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Discretized C*-Algebras.

CARLA FARSI - NEIL WATLING

Sunto. — Definiamo relazioni canoniche discretizzate associate ad automorfismi di or-
dine finito di gruppi abeliani discreti. Questa é una generalizzazione di auto-
morfismi di ordine finito di algebre di rotazione. Si dimostrano anche proprietd di
particolart operatori di Schrédinger che derivano da queste relazioni.

Summary. — We define discretized canonical commutation relations associated to finite
order automorphisms of discrete abelian groups. This generalizes the situation for
rotation algebras and their finite order automorphisms. We also consider the almost
Schrodinger operator associated to the given commutation relations.

Introduction.

Arveson [1], [2] introduced the idea of discretized canonical commutation
relations that certain pivotal operators satisfy, in considering the problem of a
discrete version for the Hamiltonian of a one-dimensional quantum system.

This led naturally to the non-commutative spheres of Bratteli, Elliott, Evans
and Kishimoto [3], [4] (the fixed point subalegbra of the “flip” automorphism of
the rotation algebra) and in turn the appearance of the associated almost
Schrodinger and almost Mathieu operators which have been extensively studied
[6], [8], [17], [18], [19]. These commutation relations could be viewed as associated
to a bicharacter on 72, together with an order two automorphism given by
x+— — & (the “flip” ). This viewpoint naturally suggests an extension to consider
any finite order automorphism of a discrete abelian group together with a bi-
character and the study of the “discrete models” thus obtained. The main idea, as
with the earlier situation, is to exploit the commutation relations that certain
pivotal operators satisfy. In constructing these discrete models we are again led
to the rotation algebra and more generally, higher dimensional non-commutative
tori [20], [22], in particular certain fixed point subalgebras thereof. For more
precise details see Theorems 3.5 and 3.6. This type of characterization allows us
to deduce information on the norm of certain almost Serddinger operarators (c.f.
Theorems 5.2 and 5.7). We also derive properties of the associated eigenvalues
systems (c.f. Theorems 6.2 and 6.3).
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In more detail the contents of this paper are as follows. In Section 1 we
define for a family of operators the discretized canonical commutation rela-
tions associated to a finite order automorphism of a discrete abelian group
together with an invariant bicharacter. In Section 2 we give the two main
examples, Examples 2.2 and 2.4, we consider throughout the paper involving
the groups 72 and 7". In Section 3 we detail our two main examples and their
link with fixed point subalgebras of non-commutative tori. In Section 4, we
use a theorem of Rieffel, to show our examples are representative of the
general situation. Finally in Sections 5 and 6 we define and consider almost
Schrodinger operators and study in detail some of their norm bounds and
associated eigenvalue equations.

1. — Discretized Canonical Commutation Relations.

Let G be a discrete abelian group and let @ be a bicharacter of G, i.e., w is a
function w : G x G — T satisfying,

(e, —x) =w(—x,x) =1 Ve € G,
w(x,0) = w(0,2) =1 Ve € G,
w(r,x) =1 Ve € G.

Let F be a finite order automorphism (of order |¥'|) of G. Then a bicharacter w of
G is called an F-invariant bicharacter if o satisfies the additional property:

(e, y) = oFx, Fy) Ve,y € G.

DEFINITION 1.1. - Given a discrete abelian group G, a finite automorphism F
of G, and an F-invariant bicharacter of G, we say that a uniformly bounded family
of operators {D,},.q C B(H) satisfies the Discretized Canonical Commutation
Relations associated to F' if,

(1) Do = |F|I,

@ D:=D_, Vreg,
¥ .

(3) Dny = Z w(xﬂij)Dm+ij7 an?/ e G’
j=1

where Fiy denotes the j-th power of the automorphism F applied to y.

REMARK 1.2. — The assumption Dy = |F|I is very natural since if we let y = 0

in the product formula (3) we obtain D,Dy = |F'|D,. Note also if we let © =0
|| IF|-1

instead we obtain |F'|D, = > Dy, or (|F| —1)Dy = > Dpj,.

j=1 j=1
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REMARK 1.3. — If the order of F' is even, say 2n, and F" = —I, using the pro-
duct formula (3), it is easy to show DyD,, = DyD_,. Consequently D, = D_, = D,
and the operators D, are self adjoint.

PropoSITION 1.4. — | D, || < |F| Vo € G.

ProoF. - Let M be the L.u.b. for {||D,||}, ® € G. Then, by (2) and (3),

|F| )
DTD; =D.D = Zw(w, ~F'0)D,,_pi,.
=

Thus,
2 *
1D:(I" = 1DDy || < MI|F|,
hence M < |F|. |
Note that Proposition 1.4 implies the existence of concrete representations

for the universal C*-algebra generated by a family of operators satisfying the
Discretized Canonical Commutation Relations.

2. — Main Examples.

In this Section we will present examples of families of operators satisfying the
discretized canonical commutation relations for G = 72, and G = 7", n > 3.
We will first define a bicharacter of G = 72.

LEMMA 2.1. — Let G = 7% and x = (Zj), Y= (if) be elements of G. Define
(nk—mt) .
o@,y)=p 2 , where p=e>0 with 0 € [0,1). Then,

@) o, —x) = —x,x) =1 Ve e 72
(5B) 0,x) = wlx,0) =1, Ve € 72,
6) w(x,y) = wAx,Ay), Y,y € 72, VYA € SL2,7).

Proor. — Straightforward computation. ]

The non-identity, finite order elements of SL(2, 7) (up to conjugacy class) are
given by the matrices,

(0 5)=(3 9)=(h 0)=(0 7))
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Consequently we will consider the following automorphisms of 72,

Z(y) = <—Ig> (order 2), Z(y) = <_(kk+ E)) (order 3),

T(y) = ( fk) (order 4), By = ( i Z)) (order 6).

Note that ¥ = —I was first considered by Arveson in [1]. Now —Z = E°,
—T=7T3% and —E =22 so —Z, —T, and —E are included. Also T? = —1,
T3 =T, E? = Z, and E® = — I so explicitly writing the product rule for the
discretized canonical commutation relations for the four automorphisms above,
we have:

2 :DyDy = o, —y)Dy—y + (@, Y) Doy

T: Da:Dy = w(x, T?/)Dx+Ty + oz, *y)Dxfy + a(, *T?/)Dx—Ty + o(x, y)D:tH/

Z DDy = wx,Zy)Dy. 7, + a)(oc,Zzy)DerZzy + (@, Y) Dty

E: DmDy = w(xaEy)DerEy + oz, Zy)Dx+Zy + oz, _y)Dmfy

+ @, —Ey)D;_gy + (@, —Zy)Dy_zy + (@, y)Dy 1y

where D, is self adjoint for 2, T and £ from Remark 1.3.

ExaMPLE 2.2. — Let Ay be the rotation algebra, that is the universal C*-
algebra generated by two unitaries operators U and V satisfying VU = pUV,
with p=¢e>™0 0 c[0,1). If J is a finite order automorphism of Ay of order
r €N, define

r—1
5(71@, n) = pmn/Z Z 5](Um Vn)

j=0
Introduce the following automorphisms of Ay:

aU)=U"', a(V)=V"1 (order 2),

() =V, «(V)=U"1 (order 4),

(U =e™UtV, (V)=U"1 (order 3),
nU) =V, yV)=e™UV (order 6).

As noticed in [1], the choice of the family of operators D, = a(m,n) (m,n € 7) in
the rotation algebra, Ay (notation as above for 6 = a) gives a family of self-
adjoint operators satisfying the discretized canonical commutation relations
associated to X. The choices D, = t(m,n), D, = {(m,n) and D, = n(m,n) (no-
tation as above for 6 = t,{, and n respectively) give families of operators, also in
Ay, satisfying the discretized canonical commutation relations associated to T,
Z and E respectively.
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Now we will give an example of a family of operators satsfying the discretized
canonical commutation relations for the flip automorphism S of Z". Firstly, we
will define an S-invariant bicharacter of Z".

LEMMA 23. — Let G = 7" and x = (t1,...,t,), ¥y = (1,...,Jn) be elements of
G. Let S denote the order two automorphism of 7" given by x — —x Vx € 7.
(When n =2, S = X.) Define

60(967?/) =€ (Z%(tﬂs - tSJf)) )

s<t

where © = {0y j}1<pejcn, € Mu(R) is skew-symmetric, and e(t) = ¢t Then,

D o, )= X — ,) = 1 v € 7,
(®) w(0,0) = w(@,0) =1 Ve € 77,
9) wx,y) = o(Sx,Sy) V,y € 7.

Proor. — Clear from the definitions of w and S. [ |

ExAmMPLE 2.4. - Let Ag denote the non-commutative torus, that is, the
universal C*-algebra generated by unitary operators Uy, k= 1,...,n subject to
the relations U, U, = ™0 U, U, for 1 <k < ¢ < n.

Define the operators [x], x = (t1,...,t,) € Z", in Ag by,

0 _ _
[x]—e( Z’Zt,gu)(U?...Uf;+U1f1...Unfn).
s<t

Clearly [ — ] = [x] and [0] = 2. Using the relations among the U/’s,

[x] =e <— Z%w) (U, .U + Ul .. U}

s<t
63 4

—¢ <Z7’tsn> (Up... U+ UM U™

s<t
=[xl =[—xl,
and, if y = (j1, ... ,jn),
[2]ly] = wlx, e + y] + ole, —yle — y].

Thus {[x]},.,» is a family that satisfies the discretized canonical commutation
relations associated to S.
Moreover we can define the “antisymmetric” self-adjoint operators {x},
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x e 7" by

{w} = ie <Z%tsn> U Ub Ut U,

s</t
and the following multiplication relation holds

[ely} = o, P{x +y} — ole, —y){x —y}.

3. — Embeddings in Non-Commutative Tori.

In this section we will construct a concrete C*-algebra that faithfully realizes

the discretized canonical commutation relations. Define,

Banach space of all absolutely summable complex

functions on G with multiplication and involution
MG o) =

def | (f  g)(w) = Z;;w(y, o) fge —y), f*@) = f(— )}
ye
and,

D ={f € G, | f(Fa) = f@) ¥r € G}, DC (G, o).

LEMMA 3.1. — D is a x-subalgebra of /NG, w).

ProoOF. — Straightforward computation.

Since by Proposition 1.4, the x-subalgebra D admits x-representations on a

Hilbert space, we define

DEFINITION 3.2. -

C*(D) = enveloping C*-algebra of D
e

that is the universal C*-algebra generated by {D,},.q subject to the discretized

canonical commutation relations associated to F.

REMARK 3.3. — With G and w as in Example 2.2, D is mapped into the rotation
algebra Ay. This is since D C EI(ZZ, w). In fact, Zl(ZZ, ) is the universal Banach

*_algebra generated by unitary operators {W, | « € 72} satisfying:
W.W, = w(x, ) Wiy
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Clearly U = W) and V = Wq 1) generate this algebra and it is easy to show
that VU = e27UV. Thus the completion C*(/X(72, w)) of ¢*(7?, w) is isomorphic
to Ay. Hence we obtain a homomorphism y : (72, w) — Ay, and also a homo-
morphism y, : D — Ay, or yp : C*(D) — Ay by passing to completion.

REMARK 3.4. — Using a similar argument to that above when G and w are as in
Example 2.4 then D is mapped into the non-commutative torus Ag with
yp : C*(D) — Ag a homomorphism.

The proofs of the following two theorems are straightforward. (c.f. [1] for the
order two case)

THEOREM 3.5. — Let 0 be irrational and let yp : D — Ay be the morphism
defined by:

IF|
yp(de) =Y Wpy, where F = .7, Z,E, wx¢e/?

J=1
with Ay = C*(W, | WwWy = oz, ?/)Wx+y7x7 UAS Zz)
=C*(U,V | VU = &70v).

Then the natural homomorphism yp : C*(D) — Ay induces an isomorphism
ofOC -allgebms. C:D)yx2 A, (F= ( 0 _1>, (1 0 ), < 1 0 ) and
<1 _1 ) for F = X, T,Z,E respectively), where Al denotes the fixed point
subalgebra of Ay determined by the action of F = <Z 3) € SL2,7) on
Ay given by

U= W(l,O) 'i em’ac() ch/c7

V = Woi L, oribdogrbyrd.
(See [3], [4], [5], [9], [10], [11], [12], [13] and [14] for more information on these
fixed point subalgebras.)

THEOREM 3.6. — Let O be totally irrational and let yp: D — Ag be the
morphism defined by:

rp(dy) = W, + Wg,, where
Ag = C" W, | W, W, = @, )Wy, € 7
=C"(Uy,....U0, | UU; = 627”'01;7(]1.(]].’@ <.

Then the natural homomorphism yp, : C*(D) — Ag induces an isomorphism of
C*-algebras: C*(D) = A3 where Ag denotes the fixed point subalgebra of Ae
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determined by the action of S on Ag given by S(U;) = UL i=1,...,n. (See[T],
[15], [16] for more details on this fixed point subalgebra.)

4. — The General Case.

Here we will explain how to reduce the case of general abelian groups to one
of our main examples 2.2 and 2.4.

First, we will look at 2.2 and 2.4 from a slightly different viewpoint.

With G =72, let M =R? and then construct G =M x M = R? x R?,
where M is the dual of M, with canonical Heisenberg bicharacter

[)’((ZZ) (?)) — Mt The skew bicharacter B on G defined by B(x,y) =

B, y)p(y, x) corresponds, when restricted to 72, to @, with w as in Section 2.
The rotation algebra Ay is characterized by the relation wu,u, = f(x, y)uziy.

More in general, when G is any discrete abelian group and « is any (con-
tinuous) bicharacter on G, by a result of Rieffel, we can find an appropriate lo-
cally compact abelian group G in which G embeds as a closed subgroup and a is
the restriction of the Heisenberg cocycle on G, as the situation is for the case
G = 72. More precisely

DEFINITION 4.1 [21]. — Let M be any locally compact abelian group, M its
dual group and let N = M x M. Then on N we define the canonical Heisenberg
cocycle by

H((m,s), (n,t)) = (m,t),

where (,) denotes the duality between M and M.
Furthermore N has a canowical square-integrable H-representation II on
L2(M), the Heisenberg representation, defined by

ULy Y(n) =< n,s > f(n+m).
The commutation relations among the operators of Il are given by
1,11y = H(@, Iy = He,y) HGy, )1, 1.
The skew-symmetric character R, defined on N by
R(x,y) = H(, y)H(y, )
18 such that

1111, = R(e, I, I1,.

PROPOSITION 4.2 [21]. — Let G be any discrete abelian group, a a cocycle on G,
G the dual group of G. Let G =GxG. G is embedded in G by v:G— G,
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w(x) = (x, p(x)), where ¢ : G — G is defined by (x, ¢(y)) = a(x,y). On G we have
the canonical bicharacter f defined by

p(m,s), (n,t)) = (m,t),
where (,) denotes the duality between M and M. Then
Bly@),y(y) = (v, $(y)) = alx,y),

s0 a 1s the restriction to G of the canonical Heisenberg cocycle on G.

5. — The almost Schrodinger operator: bounds for its norm.

DEFINITION 5.1. — Let G =2 7" & 7, @ ... ® 7oy, and denote by {e;}

j=1,.m the

canonical basis of 7", and by b; the canonical basis of TwyJ=1,... k. Then we
will call the operator

n k
Hay, ... 001 ) =D Do, + Y _BiDy, aj,f; € R
j=1 j=1

the almost Schrodinger operator associated to the Discretized Canonical
Commutation Relations associated to F'.
Considering the case G = 73, F = 8, set h = H(1,1,1;0); we have

h=HQ1,1,1;0) = Uy + U; + Us + Uy + Us + U; = [e1] + [ea] + [es].
We are interested in determining bounds for the norm of 4. Our aim will be the

generalization to dimension three of the formulas in [8]. A long, but straightforward,
computation using the discretized canonical commutation relations shows that,

3
W =61+ [2e]+ Y (p;;+pi D{lei + ]+ [ei — i1}
i—1 i<y
and,
3
W =9+ [3e]
i=1
+ D (i + 1477 p{12e; + ¢j1+12e; — ¢1+lei + 211+ [ei — 2ej]+Te;]+e;1}
i<y
+ {P(1,2,3) = (p12p13P25 + P1aP13Pzy) Her + e + es]
+ {P(,2,8) = (p1ap13P23 + P12P1EP23) Her + €2 — e3]
+ {P(1,2,3) — (p12p13023 + Prapispes) Her — ez — es]
+{P,2,3) = (p12p13P23 + Pr2p13Pz3) ler — €2 + es]

where P(1,2,3) = (15 + p13)(p1 3 + P13 (pa3 + p3) and p; ; = e™%i. Hence,
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THEOREM 5.2. — In Ag, for @ = 003, where O3 is the skew-symmetric (3 x 3)
matric with 1’s in the upper diagonals, and 0 € R, p = €™, we hawe,

R3] <12+ 12)p+ p7Y,
B> —9R|| < 6+36|p 2 +1+p%| +6{2(p+p )+ (PP +p )+ |p+p '}

COROLLARY 5.3. — If a € R is such that,

la| > 2v38y/1+ |p+p~1| or

|@® —9a] > 6+36[p72 + 1+ p*| +6{2(p+p )+’ +p |+ p+p 7'},

then a is not in the spectrum a(h) of h in Ag, for @ = 00s.

COROLLARY 5.4. — The norm of h in Ag, © = 003, is always less than or equal

to 2v/3\/1+ |p+ p~1|. If p = €™/3 then the norm of h is less than or equal to
31/3 4 3213,

REMARK 5.5. — By continuity arguments it is clear that the estimates above
are also going to hold for triples (p; 2, p1 3, p23) “close” to (p, p, p).

REMARK 5.6. — For n = 2 we can bound the size of ||| (at least near p = ¢™/3)
by using the estimate [8]
|h? —6h|| <4 +8]p2+1+p?

In general, for G =7", F =8 and h = H(1,...,1;0), using similar compu-
tations we obtain

h? = 2nl + Z [2e;] + Z (pi +p;]1-){[ei + ;1 + [e; — ¢j1}
=1

i<j
and,
1B =3k + " 30i]
i=1

+ )i+ 1+ 2 {[2e; + ¢1+[2¢; — ¢j]+[e; + 2¢;]+[e; — 2¢;]+[ei]+[e;1}
i<j

+ 30 (PG = (it pisc+ pi} DY i + €+ i,
i<j<k

+{ PG, 3, k) = (py jpigePii + Pij i P lei + €5 — €]
+ {PG, j,k) - (Pi,jﬂ[}gﬂficl +/’Z}/’i,k/’j,k)}[ei — € — er]
+{PG, j, k) — (pi jpixPix +PZ}PZ;§P{;CI)}[€1' —e + 6k]}

where PG, j,k) = (p; ; + pi D(piy + pi)pjy + pip)- Hence,
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THEOREM 5.7. — In Ag, for ©® = 0Oy, where O is the skew-symmetric (n x n)
matrix with 1’s in the upper diagonals, and 0 € R, p = €™, we hawve,

1K < 4n +2n(n — Dlp+p~',
|73 — Bu)h|| < 2n + 6n(n — 1)|p~2 + 1 + p?|
+nn -1 —2){20p+p )+ P +p )|+ p+p7}

COROLLARY 5.8. - If a € R is such that

la] > \/4n +2nn —D|p+p~1 or
la® — 3na| > 2n 4 6n(n — 1)|p2 + 1 + p?|
+nm—Dm—2){200+p )+ PP +p ) +p+p"},
then a is not in the spectrum a(h) of h in Ae, for @ = 0on.
COROLLARY 5.9. —- The norm of hin Ag, © = 00n, is always less than or equal

to \/4n + 2n(n — Dlp + p~1|. If p = €™/ then the norm of h is less than or equal
to the positive solution of h®> — 3nh = 2n + n(n — 1)(n — 2)

REMARK 5.10. — By continuity arguments it is clear that the above estimates
hold for &’s “close” to @ = 0.

6. — The almost Schrodinger operator: eigenvalue equations.

In this section we generalize to higher dimensions some of the computations
of Riedel [17], [18] on the spectrum of the almost Schrédinger operator
H(1,1,1,0) (G = 7>).

DEFINITION 6.1 [17]. — A state ¢ on Ag is an eigenstate for the almost
Schrodinger operator h = H(ay, . .., a,;0) if

d(ha) = y¢(a) Va € Ap.

For n = 3 the above eigenvalue equation, on the linear span of the elements
a = [t],t € 73 (See Example 2.2) is equivalent to the system of equations S(x) given
below. (Where S; = ¢([¢]), w(ej, t) = " with ej,J =1,2,3, the canonical base of 73)

a1 €08 (y)[Sete; + Su—ey] + 02 €08 () Sure, + Sa—ep] +
ag CoS (Vg)[Sﬂc+63 + S%‘*Eg] = sz
Sx) : Sy =8_z
a1 sin (V1)[Sac+el - Sxfel] + ag sin (yZ)[S[)c+82 - Sxfez] +
a3 Sin (73)[Syte; — Sp—ey]1 = 0.
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A system analogous to the one given above (call it 7'(¢)) represents the solutions of
the eigenvalue equation belonging to the linear span of the elements {t}, t € 73
(see Example 2.2 also). The two systems of equations S(x) and 7T'(x) can be rewritten
in the more compact form given below (Set Z; = ¢([t]) + ¢({t}), A; = a; cos (y]-),
Bj = a;sin(y;),j = 1,2,3.)

3
ZAj(Zx+ej + Zx—ej) = XZx
i=1

3
> BJ'(Z“@J' —Zp—o) =0
i=1

Z(x) :

Z(x) is a linear system of two equations in seven unknowns. To construct solu-
tions of Z(x) we will consider the following three systems below.

[z | 2w |
W@): {Z(ac—&—eﬂ’ W) : {Z(x+62), W@): {

Z(x)
Z(x+e3)

The system W(k), k = 1,2, 3 is a system of four equations in the unknowns Z,,
Zivrejy Znvo+ep) = 1,2,8. By eliminating Z,,_,, and Z,,,,, we obtain the following
system (call it W1(k)).

2AkBiZigie,+ > (AjBr+ABj) o+ (AjBr —ArBj) Zy oy = B2y
J#k J#k
2ABr 2oty (AjB—ArB)) ey + 3 (AiBr+-ArB) o, o=t B Zuie,
ik ik
Note that Wi(k) is a system of two equations in the unknowns Z,, Z;1e,, Zu1e;,
Zig—e;y Lnrerre Laver—epn J =1,2,3, J # k. If we represent Zy, t € 72, using co-
ordinates in three space, the points representing the ten unknowns form two
rectangles intersecting along a segment parallel to the k-axis.

THEOREM 6.2. — Given 1} witial points, we can fill out the space by using
equations Wi(k), k = 1,2, 3. However, there are only 7 degrees of freedom, as we
see from evaluating S(x) for x = 0.

Computations analogous to the ones performed above also show:

THEOREM 6.3. — Given a finite set of initial points, we can fill out the space by
using equations Wik), k =1,...,n. However, there are only 2n + 1 degrees of
freedom, as we see from evaluating S(x) for x = 0.
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