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Bollettino U. M. 1.
(8) 9-B (2006), 733-748

A 54 — (114 — ) Dimensional Family of
Smooth Unirational Quartic 3 — (4 — ) Folds.

MARINA MARCHISIO

Sunto. — Costruiamo una famiglia di dimensione 54 (114) di ipersuperficie quartiche
lisce unirazionali di dimensione 3 (4).

Summary. - We build a 54 — (114 — ) dimensional family of smooth unirational quartic
3—(4—) folds.

The question of deciding whether the generic quartic hypersurface of di-
mension 3 or 4 (quartic 3—fold or 4—fold) is unirational or not is one of the most
important open rationality problem. In [18] we outlined the construction of a
54—(114—) dimensional family of smooth unirational quartic 3— (4—) folds. Since
up to now these are the biggest known families of such quartic hypersurfaces, we
thought it could be useful to give here the full proof of their existence.

1. — Main known results on the unirationality of the quartic hypersurfaces
X4 in pn.

Let X4 be a smooth quartic hypersurface defined over a field K.
DEFINITION 1.1. — 4) Xy C P" is called unirational if there exists a rational
generically surjective (i.e. dominant) map
p P > X,
1) Xy C P" is called rational if there exists a birational map
p: Pl > Xy

If n = 2 X, is a smooth plane quartic of genus 3 hence it is not rational. By
Liiroth Theorem X, C IP? is not unirational.
If » = 3 X4 is a smooth quartic surface in P2, X, is not rational and if X is an
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algebrically closed field and K(P%)/K(Xy) is a separable extension then Xj, by the
rationality criterion of Castelnuovo, is not unirational. The two hypotesis on K are
essential; in fact there exist several counterexamples, for istance the one given by
Shioda in [37] of X4 C P3(K), where K is an algebraic closed field of characteristic
p # 0 and p = 3 (mod 4), which is a K3 (hence not rational) unirational surface.
For n > 4 the two notions of unirationality and rationality don’t coincide,
moreover there are no criterions of unirationality or rationality. For these rea-
sons the answer to the problem “I's Xy in P" unirational?” is not so obvious.
If » > 7 U. Morin in the 1936 in [22] proved the following

THEOREM 1.1. — The generic quartic hypersurface defined over any field K in
P" with n > T is unirational.

Always Morin in 1940 in [23] proved the following

THEOREM 1.2. — Given a hypersurface Xy C P", there exists a constant c(d)
such that the generic Xg C P" is unirational if n — 1 > c(d).

J. P. Murre in 1979 in [25] discussed and wrote in modern language the proof
of the previous result. In 1980 in [4] C. Ciliberto, for K algebraic closed field of
characteristic zero, gave a new proof of the previous theorem finding as parti-
cular case the Theorem 1.1.

Always the Theorem 1.2 was extended to the complete intersecions by A.
Predonzan in [28] in 1949 and this extension was discussed and generalized in
modern language by L. Ramero in [33] and by K. Paranjape and V. Srinivas in [26].

For n = 6 U. Morin in 1952 proved in [24] the following

THEOREM 1.3. — The generic quartic hypersurface in P° defined over any field
K is unirational.

In 1998 A. Conte and J. P. Murre in [6] gave a new and much simpler proof of
the unirationality of the quartic fivefold using in an essential way a theorem of B.
Segre of the 1954 not available to Morin.

For n =4 and n = 5 the problem of the unirationality of the generic quartic
hypersurface is still open, i.e. it is still unknown if the generic X of dimension 3
and 4 is unirational or not. This is considered one of the most interesting and
difficult open problem in this kind of questions.

Nevertheless B. Segre in 1960 in [36] gave an example of a particular smooth
quartic hypersurface which is unirational. It has equation

4 4 2.2 4 .4
Xy + woxs + af — 6a%a + ay 4 s + iy = 0,

where (xg : @1 : @2 : X3 : x4) are the homogeneous coordinates in P
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In 1971 V. A. Iskovskikh and Yu. I. Manin in [15] proved the following

THEOREM 1.4. — The quartic hypersurface Xy in P* is not rational.

They showed that the group of the birational automorphisms, which is a
birational invariant, of the Xj is finite. Since Bir(’®) is the Cremona group and it
is infinite it follows the non-rationality of the quartic threefold.

By the previous example given by B. Segre V. A. Iskovskikh and Yu. I. Manin
gave a negative answer in dimension three to the Liiroth problem formulated by
Liiroth in 1861 and which asks “I's an unirational variety necessarly rational?”.

In 1972 other counterexamples to the Liiroth problem in dimension three
were given by H. Clemens and Ph. A. Griffiths in [5] proving the non-rationality
of the cubic hypersurface in P* and by M. Artin and D. Mumford in [2] building
unirational varieties with torsion in H3(Z) different from zero hence not rational.

In 1996 J. Harris, B. Mazur and R. Pandharipande in [13] proved the following

THEOREM 1.5. — Every hypersurface Xy of degree d in P" is unirational if
the codimension of the singular locus Sing Xg is sufficiently big with respect
to d and n.

Recently some progresses were made. First of all in 1997 A. V. Pukhlikov, in
[32], extending the tecniques of proof of Iskovskikh and Manin, proved that the
generic Fano hypersurface Xj; in PM with M > 4 is not rational.

In 1998 in [14] J. Harris and Yu. Tschinkel studied the rational points over the
quartics and in particular proved the following

THEOREM 1.6. — Let X4 C P" be a quartic smooth hypersurface defined over
K. Ifn > 4, then for any finite extension K' of K the set X4(K') of the K'-rational
points of Xy is dense in the Zariski topology.

2. — Examples of smooth quartic unirational hypersurfaces in * and I°.

To find examples of smooth quartic hypersurfaces which are unirational we
extend the tecniques of Conte-Murre used in [6] to prove the unirationality of the
quartic fivefold.

2.1 — Existence of a rational surface

In [6] Conte and Murre proved that the generic Xy C P" with » > 5, contains a
rational surface. It is possible to prove that also the generic quartic of dimension 3
in P* contains a rational surface, more precisely we prove the following
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PROPOSITION 2.1. — Every X, C PYK) contains a rational surafce S° and
moreover if P* € X, is a fixed point of X, we can take S° going through it.

See [17] for the proof.

2.2 — Construction of the quadric bundle and unirationality of the X, in P*
and P°

Consider X C ]Pm“, with 7 > 3 and S° the rational surface contained in Xj.
Fix R € S° and H® a hyperplane in P! and take the tangent cone Cr(Xy) to X4
in R. Let Qr = Cr(Xy) N H° be the quadric hypersurface of dimension m — 2
obtained intersecting Cr(Xy) with H°. Consider the quadric bundle

T:X"—8°

with X+ = {(R,P")/R € S°,P' € Q} and n((R,P')) = R. X" is an irreducible
variety defined over K of dimension m. If m = 4 Qp is a quadric in P® while if
m = 3 Qg is a conic in P? and hence X*— S° is a conic bundle.

If m > 5 the existence of the rational surface S in X, is sufficient to prove,
applying in an essential way the Segre’s theorem, that the previous quadric
bundle has a rational section and hence to prove the unirationality of the
X4 C perl_

If m = 3, 4 the existence of the rational surface S? is not, alone, sufficient to
conclude that the quadric bundle admits a rational section because it is not
possible to apply the Segre’s theorem. We note that if all conic bundles over a
rational surface were unirational then the previous construction would imply
automatically the unirationality of the quartic X, C P*. Unfortunately this pro-
blem, also if it is not known if there exist examples of conic bundles which are not
unirational, is very far to be solved and it is, togheter the one of the unirationality
or not of the quartic hypersurface in P* and P?, the most important open problem
in these rationality questions. It seems that the answer to this problem is ne-
gative and a possible counterexample should be given by the hypersurface of
degree n, X,,, in P" containing a line of molteplicity » — 2 for n > 5.

Nevertheless there are special rational surfaces S° such that the previous
quadric bundle admits a rational section. We will study one of these special cases,
in particular when S is a surfaces with separable asymptotics.

Let F, be a surface in P}(K), irreducible, of order n > 3, which is not a de-
velopable ruled surface. Let x be a generic point of /', and I7,, the tangent plane
to F, in x. The intersection F,, N I1,, is a curve with a double point in « and the
lines [ C I1, such that & € [ are the tangent lines to /', in & with

molt,({NF,) > 2.
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If @, is the polar quadric to F',, in x, the intersection @, N I7, is a conic C,, with
a double point in x. Then in K(x) or in its quadratic extension

Co=1U+1,

where I/, and I/ are two tangent lines to F,, in x, more precisely the two
aymptotices lines. Let S be the congruence, defined over K, generated by the
asymptotic lines to ¥, moving «, contained in the Grassmannian (1, 3) of the
lines in P3.

DEFINITION 2.1. - F,, has separable asymptotics if S =S + 8", that is if S
consists of two 1rreducible components over an algebraic extension of K.

We have that
molt,(I; N F,) >3
thatis [;' N F, =3z +p1 + ... + pa.

REMARK 2.1. — a) Every (non developable) ruled F,, has separable asympto-
tics. Moreover dimS’ =1,dimS” =2 and S’ = {generatrices of the ruled
surface}. If /', is a cone or a developable surface S’ = S”.

b) If n = 2, Fy is a quadric and hence it has always separable asymptotics and
dim S = dimS” = 1.

¢) If F,, has separable asymptotics then every surface in P?, obtained starting
from F,, by a nondegenerate projectivity of P?, has separable asymptotics.

It is possible to prove the following

THEOREM 2.1. — Let SO C X, C IP*, P° be a surface with separable asymptotics
and let

n:Xt— 80

be the quadric bundle constructed above. Then the quadric bundle admits a ra-
tional section.

PRrROOF. — Let R € S° be anon singular point of S°, then the tangent plane to S°
in R intersects its quadric tangent cone Cr(Xy) (i.e. the tangent cone in R to the
quartic hypersurafce Xy N Tr(Xy) where Tr(X}) is the tangent space to X in R) in
two generatrices which correspond to the two points in X+ (R, P') and (R, P")).
Let S be the closure of the geometric locus of these couples of points moving R on
S°. S is the congruence generated by the asymptotic lines moving R on S° and
hence, by hypotesis, consists of two components S’ and S”, over an algebraic
extension of K, such that each determines a rational section of 7. |
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In the next section we will study the monoidal quartic surfaces with separable
asymptotics.

3. — Monoidal quartic surfaces with separable asymptotics and families of
smooth quartic unirational hypersurfaces in P* and .

3.1 — Monoidal quartic surfaces with separable asymptotics

We consider the monoidal quartic surfaces /4 that is the algebraic sur-
faces which have a triple point as unique singularity. If we suppose that the
triple point T has homogeneous coordinates 7= (0:0: 0 : 1), the equation of
F4 is

a3 - flo, 21, X2) — al@o, %1, 22) =0

where a(xg, €1, 22) and f(xg, x1,22) are homogeneous polynomials, without com-
mon factors, of degree four and three respectively.

Among all monoidal quartic surfaces F'y C P? it is possible to characterize the
ones with separable asymptotics, to which we are interested for the reasons
explained before, in several ways for istance by the following

PRrOPOSITION 3.1. — Let Fy be as above then F, has separable asymptotics if
and only if for the generic point x of Fy on K

h(z) = l(z)?

where h(z) is the equation of the Hesstan surface of Fy and I(z) is an element of
Ki(x) with K, quadratic extension of K (eventually equal to K).

See [29] or [36] for the proof.

We note that the example of the particular quartic smooth hypersurface
which is unirational given by B. Segre in [36] in 1960 contains the monoidal
quartic surface with separable asymptotics of equation

i — 6x5a3 + x5 + x5 + whwy = 0.

A. Predonzan in [30] gave a complete projective classification of all monoidal
quartic surfaces with separable asymptotics by the following

THEOREM 3.1. — A monoidal surface Fy of order 4, not ruled, in a projective
space P2(K), with K algebraic closed field of characteristic zero, has separable
asymptotics if and only if is one of the following different projective types of
canonical equation
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D X X1 XoXs + Xg + X7+ X5 — 2(XEX? + X2X5 + X2X2) =0
I XoXiXoX3 + (X7 - X3 =0
1) X2XoX3+ XiX2+X5=0
IV) X:XoX3+Xi=0
V) XiX;+XiXo(X2—-X2) =0
VD) X3X;+ XiX2 =0.

In the proof of the theorem, A. Predonzan, didn’t make explicitly most of the very
complicated and painful computations which led him to the result stated. We
checked them by using the modern symbolic computation systems Maple [16]
and CoCoA [3].

3.2 — Tethraedral surfaces and families of smooth quartic unirational hyper-
surfaces in P* and P°

The most general monoidal quartic surface S in P® with separable asympto-
ties is the one of equation

XoX1 X X3 4+ Xg + X7 + X5 — 20X2X? + X2X2 + X2X2) =0

and it is called tethraedral surface.

We determined in a rigorous way the equation of this surface by the modern
tools of symbolic computation Maple and CoCoA in the following way. The
equation of the generic monoidal quartic surface, as we saw before, is

xg - flacy, 21, %2) — alg, x1,%2) = 0.

Blxg, x1,22) = 0 is the equation of the cubic tangent cone to S in the triple point.
It is possible to prove that if this surface has separable asymptotics it consists of
irreducible linear components i.e. it breaks into planes. The most general case is
the one in which the cubic tangent cone consists of three planes not going
through a same line. Hence we can suppose that the equation of the tangent cone
to the tethraedral surface S in T is

Xol1X2 = 0.

Moreover, by other characterizations of the surfaces with separable asymptotics,
it is possible to prove, see [30], that S has 6 double points p; which are the vertices
of a complete plane quadrilateral and the diagonal trilateral of which is the in-
tersection of the plane containing the quadrilateral with the cubic tangent cone.
If we take x5 = 0 as the equation of the plane containing the quadrilateral we can



740 MARINA MARCHISIO

consider the following picture

do, dy, dz are the lines of equations xg = 0,2; = 0,22 = 0 and p; are the 6 double
points of coordinates, supposed ay, ai,az # 0,

p4<0.—\/—a_?.1>, p5<\/—a_(1).1.0>7 p6<—\/—a_§.0.1>.

Hence we obtain for Ly, Ls, L3, L4 respectively the equations:
Vaoxo + /121 — \/agx2 =0
Vagxo — /a1 — \/azxs =0
Vaoxo + /a1x1 + /agzxe =0
Vaoxo — \/a1xy + \/agxz =0,

and we can put
axo, x1,22) = Ly - Lo - L3 - Ly
ie.

2 2 2 2
axg, x1,22) = a%xﬁ + a%ac‘ll + agac‘zl - Z(aoalxgac% + 1022775 + ApQ2GLS).
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The equation of S becomes
X123 + afxy + adad 4+ abwy — 2aoaraiad + ajagaias + agasrirs) = 0

and by the coordinate change

X Voo

X1 = Jar
X /a2

x3

v Qo1 a2

Xs =

it assumes the canonical form I).

In order to find families of quartic smooth hypersurfaces in P* and P° which
are unirational we want to determine the dimension of the algebraic systems of
all quartic hypersurfaces X, C P"(K) which contain a tethraedral surface (and
hence they are unirational over a finite extension K; of K as we saw before).

The dimension of the family of all tethraedral surfaces S in IP® is 15. Denoting
by P" = P"(K), we can put

@ = {S tethraedral /3P c P", with P® D S},
2={X=X,CP/3S € &, with S C X},
and we consider the incidence corrispondence:
I={S,X)edx2/SCX}

with the relative projections:

We note that @ is obviously irreducible over K and that:
o)) dim @ = dim G@3,7) + 15 =4(r —3) + 15 = 4r 4 3.

In order to compute the dimension of the generic fiber of @, we fix S € @ and we
suppose that, in homogeneous coordinates (xy : ... : x,) of P, S is contained in the
tridimensional linear space {x4 = ... = 2, = 0} and that, in it, it has equation:

2 S: g4, ...,23) = 0.

Then, the generic X € X which contains S will have equation of the type:

3) > wifilao, ...y @) + Apy(o, ... 3) = 0,
=4
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where the f; are general homogeneous polynomials of degree 3 and 1 € K*, so
that for p~1(S) = {X € 2/X D S} we have:

@ dim(/)1(S)—(T1—4>—<4_§3)—<T1—4>—35

We remember that, if we fix Xg C P* and put

Y= {Xn c pV/Xn ) Xg},

: _[(n+r n+k n+k—s
d1m¥’< , >< I )+( k >1.
¢ 1(S) is hence a linear system of costant dimension when S € & varies, and

hence I and X are algebraic systems irreducible over the base field K.
Moreover since X C |Opr(4)|, we can put:

we have:

r+4

®) dim 2 = ( 4

)—1—3, e>0.

We have hence, for S € @ and X € X generic:
(6) dim/ = dim @ + dim ¢ (S) = dim X + dim o (X)),

ie.:

()] dim]4’r+3+(r14>35(TZ4)le+dimal(X)

from which it follows:
) dimo'(X) = 4r — 31 + <.

LEMMA 3.1. — If the generic quartic hypersurface X = X, C P" contains a
tethraedral surface S, then r > 8.

PRrOOF. — We note that the generic X contains a S<=2 = |Op(4)|<=¢ = 0.
In our hypotesis hence it will be:
dimo '(X) =4r - 31> 0=r > 8.

In order to prove that it is true also the viceversa of the Lemma 3.1, we
suppose hence that » > 8 but, by contradiction, that ¢ > 0. We put, for sem-
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plicity:

a = dim@

s o1

L

d = dimo(X)
and we remember that we have:
(10) a+b=c+d.

Now we fix a Sy € @ and we put:

(11) X ={X€X/SyCX}~¢p Sy
12) I'={S,Y)el/Y €X'} =0 1(2).

Then let T be an irreducible maximal component of I’ and &' = o).
We obtain the following commutative diagramme

7} L r O
vop o L
® C P
where 9 = ¢|I and @ = o|l.
We note that we have
13) dim7 =dim I’ = dim 2’ + dim7 '(X’) =

=dimp1(Sp) + dime }(X') = b +d

with X’ € 2’ generic.
On the other hand, if we put:

(14) @=dim®, b=dimg (), (S’ € & generic),
it will be:

15) dimI =@+ b,

and hence:

(16) a+b=">b+d.

743

We want to prove that (16) is impossible, by analyzing the various cases that

can appear.
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For this aim, we indicate by Lo the I® in which is contained Sy and by L’ the
IP® in which is contained the generic S’ € @ and let L = Ly N L/.

O L=0.
Since @' C @, we can put:

am a

a—¢  withe>0.
Moreover, for the hypotesis L = (), it will be:

18) b=b-35+1=0-34
Substituting in (16) we obtain:

19 a+b—-34—-c=b+d,

i.e., substituting the values of a and of d given by (1) and (8):

(20) 4r+3—-34 —e=4r —31 +=.
and hence:
1) e+£=0,

which is impossible, being for hypotesis ¢ > 0, z > 0.

AD L # 0,dimL = h > 0,L ¢ S.

In this case we shall have, since all the §’ € @' contained in the same L' go
through L N Sy:

(22) 6—(3—h)(r—3)+(h+l)(3—h)+15—<4Zh)+1—5, with € > 0
23) 5=b—35+<4;h>
from which, substituting in the (16) we obtain:
4+h
@4) (3—h)(r—3)+(h+1)(3—h)+15—( ' )+
4+ h
+1—E+b—35+< ;: ):

=b+4r—-31+¢
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and hence:

(25) 0<e+i=
=3r—Ihr—9+3h+3h—h+3—-h+15+1—-35—4r+31 =

=rB—h—4)+b5h—h+6=r(—-1-h)—6-h)(—1—h)
=7 < 6 — h ( remember that » > 0!),

which is impossible being for hypotesis » > 8,7 > 0.

A L #0,dimL =k > 0,L C Sy S'.

This case can be studied in the same way as the previous one and one finds
again the limitation (25).

AV) L # 0,dimL =h > 0,L. ¢ S',L C Sy.

Here, by the same argumentations of the case (II), we have that b is still given
by (23), while @ will be given by:

(26) e=CB-hr—-3)+5+15—-2 £>0

where ¢ is the dimension of the family of the linear spaces of dimension 7
which lye in Sy and it must be 0 < 6 < (h + 1)(8 — &), being this the dimen-
sion of the family of all the L of dimension & of P®. Since, moreover, the
unique values possible for & are 0,1, we shall have J < 3 or 4 respectively if
h =0 or 1. Substituting as usual in the (16) and doing the easy calculations
we obtain:

@7 (h+1)(73)(h;24)5+1<0.
If hence & = 0 the (27) becomes:
(28) r—3—0<0=r<Jd+3=6
against the hypotesis » > 8.
If instead & = 1, the (27) becomes:
(29) or—6-5-04+1—r< 0 7

still against the hypotesis » > 8.
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Hence we can conclude:

THEOREM 3.2. - 2 = |Op(4)|<=r > 8.

If hencer < 17,2 ; |Opr(4)| and, since the generic X € |Opr(4)| doesn’t contain
any S € @ and the generic X which contains a S € @, contains no more then one
of them, it will be dim ¢—1(X) = 0, i.e. for the (8):

30) e=31—-4r

and hence, substituting in the (5):

r+4

(31) dim 2 = ( 4

) + 4r — 32.
Hence we can conclude with the following:

THEOREM 3.3. — Let X be as defined above. Ifr > 8 X = |Op-(4)|. Ifr < T, Xis
an 1rreducible algebraic system over K whose dimension is given by (31).

We know, by Theorem 2.1, that all X4 € 2 are unirational over a simple finite
extension K; D K. If » > 6, the prevoius theorem doesn’t add anything new
because the generic Xj is, in this case, unirational.

Butif » = 4, 5the (31) says that dim 2 = 54, 114 (while dim |Opr(4)| = 69,125).
In this way we constructed two families of quartic hypersurfaces in P*, ’> which
are unirational of dimension respectively 54 and 114.
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