BOLLETTINO
UNIONE MATEMATICA ITALIANA

MIRIAM CIAVARELLA

Eisenstein ideal and reducible A-adic
Representations Unramified Outside a Finite
Number of Primes.

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 9-B (2006),
n.3, p. 711-721.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2006_8_9B_3_711_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamente per
motivi di ricerca e studio. Non é consentito 1’utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=BUMI_2006_8_9B_3_711_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2006.



Bollettino U. M. 1.
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Eisenstein Ideal and Reducible /-adic Representations
Unramified Outside a Finite Number of Primes.

MIRIAM CIAVARELLA

Sunto. - L’argomento di questo articolo ¢ lo studio di particolart rappresentazioni
i-adiche bidimensionali di GalQ/Q); fissati pi,...,p, primi distinti, conside-

b
d) che sono

non ramificate fuori pi,...,pn,00 e dalla caratteristica residua di A, che sono
prodotto di m rappresentaziont su estensioni finite dell’anello dei vettori di Witt
del campo residuo e che sono riducibili modulo A In analogia con la teoria delle
rappresentazioni modulari, introdurremo l'analogo dell’algebra di Hecke di
Mazur T, con un ideale I di T che chiameremo ideale di Eisenstein.

Seguendo la strategia di Ribet e Papier [3], sotto le ipotesi:

reremo rappresentaziont p : G — GLy(A), date dalla matrice p = <Z

e p; Z1mod ¥, perognii=1,...,n,
o la semisemplificazione di p ¢ descritta da due caratteri a,  che sono distinti se
ristretti a Z ),

otterremo i sequenti risultati:

PRrOPOSIZIONE 0.1 — L’ideale di Eisenstein I ¢ uguale a BC, dove B é il T-sottomodulo
di A generato da tutti i b(g) con g € G e analogamente C ¢ definito usando i c(g).
Inoltre, I ¢ U'deale di T generato dalle quantitd a(h) — 1 per h € Gal(K/ Qab NK).

ProPOSIZIONE 0.2 — Supponiamo che la congettura di Vandiver sia vera per € e che I
sta non-zero. Allora, a meno di sostituire p con un coniugato, la rappresentazione p
assume valori in GLo(T) e la sua matrice dei coefficienti soddisfa:

a=¢p, d=w, ¢=0 (mod I)
dove 9 = a mod M ey = ff mod M, per M =T nN().

In particolare esiste uno e uno solo omomorfismo di anelli suriettivo dall’anello di
deformazione universale R(p) in T, che induce Uisomorfismo identitd sui campi
residu.

Summary. — The object of this mote is to study certain 2-dimensional i-adic ve-
presentations of GalQ/Q); fixed pi,...,pn distinct primes, we will consider ve-

presentations p: G — GLy(A), given by the matrix p = (Z Z which are un-
ramified outside Py, ..., pn, 0o and the residue characteristic of 2, which are a product
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of m representations over finite extensions of the ring of Witt vectors of the residue

field and which are reducible modulo 1. In analogy with the theory of the modular

representations, we will introduce the analogue of Mazur’s Hecke algebra T, together

with an ideal I of T which we will call the Eisenstein ideal.

Following the Ribet and Papier’s method [3], under the hypotheses:

e p;Z1lmod ¢, foranyi=1,..,n

o the semisimplification of p is described by two characters a, f which are distinct if
restricted to Z;,

we obtain the following results:

PrOPOSITION 0.3 — The Eisenstein ideal I is equal to BC, where B is the T-submodule
of A generated by all b(g) with g € G and similary C is defined using the c(g)’s.
Morveover, I 1is the ideal of T generated by the quantities a(h)—1 for
h € Gal(K/Q™ N K).

PRrOPOSITION 0.4 — Suppose that Vandiver’s conjecture is true for £ and that I is non-
zero. Then, after replacement of p by a conjugate, the representation p takes values in
GLy(T) and its matrix coefficients satisfy:

a=¢, d=y, ¢=0 (modI)
where p = o mod M and v = ff mod M, for M =T N ().

In particular there is one and only one surjective ring homomorphism from the
universal deformation ring R(p) to T, inducing the identity isomorphism on residue
fields.

1. — Introduction.

Recent studies about the deformation theory of Galois representations
compare an universal deformation ring R with an Hecke algebra 7'; the most
important example is the Wiles and Taylor-Wiles Theorem, which establishes an
isomorphism between R and T in some special cases.

The object of this note is to generalize a result of Kennet A. Ribet and E.
Papier [3], establishing a surjective homomorphism from an universal de-
formation ring R to an Hecke algebra T generated by traces.

Let ¢, py, ..., pn be (n+1) odd primes. Let @ be an algebraic closure for @ and
let K, C @ be the largest extension of @ which is unramified away from ¢ and
infinity and let, fort =1,...,n, K, C Q Dbe the largest extension of @ which is
unramified away from p; and infinity; we consider the compositum field
K =K/K,, .. K, Let G=Gal(K/Q). Let k be a finite field extension of Fy, let
W(k) be the ring of Witt vectors of k, and for : = 1,..,m let O; be a finite ex-
tension of W (k) with residue field equal to k¥ and maximal ideal equal to (4;). For
J=1,..m let p;: G — GL2(O;) be a continuous 2-dimensional /;-adic repre-
sentation of Gal(@/Q), unramified outside /,p1, ..., py, 00, such that p; = p; for
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J,J' =1,...,m. We shall consider the situation in which p; is reducible. Let A be
the fiber product of the O)’s

A={@)e[o:m = forall jj}
J

where T; denotes the image of x; in k. So A is local and the product of the p;
provides a continuous 2-dimensional A-adie representation

p:G— GLy(A)

unramified outside /£, p1, ..., py, oo such that p = p; : G — GLa(k); so p is reducible
modulo the maximal ideal (1) of A, where 4 = (44, ..., 4,,) of A. We shall write p*
for the semisimplification of p , which does not depend on the particular integer
model for p. So p* is described by two characters

a,f:G— k>

As our general hypothesis, we will suppose that a and f are distinct if restricted
toZ;.

For any g € G, we will write tr(g) and det(g) instead of tr(p(g)) and det(p(g))
respectively.

2. — Hecke algebra.

Our Hecke algebra T will be the W(k)-subalgebra of A generated by the
quantities tr(p(g)) with g € G. So T is a local Z,-algebra with maximal ideal
M =T N (1), with residue field T/ M = k, finitely generated, without nihilpotent
elements but possibly with zero divisors.

As a W(k)-module (therefore as a Z,-module) T is free of finite rank; it is
therefore complete and separated with respect to its (¢)-adic topology.
Therefore the (¢)-adic topology on T coincides with the M-adic topology on T
In fact from the inclusion ¢T C M, we deduce ¢"T C M™ for all n. Conversely
we consider the noetherian finite local ring 7'/¢T (it is finite because 7 is fi-
nitely generated on Z,). Let M be the maximal ideal of T/(T. So M is a
vector Fy-subspace M C T /(T and, since T //T is finite, 3k such that M =0
in T/(T, so M* CIT.

We therefore have T = lim._, T/ M, which allows applications of Hensel’s
lemma [1] in 7. We shall write tr and det for the trace and the determinant of p.
Because / is odd, the identity

2. det(g) = tr(g)* — tr(g?)

shows that the values of det are contained in T'.
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3. — Eisenstein ideal.

We shall define the Eisenstein ideal I of 7'.
Since a e § are characters, they factor through the abelianization G* of G, and
by the global class field theory G* ~Z) x Z o X o xZ, . So we can write

L) XLy X XLy — kT
Let gy be an element of G such that its restriction to Z, is a topological generator
of Z;. We can write a = aap, - - - ap, and f = 8, -- -, where
ae, B Z; — k*

Upis By 1 Ly, — K for all i=1,..,n.
Because a(gq) # f(go), the quadratic polynomial
X2 — tr(go)X + det(go)

has distinet roots modulo M. By Hensel’s lemma, it splits over T'. Let 7, s be its
roots, ordered so that we have

r = a(go) mod M
s = f(go) mod M.

We want to lift a« and f§ to two T -valued characters, such that at gy they assume
the values 7, s respectively. We will suppose p; Z 1 mod £ for i =1, ..., n.

LEMMA 3.1. — There exist unique characters o, y, : Z, — T™ satisfying
?,go) =7, w,go) = s.

The product of these characters is det| 7

PROOF. — Any character 0 : Z; — T is determined by its value on the gen-
erator go of Z,. We have an exact sequence

1-14+M—-=T"—=k* =1
which splits, because 1 + M is a pro-¢-group and |k*| is prime to ¢. Therefore we
can write T = k> x (1 + M).
Since 1 + M is a pro-£ group, for each ¢ in 1 + M there is a homomorphism

Z, — 1+ M sending g in ¢t. We define ¢, : Z; — 1 + M as the homomorphism
such that ¢)(go) is the image of » in 1 + M and we put ¢, = a - ¢, [ ]

For i=1,..,n let g, :Z;Z — T" the Teichmiller lift of a, and
Wy, : Z, — T" the Teichmiiller lift of §, . We now let

(p:(p('§0p1”'¢pn:zz< XZ;l X”'XZ;;H—}TX
W=y, L XLy X x 2y — T
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So

» =a mod M
and

w = mod M.

Because of our assumption p; # 1 mod ¢, the only lift of a character Z, X — kX to
T* is the Teichmiiller lift. Therefore the character ¢ (resp. y) is the umque lift of
a (resp. f) over T™ such that p(go) = r (resp. w(go) = s). Moreover gy = det.

We define 57 : G — T to be the function tr — ¢ — y and define the Eisenstein
ideal I to be the ideal of T generated by all the quantities #(g), for g € G. The
congruences

tr=a+f=¢p+w mod M

show that I is contained in M. It is easily seen that the ideal I is intrinsic, al-
though the characters ¢ and y depend on gy. More precisely, we have the fol-
lowing result:

PROPOSITION 3.1. — Let y and J be characters G — T, and let J be an ideal
of T. Suppose that we have the congruence

tr=y+0 mod J.
Then I C J. Moreover, after permuting y and O if mecessary, we have

y=¢ mod J and 6 =y mod J.

Proor. — We may assume that J is a proper ideal of T', so that J is contained in
M. Since tr =7+ mod J and 2 - det(g) = tr(g)* — tr(g?) for all g € G, we have
the congruence:

y0 = det mod J.
Since y and J are characters, they factor through G*. We put, fori =1,...,n
Vi =7z ve=7lzss Op=0lz;, 00=0lz
We observe that:
7(90)(go) = det(go) = rs mod J
7(90) + 6(go) =7 +s mod J.
So, after permuting y and ¢ if necessary, we have, by Hensel’s lemma:
wgo) =7 mod J, I(go) =s mod J

and we obtain

y€E¢)|Z7 mod J, (5451//\” mod J.
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Fori=1,...,n let g; be an element of G such that its restriction to Z; is a to-
pological generator of Z . We have that:

tr(g;) = y(g:) + o(g;) mod J
det(g;) = y(9:)d(g;) mod J
but
tr(g:) = p(g:) + w(g)) mod M
det(g;) = o(g:)w(gi) mod M.
So
Vpi T Op; = @p, + 7, mod M
VpiOp: = 0p W, Mod M.
Then, after permuting 7, and Jp, if necessary, we have:
Vp = ¢p, mod M
Op; =y, mod M.

Then y,, (resp. dy,) is a lift of a,, (ves. f5,) to T™. Since p; # 1mod ¢, y,, (resp. d,)
is the Teichmiiller lift of a), (ves. f8,), s0 7, = @, (vesp. J,, = y,,), in particular:

Z;z: ypi = ¢Pi mod J

v
0 lz; = 0p =y, modJ,

from which we obtein the congruences:

y=¢ modJ
0=y modJ.
Now:
n(g) = tr(g) — p(g) — w(g) = tr(g) — y(g) — d(g) =0 mod J
for all g € G, so x(g) € J for all g € G and this implies that I C J. ]

4. — Some consequences for p.

Now we study the representation p : G — GL2(A). The residual representa-
tion of p is given by the matrix:
- a ok
P=\o B
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in others words, if a,b,c,d : G — A denote the matrix coefficients of p (so that

a b
p= (c d>)’ we have
a=a, d=f, ¢=0 mod (1).

Recall that 7, s are the eigenvalues of p(g¢). Since 7, s are distinct, p(go) is similar
to a diagonal matrix, so it is possible to find a conjugate of p over GL2(A) such

that:
— _(a *
=10 ¢

r 0
p(go) = (0 s)'
Now, for i =1,...,n let g; an element of G such that its restriction to Z;_ is a
topological generator and that p(g;) commutes whit p(gy), then p(g;) is diagonal.

and

PROPOSITION 4.1. — For all g € G, we have a(g),d(g) € T. For all pairs
g,4 € G, we have b(g)c(g) € T.

Proor. — The first assertion follows from the fact that tr(g) and tr(gg,) belong
to T and that » — s is an unit of 7.
The second one is a consequence of the equation

(1) b(g)elg) = algg") — alg)a(g').
]

We now let H = Gal(K/Q(up e - - - tt)) = Gal(K /(@ N K)). Let B be the
T-submodule of A generated by all b(g) with g € G. Since the function b vanishes
on the closure of the subgroup of G generated by go,91, ..., g, We have that B is
already generated by the b(h)’s with h € H. Similarly, we define C using the
c(g)’s. We denote by BC the T-submodule of A generated by all products f -y
with f € B and y € C. Then BC is generated by all products b(g)c(¢’), so that, by
(1), it is in fact an ideal of T'.

PRrOPOSITION 4.2, — We have I = BC. Moreover, I is the ideal of T generated
by the quantities a(h) — 1 for h € H, or alternatively the ideal of T generated by
the d(h) — 1 for h € H.

Proor. — Because of the symmetry between a and d, we prove only the first
assertion. Let us temporarily denote by J the ideal of T generated by the a(h) — 1.
We will prove that

BCCJCICBC.
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1. We prove that I C BC.

We introduce the function “a mod BC” obtained by composing the coeffi-
cient function a with the canonical map 7' — T'/BC. Call this function @. Using
(1), we see that @ is a character G — (T'/BC)* and so it factors through G®. Since

a(go) = ¢(g0),
we have that

Because a € T, we have that « = ¢ mod M and since fori=1,....n ¢ |Z;_ is
the Teichmiiller lift of a, we have '

a ‘Z;iE () |Z;i mod BC.

Then also
a |Z;1_E ® |Z;i mod BC

S0

a=¢ mod BC
and then

a=¢ mod BC.
Similarly we get

d=w mod BC.

Adding these congruences, we find that
ng) = a(g) + d(g) — ¢(g) — w(g) =0 mod BC
so 7(g) € BC for all g € G and so I C BC.

2. Now we prove that J C 1.
For all & € H we have that ¢p(h) = w(h) = 1; therefore

[a(h) — 11+ [d(R) — 1] = n(h) € I.
Similarly
r(a(h) — 1) + s(d(h) — 1) = n(hgo) € 1.
Because r — s is an unit of T, we get
a(h) —1,d(h) — 1 € I;

therefore J C I.
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3. Now we prove that BC C J.
For all 2,/ € H we have

b(h)e(k)) = a(hlk)) — a(h)a(h') =0 mod J.
This gives the inclusion BC C J. |
Let L,, Ly be finite extensions of @ such that ker(a) = Gal(K/L,) and
ker(f) = Gal(K/Lg). Let L be the compositum field of L, Ly.
ProposiTION 4.3. — Let g € Gal(K/L). We have that ¢(g),w(g) =1 mod M.
Further, we have

n(g) = b(g)c(g) mod (IM).

PRrOOF. — Sincep = a mod M andy = f mod M, the first assertion is clear.
Now ¢y = ad — bc, so

b(g)c(g) — n(g) = (d(g) — w@)w(g) — 1) + (alg)
— (@) — 1) + (alg) — p(@)d(9) — w(g)) =0 mod (IM).
[ |

Letp= (g 2) where a,ﬁ,g : Gal(K/Q) — k*.

Since K, N..NK, NK;, =@, we have that Gal(K/Q) = Gal(K,, /@) x ...x
Gal(K,, /@) x Gal(K,/@). We call Gal(K, /@) x ... x Gal(K,, /Q) = G, and
Gal(K,/Q) = G,.

Let M be the union of all finite abelian extensions of Q(,) in K, which have /-
power degree. The Galois group X = Gal(M/Q(y,)) is a Z,-module on which
4 = Gal(Q(1,)/Q) acts by conjugation. In other words, X is a module over the
group ring Z[4]. The Z,-module X is the direct sum of the eigenspaces

Xe)={xeX|o-x=¢0) « {forall o € 4}

¢ running over the group of Z, -valued characters of 4.
Let y : Gy — Z be the (-adic cyclotomic character, and let w : G, — F; be
the reduction of y modulo £. Then a |g,= ' and 8 |g,= w? for t,q € Z/({ — D)Z.

THEOREM 4.1. — Suppose that each of the two eigenspaces X (') and X (w?~?)
1s cyclic. Then there exist a g € Gal(K,/Q(w,)) for which
B=T bg), C=T- -cg), I=T ny.

PROOF. — Let we define the function b: we compose the function b : Gy — B
with the projection B — B/MB and we restrict it to the subgroup Gal(X,/Q(x,))
of G4. By the Proposition 4.3 we have that for all g € Gal(X /L)
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a(g) =1 mod M
dig) =1 mod M
then
a(g),d(g) =1 mod M for all g € Gal(K,/L N Ky).

Because L N K, C Q(u,), we have that Gal(K,/Q(u,)) C Gal(K,/L N K;) and so b
is a homomorphism.

Now B/MB is an abelian /-group, so b must factor through X. A matrix
calculation shows that

b(eto ) = o) - b(2)

foro € Gy, © € Gal(K,/Q(u,)); thus b factors through the cyclic quotient X (w!~7)
of X.

Therefore, if g is any element of Gal(K,/Q(u,)) whose image in X(w!~%) gen-
erates X('?), then the image of b is the cyclic group generated by b(g). Thus
B/MB is generated as a T-module by b(g). By Nakayama’s lemma, B is gen-
erated as a T-module by b(g).

Analogously, if g maps to a generator of X(w?~?), then C = T - ¢(g). Taking a g
which maps to generators of both X(w'~?) and X(w??), we find that B is gen-
erated by b(g) and C by c(g). Hence I = BC is generated by b(g)c(g); by
Nakayama’s lemma, together with the Proposition 4.3, I =T - #(g). ]

We recall the well know Vandiver conjecture for @(u,). It is true (at least) for
all £ < 125.000 [5], and no counterexample is known.

Vandiver conjecture. The prime number ¢ is prime to the class number of the
maximal real subfield of @(x,).

COROLLARY 4.1. - Suppose that Vandiver’s conjecture is true for £ and that I
is non-zero. Then, after replacement of p by a conjugate NpN~', (with
N € GLy(A)), the representation p takes values in GL(T) and its matrixc
coefficients satisfy:

a=¢p, d=yw, ¢=0 (mod I).

ProoF. — We consider b(g) and c(g) with g as above. Then b(g) # 0, since

-1

I = (b(g)c(g)) is non-zero. Taking N = (b(g ) 0 > , We obtain a conjugate of p
. . . 0 1

with the required properties. ]

Let V be the finite-dimensional k-representation space of 5. Since it’s always
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possible to find an integer model for p such that p is reducible but not semisimple,
the natural mapping

k— E'nd;c[(;] (V)

is an isomorphism. For the deformation theory of Galois representations
[4],there exist an universal coefficient-ring R(p) = R with residue field k£ and an
universal deformation

pum'v -G = GLQ(R)
of p to R. In particular, this means that there is one and only one homomorphism
n:R—T

inducing the identity isomorphism on residue fields.
PROPOSITION 4.4. — The homomorphism 7 is surjective.

ProOF. — We observe that since 7 is generated by the traces of p, nifx € T
then x =tr(p(g)) for some ge G. So, since p(g) = n(p"""(g)), we have
x = tr(p(g)) = tr(z(p""(g))) = n(tr(p""*(g)). u
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