T 7 8
913333334 4 4 5 5 5 6 6 6 T 7 7

COROLLARY 5.7.

Let s,t > 1 be integers with ged (s,t) = 1. Then the moduli space Apq(n) of
1, s, st)-polarised Abelian varieties with a full level-n structure is of general
type provided ged (n, st) = 1 and

n > Z\/?: s2t2min{s, t}°.
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ProOF. — Again, calculation of the minima in Theorem 5.4 leads to this
statement. [

REMARK 5.8.

To give an impression of the case g = 3, we give the following table of minimal
values of n for a fixed polarisation of type (1, s, st) for arbitrary s, € N. Where
the level had to be increased to satisfy the condition ged (%, st) = 1 this is denoted
by a pair of brackets around the increased value. The empty spaces result from
the conditions st # 2 and ged (s,t) = 1.

s\e] 1 2 3 4 5 6 7 8 9 10
1|3 @ ®) 4 5 5 ™ 7
2 7 11) 13) amn
3|14 7 amn 17 22) 23 (29)
4 | (5) an @7 31 37
514 11 17 @0 37 41 47 49

6 | 5 37 (53)

T15 (13) 22 31 41 (53) (1) 176 81
8 | (7) 23 47 (71) 91)

9 | (M) A7) 37 49 76 (91) 113
10| 7 (29) 81 113

REMARK 5.9.

For g > 16 the bound given by Theorem 5.4 is too high: Y.-S. Tai showed in
[T2] that for these cases no level structure is required, while we always obtain
n > 3. We need this constant condition to know that I'(n) is neat and so we have
no singularities coming from the group action. However, if we consider only
principal polarisations, Tai showed in [T] that for g > 5 all singularities that
occur on a suitable toroidal compactification are canonical. An argument by
Salvetti Manni (") shows that a similar reasoning can be applied to g = 4. Since
this means that we can extend pluricanonical forms to a smooth model we may
drop the condition n > 3 in this case. The same reasoning we employed for
Theorem 5.4 now leads to the bound

e 2+l
(g+ 1203

which gives (including the known results for g = 1,2)
g‘l 2 3 45 6 7 89
n|7 43222211

() Given in [Hs, p. 19].
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These are exactly the numbers given in [HS, p. 17], except for g = 7 where
n =1 is known to be sufficient. Note that for g = 1,2 the above formula re-
mains true and even gives a sharp bound. Note also that this gives the known
result that A, is of general type for g > 8. This was originally proved by
E. Freitag [F], respectively D. Mumford [M2] and is better by 1 that the re-
sult by Y.-S. Tai [T].

6. — Appendix: Technical lemmata.

LEMMA 6.1
Let v = (vy,...,v,) € Z". Then we can find an integer matrixz T of the form
¥ o e ... e
EJE [ L] V2
T =
* e * o VUy_2
* Ce *  Vp—1
* . X vy

(where the o are arbitrary fixed integer values) such that det(T) = ged (vy, . . ., vy).

Proor. — We prove the claim by induction.

For n = 2 we have the matrix 7' = (i; ;’; ) We can choose t;1, t2; such that

det (1) = t11v2 — ta1v1 = ged (v1,v2)

which completes this case.

Let n € N be arbitrary and assume the claim holds for % — 1. Let 7@ and
70D denote the submatrices of T that consist of the columns 2 to % — 1 with the
ith or ith and jth rows removed. Expansion of the determinant along the 1st
column shows that

V1

V2 v 1
det(T) = t11 T | =t CHE + ... — (=D T®)
Un Vn VUn—-1
In particular, 11, . ..,t, can be chosen such that the claim holds if
V2 zl 1
3 ?
(13) F:=ged| |p® - |, re P 7™ : =ged (g, ..., V).
Vp ) Vn—1

Vn
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We now prove this equality. The first matrix is a » — 1 x » — 1 matrix of the
special form needed for the induction. We may therefore assume that

V2
(14) 70 | =ged(ve,...,v) = f.
(%0

Furthermore, expansion of this determinant along the last column gives

’1)2|T(1’2)| F.o.o.+ ( _ l)n,vn|T(1.n)| — _( _ l)nf

(15) — % Y

|70 T (-1 T4 = (= 1"

=ged(|T"?|,...,|T""|) = 1.

Now we can simplify F' by using expansion of the determinants along the last
columns. Almost all terms of these expansions are multiples of f because they
contain one of vg, . . . , v,. Since according to (14) the first term in the ged of (13) is
equal to f these terms are not needed to determine the value of F'. Hence, we are
left with

F = ged(f,v|T), ..., 01|T""))

15
= ng(f7 vlng(|T(l’2)‘a ceey |T<1"n>|)) (:) ng (favl) - ng (vh e 7?]77,)~
So, the equation in (13) is true and hence we can find T as claimed. |

LEMMA 6.2.
Letk € Nandletdy,...,d; € N be coprime integers. Chose integers c1, . . . ,
and by, ..., by satisfying b;|c;|d; for all i =1,... k. Then

){(901, |0 < @ < dig, ged @ici )i = bucH = ﬁ¢k+l—i<z_z) (g—;)kﬂii

where we let xy = 1 to ease the notation of the gcd.

PRrOOF. — Define d% := djj_1d;11.. Since the d; are coprime we can rewrite
the x; as

2= yidiy moddy; fori=2,... .k

J=1

where we may chose 0 <y;; <d; (and let y;; := x1). This, according to the
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Chinese Remainder Theorem, makes the y; ; unique. Now the condition we have
to consider is

2 k1 k
by = ged (Clzk; C2.6Y1.1, C3:k Z Y20, . Z Yi 1,0 1, Z ?/k.jd%)

J=1

2 .
= ged (Cuc, Co.1Y11, Z )y, Z i Yk ])

J=1

since ¢;|d; and the d; are coprime. Furthermore, since b;|c; and the ¢; are coprime
we obtain that b;|y; ; for all 1 < j < 7. Now the above condition is equivalent to

— 1:gcd<01_:k Co Y11 22:_@/_ zk:_)k_J
bur” bai b1 "= bY) b =l Y
Now let ¥; j := ¥; j/b;. Then the equality above is equivalent to

C1 -~ ~ Ci -~
<~ lngd —1,?/1,1,--~,2/k‘1 ng —k,ykﬁk

b1 by,
<~ 1ng< ,y]], .,?}k"]) Vi=1,...,k.

Since we have chosen 0 < y; j < d; we know 0 < /; ; < % In the restricted range

0<wyi; < the number of possible (k — j + 1)-tuples (¥; ;, . . ,j}k j) satisfying the

condltlons 1s given by ¢,_; +1( ) Since ¢;|d; we have exactly (! )lc 7+ copies of

this range. This gives the Value claimed. ]
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