BOLLETTINO UNIONE MATEMATICA ITALIANA

MIRIAM CIAVARELLA

Eisenstein ideal and reducible λ -adic Representations Unramified Outside a Finite Number of Primes.

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 9-B (2006), n.3, p. 711–721.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2006_8_9B_3_711_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Eisenstein Ideal and Reducible λ -adic Representations Unramified Outside a Finite Number of Primes.

MIRIAM CIAVARELLA

Sunto. – L'argomento di questo articolo è lo studio di particolari rappresentazioni λ -adiche bidimensionali di $\operatorname{Gal}(\overline{Q}/Q)$; fissati $p_1,...,p_n$ primi distinti, considereremo rappresentazioni $\rho: G \to GL_2(A)$, date dalla matrice $\rho = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ che sono non ramificate fuori $p_1,...,p_n,\infty$ e dalla caratteristica residua di λ , che sono prodotto di m rappresentazioni su estensioni finite dell'anello dei vettori di Witt del campo residuo e che sono riducibili modulo λ . In analogia con la teoria delle rappresentazioni modulari, introdurremo l'analogo dell'algebra di Hecke di Mazur T, con un ideale I di T che chiameremo ideale di Eisenstein. Seguendo la strategia di Ribet e Papier [3], sotto le ipotesi:

- $p_i \not\equiv 1 \mod \ell$, per ogni i = 1, ..., n,
- la semisemplificazione di $\overline{\rho}$ è descritta da due caratteri a, β che sono distinti se ristretti a $\mathbf{Z}_{\epsilon}^{\epsilon}$,

otterremo i seguenti risultati:

PROPOSIZIONE 0.1 – L'ideale di Eisenstein I è uguale a BC, dove B è il T-sottomodulo di A generato da tutti i b(g) con $g \in G$ e analogamente C è definito usando i c(g). Inoltre, I è l'deale di T generato dalle quantitá a(h) - 1 per $h \in Gal(K/\mathbb{Q}^{ab} \cap K)$.

Proposizione 0.2 – Supponiamo che la congettura di Vandiver sia vera per ℓ e che I sia non-zero. Allora, a meno di sostituire ρ con un coniugato, la rappresentazione ρ assume valori in $GL_2(T)$ e la sua matrice dei coefficienti soddisfa:

$$a \equiv \varphi$$
, $d \equiv \psi$, $c \equiv 0 \pmod{I}$

dove $\varphi \equiv a \mod \mathcal{M} \ e \ \psi \equiv \beta \mod \mathcal{M}, \ per \ \mathcal{M} = \mathbf{T} \cap (\lambda).$

In particolare esiste uno e uno solo omomorfismo di anelli suriettivo dall'anello di deformazione universale $\mathcal{R}(\overline{\rho})$ in T, che induce l'isomorfismo identitá sui campi residui.

Summary. – The object of this note is to study certain 2-dimensional λ -adic representations of $Gal(\overline{Q}/Q)$; fixed $p_1,...,p_n$ distinct primes, we will consider representations $\rho: G \to GL_2(A)$, given by the matrix $\rho = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ which are unramified outside $p_1,...,p_n,\infty$ and the residue characteristic of λ , which are a product

of m representations over finite extensions of the ring of Witt vectors of the residue field and which are reducible modulo λ . In analogy with the theory of the modular representations, we will introduce the analogue of Mazur's Hecke algebra T, together with an ideal I of T which we will call the Eisenstein ideal.

Following the Ribet and Papier's method [3], under the hypotheses:

- $p_i \not\equiv 1 \mod \ell$, for any i = 1, ..., n,
- the semisimplification of ρ̄ is described by two characters a, β which are distinct if restricted to Z[×]_ε,

we obtain the following results:

PROPOSITION 0.3 – The Eisenstein ideal I is equal to BC, where B is the **T**-submodule of A generated by all b(g) with $g \in G$ and similary C is defined using the c(g)'s. Moreover, I is the ideal of **T** generated by the quantities a(h) - 1 for $h \in \operatorname{Gal}(K/Q^{\operatorname{ab}} \cap K)$.

Proposition 0.4 – Suppose that Vandiver's conjecture is true for ℓ and that I is non-zero. Then, after replacement of ρ by a conjugate, the representation ρ takes values in $GL_2(T)$ and its matrix coefficients satisfy:

$$a \equiv \varphi, \quad d \equiv \psi, \quad c \equiv 0 \pmod{I}$$

where $\varphi \equiv a \mod \mathcal{M}$ and $\psi \equiv \beta \mod \mathcal{M}$, for $\mathcal{M} = \mathbf{T} \cap (\lambda)$.

In particular there is one and only one surjective ring homomorphism from the universal deformation ring $\mathcal{R}(\bar{\rho})$ to T, inducing the identity isomorphism on residue fields.

1. - Introduction.

Recent studies about the deformation theory of Galois representations compare an universal deformation ring \mathcal{R} with an Hecke algebra T; the most important example is the Wiles and Taylor-Wiles Theorem, which establishes an isomorphism between \mathcal{R} and T in some special cases.

The object of this note is to generalize a result of Kennet A. Ribet and E. Papier [3], establishing a surjective homomorphism from an universal deformation ring \mathcal{R} to an Hecke algebra T generated by traces.

Let $\ell, p_1, ..., p_n$ be (n+1) odd primes. Let $\overline{\boldsymbol{Q}}$ be an algebraic closure for \boldsymbol{Q} and let $K_\ell \subset \overline{\boldsymbol{Q}}$ be the largest extension of \boldsymbol{Q} which is unramified away from ℓ and infinity and let, for $i=1,...,n, \quad K_{p_i} \subset \overline{\boldsymbol{Q}}$ be the largest extension of \boldsymbol{Q} which is unramified away from p_i and infinity; we consider the compositum field $K=K_\ell K_{p_1}...K_{p_n}$. Let $G=\operatorname{Gal}(K/\boldsymbol{Q})$. Let k be a finite field extension of \mathbf{F}_ℓ , let W(k) be the ring of Witt vectors of k, and for i=1,...,m let \mathcal{O}_i be a finite extension of W(k) with residue field equal to k and maximal ideal equal to (λ_i) . For j=1,...,m let $\rho_j:G\to GL_2(\mathcal{O}_j)$ be a continuous 2-dimensional λ_j -adic representation of $\operatorname{Gal}(\overline{\boldsymbol{Q}/\boldsymbol{Q}})$, unramified outside $\ell, p_1,...,p_n,\infty$, such that $\overline{\rho}_i=\overline{\rho}_j$ for

j,j'=1,...,m. We shall consider the situation in which $\overline{\rho}_j$ is reducible. Let A be the fiber product of the \mathcal{O}_i 's

$$A = \left\{ (x_j) \in \prod_j \mathcal{O}_j : \overline{x}_j = \overline{x}_{j'} ext{ for all } j, j'
ight\}$$

where \overline{x}_j denotes the image of x_j in k. So A is local and the product of the ρ_j provides a continuous 2-dimensional λ -adic representation

$$\rho: G \to GL_2(A)$$

unramified outside ℓ , $p_1, ..., p_n, \infty$ such that $\overline{\rho} = \overline{\rho}_j : G \to GL_2(k)$; so ρ is reducible modulo the maximal ideal (λ) of A, where $\lambda = (\lambda_1, ..., \lambda_m)$ of A. We shall write $\overline{\rho}^{ss}$ for the semisimplification of $\overline{\rho}$, which does not depend on the particular integer model for ρ . So $\overline{\rho}^{ss}$ is described by two characters

$$a, \beta: G \to k^{\times}$$
.

As our general hypothesis, we will suppose that a and β are distinct if restricted to $\mathbf{Z}_{\ell}^{\times}$.

For any $g \in G$, we will write $\operatorname{tr}(g)$ and $\det(g)$ instead of $\operatorname{tr}(\rho(g))$ and $\det(\rho(g))$ respectively.

2. - Hecke algebra.

Our Hecke algebra T will be the W(k)-subalgebra of A generated by the quantities $\operatorname{tr}(\rho(g))$ with $g \in G$. So T is a local Z_{ℓ} -algebra with maximal ideal $\mathcal{M} = T \cap (\lambda)$, with residue field $T/\mathcal{M} \cong k$, finitely generated, without nihilpotent elements but possibly with zero divisors.

As a W(k)-module (therefore as a \mathbf{Z}_{ℓ} -module) \mathbf{T} is free of finite rank; it is therefore complete and separated with respect to its (ℓ) -adic topology. Therefore the (ℓ) -adic topology on \mathbf{T} coincides with the \mathcal{M} -adic topology on \mathbf{T} . In fact from the inclusion $\ell \mathbf{T} \subseteq \mathcal{M}$, we deduce $\ell^n \mathbf{T} \subseteq \mathcal{M}^n$ for all n. Conversely we consider the noetherian finite local ring $\mathbf{T}/\ell \mathbf{T}$ (it is finite because \mathbf{T} is finitely generated on \mathbf{Z}_{ℓ}). Let $\overline{\mathcal{M}}$ be the maximal ideal of $\mathbf{T}/\ell \mathbf{T}$. So $\overline{\mathcal{M}}$ is a vector \mathbf{F}_{ℓ} -subspace $\overline{\mathcal{M}} \subseteq \mathbf{T}/\ell \mathbf{T}$ and, since $\mathbf{T}/\ell \mathbf{T}$ is finite, $\exists k$ such that $\overline{\mathcal{M}}^k = 0$ in $\mathbf{T}/\ell \mathbf{T}$, so $\mathcal{M}^k \subseteq \ell \mathbf{T}$.

We therefore have $T \cong \lim_{i \to \infty} T/\mathcal{M}^i$, which allows applications of Hensel's lemma [1] in T. We shall write tr and det for the trace and the determinant of ρ . Because ℓ is odd, the identity

$$2 \cdot \det(g) = \operatorname{tr}(g)^2 - \operatorname{tr}(g^2)$$

shows that the values of det are contained in T.

3. - Eisenstein ideal.

We shall define the Eisenstein ideal I of T.

Since $a \in \beta$ are characters, they factor through the abelianization G^{ab} of G, and by the global class field theory $G^{ab} \cong \mathbf{Z}_{\ell}^{\times} \times \mathbf{Z}_{p_1}^{\times} \times \cdots \times \mathbf{Z}_{p_n}^{\times}$. So we can write

$$a, \beta: \mathbf{Z}_{\ell}^{\times} \times \mathbf{Z}_{p_1}^{\times} \times \cdots \times \mathbf{Z}_{p_n}^{\times} \to k^{\times}.$$

Let g_0 be an element of G such that its restriction to $\mathbf{Z}_{\ell}^{\times}$ is a topological generator of $\mathbf{Z}_{\ell}^{\times}$. We can write $a = a_{\ell}a_{p_1} \cdots a_{p_n}$ and $\beta = \beta_{\ell}\beta_{p_1} \cdots \beta_{p_n}$ where

$$egin{aligned} a_\ell,eta_\ell:oldsymbol{Z}_\ell^ imes & \to k^ imes\ \ a_{p_i},eta_{p_i}:oldsymbol{Z}_{p_i}^ imes & \to k^ imes & ext{for all } i=1,...,n. \end{aligned}$$

Because $a(g_0) \neq \beta(g_0)$, the quadratic polynomial

$$X^2 - \operatorname{tr}(g_0)X + \det(g_0)$$

has distinct roots modulo \mathcal{M} . By Hensel's lemma, it splits over T. Let r, s be its roots, ordered so that we have

$$r \equiv a(g_0) \mod \mathcal{M}$$

 $s \equiv \beta(g_0) \mod \mathcal{M}$.

We want to lift a and β to two T^{\times} -valued characters, such that at g_0 they assume the values r, s respectively. We will suppose $p_i \not\equiv 1 \mod \ell$ for i = 1, ..., n.

LEMMA 3.1. – There exist unique characters $\varphi_{\ell}, \psi_{\ell} : \mathbf{Z}_{\ell}^{\times} \to \mathbf{T}^{\times}$ satisfying $\varphi_{\ell}(q_0) = r, \quad \psi_{\ell}(q_0) = s.$

The product of these characters is $\det|_{\mathbf{Z}^{\times}}$.

PROOF. – Any character $\theta: \mathbf{Z}_{\ell}^{\times} \to \mathbf{T}^{\times}$ is determined by its value on the generator g_0 of $\mathbf{Z}_{\ell}^{\times}$. We have an exact sequence

$$1 o 1 + \mathcal{M} o extbf{\textit{T}}^{ imes} o k^{ imes} o 1$$

which splits, because $1 + \mathcal{M}$ is a pro- ℓ -group and $|k^{\times}|$ is prime to ℓ . Therefore we can write $\mathbf{T}^{\times} = k^{\times} \times (1 + \mathcal{M})$.

Since $1 + \mathcal{M}$ is a pro- ℓ group, for each t in $1 + \mathcal{M}$ there is a homomorphism $\mathbf{Z}_{\ell} \to 1 + \mathcal{M}$ sending g_0 in t. We define $\varphi'_{\ell} : \mathbf{Z}_{\ell}^{\times} \to 1 + \mathcal{M}$ as the homomorphism such that $\varphi'_{\ell}(g_0)$ is the image of r in $1 + \mathcal{M}$ and we put $\varphi_{\ell} = a \cdot \varphi'_{\ell}$.

For i=1,...,n let $\varphi_{p_i}: \mathbf{Z}_{p_i}^{\times} \to \mathbf{T}^{\times}$ the Teichmüller lift of a_{p_i} and $\psi_{p_i}: \mathbf{Z}_{p_i}^{\times} \to \mathbf{T}^{\times}$ the Teichmüller lift of β_{p_i} . We now let

$$egin{aligned} arphi &= arphi_{\ell} \cdot arphi_{p_1} \cdot \cdot \cdot arphi_{p_n} : oldsymbol{Z}_{\ell}^{ imes} imes oldsymbol{Z}_{p_1}^{ imes} imes \cdot \cdot \cdot imes oldsymbol{Z}_{p_n}^{ imes}
ightarrow oldsymbol{T}^{ imes} \ & oldsymbol{\psi}_{\ell} \cdot oldsymbol{\psi}_{p_1} \cdot \cdot \cdot \cdot oldsymbol{\psi}_{p_n} : oldsymbol{Z}_{\ell}^{ imes} imes oldsymbol{Z}_{p_1}^{ imes} imes \cdot \cdot \cdot imes oldsymbol{Z}_{p_n}^{ imes}
ightarrow oldsymbol{T}^{ imes}. \end{aligned}$$

So

$$\varphi \equiv a \mod \mathcal{M}$$

and

$$\psi \equiv \beta \mod \mathcal{M}$$
.

Because of our assumption $p_i \not\equiv 1 \mod \ell$, the only lift of a character $\mathbf{Z}_{p_i}^{\times} \to k^{\times}$ to \mathbf{T}^{\times} is the Teichmüller lift. Therefore the character φ (resp. ψ) is the unique lift of a (resp. β) over \mathbf{T}^{\times} such that $\varphi(g_0) = r$ (resp. $\psi(g_0) = s$). Moreover $\varphi \psi = \det$.

We define $\eta: G \to T$ to be the function $\operatorname{tr} - \varphi - \psi$ and define the Eisenstein ideal I to be the ideal of T generated by all the quantities $\eta(g)$, for $g \in G$. The congruences

$$\operatorname{tr} \equiv a + \beta \equiv \varphi + \psi \mod \mathcal{M}$$

show that I is contained in \mathcal{M} . It is easily seen that the ideal I is intrinsic, although the characters φ and ψ depend on g_0 . More precisely, we have the following result:

Proposition 3.1. – Let γ and δ be characters $G \to \mathbf{T}^{\times}$, and let J be an ideal of \mathbf{T} . Suppose that we have the congruence

$$\operatorname{tr} \equiv \gamma + \delta \mod J$$
.

Then $I \subseteq J$. Moreover, after permuting γ and δ if necessary, we have $\gamma \equiv \varphi \mod J$ and $\delta \equiv \psi \mod J$.

PROOF. – We may assume that J is a proper ideal of T, so that J is contained in \mathcal{M} . Since $\operatorname{tr} \equiv \gamma + \delta \mod J$ and $2 \cdot \operatorname{det}(g) = \operatorname{tr}(g)^2 - \operatorname{tr}(g^2)$ for all $g \in G$, we have the congruence:

$$\gamma \delta \equiv \det \mod J$$
.

Since γ and δ are characters, they factor through G^{ab} . We put, for i=1,...,n

$$\gamma_{p_i} = \gamma \mid_{\boldsymbol{Z}_{p_i}^{\times}}, \quad \gamma_{\ell} = \gamma \mid_{\boldsymbol{Z}_{\ell}^{\times}}, \quad \delta_{p_i} = \delta \mid_{\boldsymbol{Z}_{p_i}^{\times}}, \quad \delta_{\ell} = \delta \mid_{\boldsymbol{Z}_{\ell}^{\times}}.$$

We observe that:

$$\gamma(g_0)\delta(g_0) \equiv \det(g_0) \equiv rs \mod J$$

$$\gamma(g_0) + \delta(g_0) \equiv r + s \mod J.$$

So, after permuting γ and δ if necessary, we have, by Hensel's lemma:

$$\gamma(g_0) \equiv r \mod J$$
, $\delta(g_0) \equiv s \mod J$

and we obtain

$$\gamma_\ell \equiv \varphi \mid_{\mathbf{Z}_\ell^{\times}} \mod J, ~~ \delta_\ell \equiv \psi \mid_{\mathbf{Z}_\ell^{\times}} \mod J.$$

For i=1,...,n let g_i be an element of G such that its restriction to $\mathbf{Z}_{p_i}^{\times}$ is a topological generator of $\mathbf{Z}_{p_i}^{\times}$. We have that:

$$\operatorname{tr}(g_i) \equiv \gamma(g_i) + \delta(g_i) \mod J$$

 $\det(g_i) \equiv \gamma(g_i)\delta(g_i) \mod J$

but

$$\operatorname{tr}(g_i) \equiv \varphi(g_i) + \psi(g_i) \mod \mathcal{M}$$

 $\det(g_i) \equiv \varphi(g_i)\psi(g_i) \mod \mathcal{M}.$

So

$$\gamma_{p_i} + \delta_{p_i} \equiv \varphi_{p_i} + \psi_{p_i} \mod \mathcal{M}$$

$$\gamma_{p_i} \delta_{p_i} \equiv \varphi_{p_i} \psi_{p_i} \mod \mathcal{M}.$$

Then, after permuting γ_{p_i} and δ_{p_i} if necessary, we have:

$$\gamma_{p_i} \equiv \varphi_{p_i} \mod \mathcal{M}$$
 $\delta_{p_i} \equiv \psi_{p_i} \mod \mathcal{M}.$

Then γ_{p_i} (resp. δ_{p_i}) is a lift of a_{p_i} (res. β_{p_i}) to \mathbf{T}^{\times} . Since $p_i \not\equiv 1 \text{mod } \ell$, γ_{p_i} (resp. δ_{p_i}) is the Teichmüller lift of a_{p_i} (res. β_{p_i}), so $\gamma_{p_i} = \varphi_{p_i}$ (resp. $\delta_{p_i} = \psi_{p_i}$), in particular:

$$egin{aligned} \gamma \mid_{oldsymbol{Z}_{p_i}^ imes} &= \gamma_{p_i} \equiv arphi_{p_i} \mod J \ &\delta \mid_{oldsymbol{Z}_{p_i}^ imes} &= \delta_{p_i} \equiv arphi_{p_i} \mod J, \end{aligned}$$

from which we obtain the congruences:

$$\gamma \equiv \varphi \mod J$$

$$\delta \equiv \psi \mod J.$$

Now:

$$\eta(g) = \operatorname{tr}(g) - \varphi(g) - \psi(g) \equiv \operatorname{tr}(g) - \gamma(g) - \delta(g) \equiv 0 \mod J$$

for all $g \in G$, so $\eta(g) \in J$ for all $g \in G$ and this implies that $I \subseteq J$.

4. – Some consequences for $\overline{\rho}$.

Now we study the representation $\rho: G \to GL_2(A)$. The residual representation of ρ is given by the matrix:

$$\overline{
ho} = \left(egin{matrix} lpha & * \ 0 & eta \end{matrix}
ight)$$

in others words, if $a,b,c,d:G\to A$ denote the matrix coefficients of ρ (so that $\rho=\begin{pmatrix}a&b\\c&d\end{pmatrix}$), we have

$$a \equiv a, d \equiv \beta, c \equiv 0 \mod(\lambda)$$

Recall that r, s are the eigenvalues of $\rho(g_0)$. Since r, s are distinct, $\rho(g_0)$ is similar to a diagonal matrix, so it is possible to find a conjugate of ρ over $GL_2(A)$ such that:

$$\overline{\rho} = \begin{pmatrix} a & * \\ 0 & \beta \end{pmatrix}$$

and

$$\rho(g_0) = \begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix}.$$

Now, for i = 1, ..., n let g_i an element of G such that its restriction to $\mathbf{Z}_{p_i}^{\times}$ is a topological generator and that $\rho(g_i)$ commutes whit $\rho(g_0)$, then $\rho(g_i)$ is diagonal.

PROPOSITION 4.1. – For all $g \in G$, we have $a(g), d(g) \in T$. For all pairs $g, g' \in G$, we have $b(g)c(g') \in T$.

PROOF. – The first assertion follows from the fact that tr(g) and $tr(gg_0)$ belong to T and that r-s is an unit of T.

The second one is a consequence of the equation

(1)
$$b(g)c(g') = a(gg') - a(g)a(g').$$

We now let $H=\operatorname{Gal}(K/\mathbf{Q}(\mu_{\ell^\infty}\mu_{p_1^\infty}\cdots\mu_{p_n^\infty}))=\operatorname{Gal}(K/(\mathbf{Q}^{ab}\cap K))$. Let B be the T-submodule of A generated by all b(g) with $g\in G$. Since the function b vanishes on the closure of the subgroup of G generated by $g_0,g_1,...,g_n$, we have that B is already generated by the b(h)'s with $h\in H$. Similarly, we define C using the c(g)'s. We denote by BC the T-submodule of A generated by all products $\beta\cdot\gamma$ with $\beta\in B$ and $\gamma\in C$. Then BC is generated by all products b(g)c(g'), so that, by (1), it is in fact an ideal of T.

PROPOSITION 4.2. – We have I = BC. Moreover, I is the ideal of T generated by the quantities a(h) - 1 for $h \in H$, or alternatively the ideal of T generated by the d(h) - 1 for $h \in H$.

PROOF. – Because of the symmetry between a and d, we prove only the first assertion. Let us temporarily denote by J the ideal of T generated by the a(h)-1. We will prove that

$$BC \subseteq J \subseteq I \subseteq BC$$
.

1. We prove that $I \subseteq BC$.

We introduce the function " $a \mod BC$ " obtained by composing the coefficient function a with the canonical map $T \to T/BC$. Call this function \overline{a} . Using (1), we see that \overline{a} is a character $G \to (T/BC)^{\times}$ and so it factors through G^{ab} . Since

$$a(g_0) = \varphi(g_0),$$

we have that

$$\overline{a}\mid_{\mathbf{Z}_{\ell}^{\times}} \equiv \varphi\mid_{\mathbf{Z}_{\ell}^{\times}} \mod BC.$$

Because $a \in T$, we have that $a \equiv \varphi \mod \mathcal{M}$ and since for $i = 1, ..., n \quad \varphi \mid_{\mathbf{Z}_{p_i}^{\times}}$ is the Teichmüller lift of a, we have

$$a\mid_{\mathbf{Z}_{p_i}^{\times}} \equiv \varphi\mid_{\mathbf{Z}_{p_i}^{\times}} \mod BC.$$

Then also

$$\overline{a}\mid_{oldsymbol{Z}_{p_i}^ imes} \equiv arphi\mid_{oldsymbol{Z}_{p_i}^ imes} \mod BC$$

so

$$\overline{a} \equiv \varphi \mod BC$$

and then

$$a \equiv \varphi \mod BC$$
.

Similarly we get

$$d \equiv \psi \mod BC$$
.

Adding these congruences, we find that

$$\eta(q) = a(q) + d(q) - \varphi(q) - \psi(q) \equiv 0 \mod BC$$

so $\eta(g) \in BC$ for all $g \in G$ and so $I \subseteq BC$.

2. Now we prove that $J \subseteq I$.

For all $h \in H$ we have that $\varphi(h) = \psi(h) = 1$; therefore

$$[a(h)-1]+[d(h)-1]=\eta(h) \in I.$$

Similarly

$$r(a(h) - 1) + s(d(h) - 1) = \eta(hg_0) \in I.$$

Because r-s is an unit of T, we get

$$a(h) - 1, d(h) - 1 \in I$$
:

therefore $J \subseteq I$.

3. Now we prove that $BC \subseteq J$.

For all $h, h' \in H$ we have

$$b(h)c(h') = a(hh') - a(h)a(h') \equiv 0 \mod J.$$

This gives the inclusion $BC \subseteq J$.

Let L_a, L_β be finite extensions of \mathbf{Q} such that $\ker(a) = \operatorname{Gal}(K/L_a)$ and $\ker(\beta) = \operatorname{Gal}(K/L_\beta)$. Let L be the compositum field of L_a, L_β .

PROPOSITION 4.3. – Let $g \in Gal(K/L)$. We have that $\varphi(g), \psi(g) \equiv 1 \mod \mathcal{M}$. Further, we have

$$\eta(g) \equiv b(g)c(g) \mod (I\mathcal{M}).$$

PROOF. – Since $\varphi \equiv a \mod \mathcal{M}$ and $\psi \equiv \beta \mod \mathcal{M}$, the first assertion is clear. Now $\varphi \psi = ad - bc$, so

$$b(g)c(g) - \eta(g) = (d(g) - \psi(g))(\varphi(g) - 1) + (a(g) - \varphi(g))(\psi(g) - 1) + (a(g) - \varphi(g))(d(g) - \psi(g)) \equiv 0 \mod (I\mathcal{M}).$$

Let
$$\overline{\rho} = \begin{pmatrix} a & \overline{b} \\ 0 & \beta \end{pmatrix}$$
 where $a, \beta, \overline{b}: \operatorname{Gal}(K/\mathbf{Q}) \to k^{\times}.$

Since $K_{p_1} \cap ... \cap K_{p_n} \cap K_{\ell} = \mathbf{Q}$, we have that $Gal(K/\mathbf{Q}) = Gal(K_{p_1}/\mathbf{Q}) \times ... \times Gal(K_{p_n}/\mathbf{Q}) \times Gal(K_{\ell}/\mathbf{Q})$. We call $Gal(K_{p_1}/\mathbf{Q}) \times ... \times Gal(K_{p_n}/\mathbf{Q}) = G_p$ and $Gal(K_{\ell}/\mathbf{Q}) = G_{\ell}$.

Let M be the union of all finite abelian extensions of $\mathbf{Q}(\mu_{\ell})$ in K_{ℓ} which have ℓ -power degree. The Galois group $X = \operatorname{Gal}(M/\mathbf{Q}(\mu_{\ell}))$ is a \mathbf{Z}_{ℓ} -module on which $\Delta = \operatorname{Gal}(\mathbf{Q}(\mu_{\ell})/\mathbf{Q})$ acts by conjugation. In other words, X is a module over the group ring $\mathbf{Z}_{\ell}[\Delta]$. The \mathbf{Z}_{ℓ} -module X is the direct sum of the eigenspaces

$$X(\varepsilon) = \{ x \in X \mid \delta \cdot x = \varepsilon(\delta) \cdot x \text{ {for all }} \delta \in \Delta \}$$

 ε running over the group of $\boldsymbol{Z}_{\ell}^{\times}$ -valued characters of Δ .

Let $\chi: G_{\ell} \to \mathbf{Z}_{\ell}^{\times}$ be the ℓ -adic cyclotomic character, and let $\omega: G_{\ell} \to \mathbf{F}_{\ell}^{\times}$ be the reduction of χ modulo ℓ . Then $a \mid_{G_{\ell}} = \omega^{t}$ and $\beta \mid_{G_{\ell}} = \omega^{q}$ for $t, q \in \mathbf{Z}/(\ell-1)\mathbf{Z}$.

Theorem 4.1. – Suppose that each of the two eigenspaces $X(\omega^{t-q})$ and $X(\omega^{q-t})$ is cyclic. Then there exist a $g \in \operatorname{Gal}(K_{\ell}/\mathbf{Q}(\mu_{\ell}))$ for which

$$B = \mathbf{T} \cdot b(g), \quad C = \mathbf{T} \cdot c(g), \quad I = \mathbf{T} \cdot \eta(g).$$

PROOF. – Let we define the function \overline{b} : we compose the function $b:G_\ell\to B$ with the projection $B\to B/\mathcal{M}B$ and we restrict it to the subgroup $\mathrm{Gal}(K_\ell/\mathbf{Q}(\mu_\ell))$ of G_ℓ . By the Proposition 4.3 we have that for all $g\in\mathrm{Gal}(K/L)$

$$a(g) \equiv 1 \mod \mathcal{M}$$

$$d(g) \equiv 1 \mod \mathcal{M}$$

then

$$a(g), d(g) \equiv 1 \mod \mathcal{M}$$
 for all $g \in \operatorname{Gal}(K_{\ell}/L \cap K_{\ell})$.

Because $L \cap K_{\ell} \subseteq \mathbf{Q}(\mu_{\ell})$, we have that $Gal(K_{\ell}/\mathbf{Q}(\mu_{\ell})) \subseteq Gal(K_{\ell}/L \cap K_{\ell})$ and so \overline{b} is a homomorphism.

Now $B/\mathcal{M}B$ is an abelian ℓ -group, so \overline{b} must factor through X. A matrix calculation shows that

$$\overline{b}(\sigma\tau\sigma^{-1}) = \omega^{t-q}(\sigma) \cdot \overline{b}(\tau)$$

for $\sigma \in G_{\ell}$, $\tau \in \operatorname{Gal}(K_{\ell}/\mathbf{Q}(\mu_{\ell}))$; thus \overline{b} factors through the cyclic quotient $X(\omega^{t-q})$ of X.

Therefore, if g is any element of $\operatorname{Gal}(K_{\ell}/\mathbf{Q}(\mu_{\ell}))$ whose image in $X(\omega^{t-q})$ generates $X(\omega^{t-q})$, then the image of \overline{b} is the cyclic group generated by $\overline{b}(g)$. Thus $B/\mathcal{M}B$ is generated as a T-module by $\overline{b}(g)$. By Nakayama's lemma, B is generated as a T-module by b(g).

Analogously, if g maps to a generator of $X(\omega^{q-t})$, then $C = \mathbf{T} \cdot c(g)$. Taking a g which maps to generators of both $X(\omega^{t-q})$ and $X(\omega^{q-t})$, we find that B is generated by b(g) and C by c(g). Hence I = BC is generated by b(g)c(g); by Nakayama's lemma, together with the Proposition 4.3, $I = \mathbf{T} \cdot \eta(g)$.

We recall the well know Vandiver conjecture for $Q(\mu_{\ell})$. It is true (at least) for all $\ell \leq 125.000$ [5], and no counterexample is known.

Vandiver conjecture. The prime number ℓ is prime to the class number of the maximal real subfield of $Q(\mu_{\ell})$.

COROLLARY 4.1. – Suppose that Vandiver's conjecture is true for ℓ and that I is non-zero. Then, after replacement of ρ by a conjugate $N\rho N^{-1}$, (with $N \in GL_2(A)$), the representation ρ takes values in $GL_2(T)$ and its matrix coefficients satisfy:

$$a \equiv \varphi$$
, $d \equiv \psi$, $c \equiv 0 \pmod{I}$.

PROOF. – We consider b(g) and c(g) with g as above. Then $b(g) \neq 0$, since I = (b(g)c(g)) is non-zero. Taking $N = \begin{pmatrix} b(g)^{-1} & 0 \\ 0 & 1 \end{pmatrix}$, we obtain a conjugate of ρ with the required properties.

Let \overline{V} be the finite-dimensional k-representation space of $\overline{\rho}$. Since it's always

possible to find an integer model for ρ such that $\overline{\rho}$ is reducible but not semisimple, the natural mapping

$$k \to End_{k[G]}(\overline{V})$$

is an isomorphism. For the deformation theory of Galois representations [4], there exist an universal coefficient-ring $\mathcal{R}(\overline{\rho}) = \mathcal{R}$ with residue field k and an universal deformation

$$\rho^{univ}:G\to GL_2(\mathcal{R})$$

of $\overline{\rho}$ to \mathcal{R} . In particular, this means that there is one and only one homomorphism

$$\pi: \mathcal{R} \rightarrow \textbf{\textit{T}}$$

inducing the identity isomorphism on residue fields.

Proposition 4.4. – The homomorphism π is surjective.

PROOF. – We observe that since T is generated by the traces of ρ , π if $x \in T$ then $x = \operatorname{tr}(\rho(g))$ for some $g \in G$. So, since $\rho(g) = \pi(\rho^{univ}(g))$, we have $x = \operatorname{tr}(\rho(g)) = \operatorname{tr}(\pi(\rho^{univ}(g))) = \pi(\operatorname{tr}(\rho^{univ}(g)))$.

REFERENCES

- [1] M. F. ATIYAH I. G. MACDONALD, *Introduction to Commutative Algebra*, University of Oxford, Addison-Wesley Publishing Company, 1969.
- [2] H. CARAYOL, Formes modulaires et representations galoisiennes valeurs dans un anneau local complet, Contemporary Mathematics, Volume 165, Amer. Math. Soc., Providence, RI, 1994, 213-237.
- [3] A. RIBET KENNETH E. PAPIER, Eisenstein ideals and λ-adic representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 1981, no. 3 (1982), 651-665.
- [4] B. Mazur, An introduction to the deformation theory of Galois representation. In Modular Forms and Fermat's Last Theorem, G. Cornell, J. H. Silverman, G. Stevens, Eds. Springer, 43-311.
- [5] S. Wagstaff, The irregular prime to 125.000, Math. Comp., 32 (1978), 583-591.
- [6] A. Wiles, Modular elliptic curves and Fermat last Theorem, Ann. of Math., 141 (1995), 443-551.

Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino e-mail: ciavarella@dm.unito.it